高等数学 课件 PPT 第四章 不定积分
合集下载
高职课件《高等数学》第四章不定积分课件

9 csc2x dx cotx C ;
10
dx arcsinx C ;
1 x2
11
dx arctanx C ; 1 x2
例4.1.2 求
x2
x
1 x2
dx
。
解 根据基本积分表中的公式(2)及不定积分的性质(4)得:
x2
x
1 x2
dx
x2
1
x2
1 x2
dx
例4.1.1 求 cosxdx 。
解 因为sinx' cosx,所以 cosxdx sinx C
如果忘记写常数 C,那就意味着你只找到了cosx 的一个原函数。
4.1.2不定积分的性质
根据不定积分的概念,可以推得如下性质:
(1)
d dx
f
x
dx
f x ;
(2) f ' x dx f x C
4.1.3 不定积分的几何意义
由 f x 的原函数族所确定的无穷多条曲线 y F x C 称为f x 的积 分曲线族。在 f x 的积分曲线族上,对应于同一 x 的点,所有曲线都
有相同的切线斜率,这就是不定积分的几何意义。 例如
2xdx x2 C
被积函数 2x 的积分曲线族就是 y x2 C ,即一族抛物线。对 应于同一 x 的点,这些抛物线上的切线彼此平行且具有相同的斜 率2x,如图4-1所示。
(由性质(1)和(2)可知,求导与求积是两个互逆的运算);
(3) k f x dx k f x dxk为常数
(4) f x g x dx f x dx g x dx ; (5) d f x dx f x dx ; (6) df x = f ' x dx f x C 。
高等数学第四章 第四节 不定积分 课件

例3
解
计算由 y 2 2 x 和 y x 4所围图形的面积.
选 y 为积分变量
y x4
y2 2 x
y2 dA( y ) ( y 4) dy, y [2, 4] 2
4
A
4
2
dA( y )
2
y (y 4 )d y 18. 2 2
与 y 0 所围成的图形分别绕 x 轴、y 轴旋转构成旋转 体的体积.
解 绕 x 轴旋转的旋转体体积
y( x )
a
Vx
2a
0
y 2dx
2a
a 2 (1 cost )2 d[a( t sint )]
0
2
5 2a 3 .
20/31
例 4
求摆线 x a( t sin t ) , y a(1 cos t ) 的一拱
a 4 2 0 3 π ab
方法2 利用椭圆参数方程
y O
b
x
ax
则
V 2 π y 2 dx 2 π ab 2 sin 3t d t
0
a
2 2 π ab 1 3 4 π ab 2 3
2
4 3 特别当b = a 时, 就得半径为a 的球体的体积 π a . 3
a xxdx
b x
例 2
计算由曲线 y x 3 6 x 和 y x 2 所围成
的图形的面积.
解
A f1 ( x) f 2 ( x) dx
a
b
y x3 6x
两曲线的交点
y x 6x 2 y x
3
y x2
应用高等数学第4章4-1不定积分27页PPT

一、运算法则 二、进一步的练习
不定积分的运算法则
法则1 被积函数中不为零的常数因子可以提到不定积 分符号外面来,即
kf(x)d x kf(x)dx (k 0 )
法则2 两个函数代数和的不定积分等于两个函数的不
定积分的代数和,即
注:
f(x ) g (x )d x f(x )d x g (x )d x
意,求 f ( x)dx 时,切记“ C ”,否则求出的只是
f ( x) 的一个原函数,而不是不定积分.
三、进一步的练习
练习1 求下列不定积分:
(1)
e x dx
;(2)
1 dx 1 x2
;(3)
1 x
dx
解 (1)因为 (ex ) ex ,即 e x 是 e x
的一个原函数,所以 exdx ex C
由定理1可知,要求函数 f (x) 的全体原函数,只要找 到它的一个原函数,然后再加上任意常数 C即可.
定理2(原函数存在定理) 如果函数 f (x) 在某区间上连续,那么 f (x)
在该区间上存在原函数. 由于初等函数在其定义区间上连续,因此,
初等函数在其定义区间上存在原函数.
不定积分的概念
定义2 如果 F (x) 是 f ( x) 在某个区间上的一个原
上的已知函数,若存在函数 F( x ) ,使得 F(x)f(x)
或 d[F(x)]f(x)d,x则称 F( x ) 为 f (x) 在区间 I
上的一个原函数.
原函数的两个定理
定理1(原函数族定理) 如果 F (x) 是 f (x) 的一个原函数, 那么 F(x)C是 f (x) 的全体原函数,其中 C 为任意常 数.
.
(2)因为 (arcsxin)
不定积分的运算法则
法则1 被积函数中不为零的常数因子可以提到不定积 分符号外面来,即
kf(x)d x kf(x)dx (k 0 )
法则2 两个函数代数和的不定积分等于两个函数的不
定积分的代数和,即
注:
f(x ) g (x )d x f(x )d x g (x )d x
意,求 f ( x)dx 时,切记“ C ”,否则求出的只是
f ( x) 的一个原函数,而不是不定积分.
三、进一步的练习
练习1 求下列不定积分:
(1)
e x dx
;(2)
1 dx 1 x2
;(3)
1 x
dx
解 (1)因为 (ex ) ex ,即 e x 是 e x
的一个原函数,所以 exdx ex C
由定理1可知,要求函数 f (x) 的全体原函数,只要找 到它的一个原函数,然后再加上任意常数 C即可.
定理2(原函数存在定理) 如果函数 f (x) 在某区间上连续,那么 f (x)
在该区间上存在原函数. 由于初等函数在其定义区间上连续,因此,
初等函数在其定义区间上存在原函数.
不定积分的概念
定义2 如果 F (x) 是 f ( x) 在某个区间上的一个原
上的已知函数,若存在函数 F( x ) ,使得 F(x)f(x)
或 d[F(x)]f(x)d,x则称 F( x ) 为 f (x) 在区间 I
上的一个原函数.
原函数的两个定理
定理1(原函数族定理) 如果 F (x) 是 f (x) 的一个原函数, 那么 F(x)C是 f (x) 的全体原函数,其中 C 为任意常 数.
.
(2)因为 (arcsxin)
《高等数学》教学课件 第4章

〔4-3〕
例1 求 2exdx 。
解
2exdx 2 exdx 2ex C
性质2 两个函数代数和的积分等于它们积分的代数和,即
[ f (x) g(x)]dx f (x)dx g(x)dx
〔4-4〕
例2 求 (2x cos x)dx 。
解
(2x cos x)dx 2xdx cosxdx x2 sin x C
令us100
1
1
0.05 u 2du 0.1u 2 C
回代
1
0.1(s 100)2 C
又因为 Q(0) 0,得 C 1 ,故
1
Q 0.1(s 100)2 1
3
例2 求 (1 2x) dx 。
解 将dx凑成 dx 1 d(1 2x) ,则 2
(1
3
2x) dx
1 2
(1
2x)3
二、不定积分的概念
定义2 如果函数 F (x) 是 f (x) 的一个原函数,那么表达式 F (x) C
( C为任意常数)称为 f (x) 的不定积分,记为 f (x)dx ,即
f (x)dx F (x) C
其中“ ”称为积分号,x 称为积分变量,f (x) 称为被积函
数,f (x)dx 称为被积表达式, C 称为积分常数。dx
1 2a
a
1
x
dx
a
1
x
dx
1 ( ln a x ln a x ) C 2a
1 ln a x C. 2a a x
同理有
1
1 xa
dx ln
C
x2 a2 2a x a
例10 求 csc xdx 。
解
csc xdx
4.不定积分。PPT

三、 不定积分的几何意义
如果 F(x)是 f (x)的一个原函数,则 f (x)
的不定积分 f (x)dx F(x) C.对于每一给
定的常数 C ,F(x) C 表示坐标平面上的一 条确定的曲线,这条曲线称为 f (x)的一条积 分曲线.由于 C 可以取任意值,因此不定积
分 f (x)dx 表示 f (x) 的一族积分曲线.
sin x 1 sin3 x c 3
例 4 求不定积分 3xexdx .
解 3xexdx (3e)xdx (3e)x c 3xex c
ln 3e 1+ ln 3
4-2 不定积分的直接积分法
例 5 求不定积分
x4 1 x2
dx
.
解
x4
(x4 1) 1
1 x2 dx 1 x2 dx
x4 x2
1dx 1
1 1 x2
4-1不定积分的概念与性质
一般,如果F(x)是 f (x)的一个原函数,则 f (x)的全部原函数就是 F(x) C ( C为任意常 数).
那么一个函数满足什么条件, 它的原函数 一定存在呢?
如果函数f(x)在区间[a,b]上连续,则在该 区间上f(x)的原函数一定存在.
4-1不定积分的概念与性质
第4章 不定积分
第4章 不定积分
4-1 不定积分的概念与性质 4-2 不定积分的直接积分法 4-3 换元积分法 4-4 分部积分法
4-1不定积分的概念与性质
一、 不定积分的概念 二、 不定积分的性质 三、 不定积分的几何意义
4-1不定积分的概念与性质
一、 不定积分的概念
1. 原函数 定义4.1 设 f (x)是定义在区间 (a,b)内的
其中 C 称为积分常数.
如果 F(x)是 f (x)的一个原函数,则 f (x)
的不定积分 f (x)dx F(x) C.对于每一给
定的常数 C ,F(x) C 表示坐标平面上的一 条确定的曲线,这条曲线称为 f (x)的一条积 分曲线.由于 C 可以取任意值,因此不定积
分 f (x)dx 表示 f (x) 的一族积分曲线.
sin x 1 sin3 x c 3
例 4 求不定积分 3xexdx .
解 3xexdx (3e)xdx (3e)x c 3xex c
ln 3e 1+ ln 3
4-2 不定积分的直接积分法
例 5 求不定积分
x4 1 x2
dx
.
解
x4
(x4 1) 1
1 x2 dx 1 x2 dx
x4 x2
1dx 1
1 1 x2
4-1不定积分的概念与性质
一般,如果F(x)是 f (x)的一个原函数,则 f (x)的全部原函数就是 F(x) C ( C为任意常 数).
那么一个函数满足什么条件, 它的原函数 一定存在呢?
如果函数f(x)在区间[a,b]上连续,则在该 区间上f(x)的原函数一定存在.
4-1不定积分的概念与性质
第4章 不定积分
第4章 不定积分
4-1 不定积分的概念与性质 4-2 不定积分的直接积分法 4-3 换元积分法 4-4 分部积分法
4-1不定积分的概念与性质
一、 不定积分的概念 二、 不定积分的性质 三、 不定积分的几何意义
4-1不定积分的概念与性质
一、 不定积分的概念
1. 原函数 定义4.1 设 f (x)是定义在区间 (a,b)内的
其中 C 称为积分常数.
高等数学课件--D4_1不定积分

x (1 x )
2
2
dx
arctan x ln x C
2012-10-12
例8. 求
1 x 2 dx .
( x 1) 1
2 4
x
4
解: 原式 =
1 x 2 2 ( x 1)( x 1) 1
1 x
2
2
dx
dx
( x 1) dx
1 x2 ) x2 ( x (1 x )
2
2 2
2
1 x
2
1 1 x
2
(2)
sin x cos x
sin x cos x
2 2
sec x csc x
2012-10-12 同济高等数学课件
目录 上页 下页 返回 结束
2
2
6. 求不定积分 解:
(e
2x
e 1)
csc xdx cot x C
2
同济高等数学课件
目录 上页 下页 返回 结束
2012-10-12
(10) (11)
sec x tan xdx sec x C csc x cot xdx csc x C
e dx e C
x
(12)
(13)
x
a
x
2
2012-10-12
1 3
x C
3
C 称为积分常数, 不可丢 !
sin xdx
cos x C
同济高等数学课件
目录 上页 下页 返回 结束
不定积分的几何意义:
的原函数的图形称为 的积分曲线 . 的所有积分曲线组成 的平行曲线族.
高等数学第四章 第二节不定积分 课件

1 x+ 1 例17 求 ∫ (1 − 2 )e x dx . x ′ 1 1 解 ∵ x + = 1− 2 , x x
1 ∴ ∫ (1 − 2 )e x = ∫e
x+ 1 x
x+
1 x
dx
1 x+ 1 d( x + ) = e x + C. x
例18 求 解
cot x dx ∫ ln sin x
同样可证
∫ csc xdx = ln csc x − cot x + C
或
x 1 1 − cos x = ln tan + C = ln + C. 2 1 + cos x 2
1 dx . 例12 求∫ 1 + cos x 1 1 − cos x 解法一 ∫ dx = ∫ dx 1 + cos x (1+ cos x)(1− cos x) 1 − cos x 1 1 dx = ∫ 2 dx − ∫ 2 d (sin x ) =∫ 2 sin x sin x sin x 1 = − cot x + + C. sin x
x x
1 8) ∫ f ( x ) d x = 2∫ f ( x )d x x
1 9) ∫ f (arctan x) d x = ∫ f (arctan x)darctan x 2 1+ x
例7. 求
dln x 1 d(1+ 2ln x) 解: 原式 = ∫ = ∫ 1+ 2ln x 2 1+ 2ln x
其中 ψ − 1 ( x ) 是 x = ψ ( t ) 的反函数。 的反函数。
d (( ∫ f [ψ ( t )]ψ ′( t ) dt )
高等数学不定积分的计算教学ppt

令u 10x
1 10
sin
udu
1 10
cos
u
C
u回代 1 cos10x C. 10
[ 1 cos10x C] sin10x 说明结果正确 10
第四章 不定积分
第一节 不定积分的计算
e3xdx 1
3
e 3 xd(3 x )
令u 3x
1 3
eudu 1 eu C 3
u回代 1 e3x C 3
x
; 6
原式
(x
1 3)( x
2)
dx
1 5
(
x
1
3
x
1
)dx 2
1 5
[
x
1
d(x 3
3)
x
1
2
d(
x
2)]
1 (ln | x 3 | ln | x 2 |) c 1 ln | x 3 | c
5
5 x2
练习
求
dx x2 5x 4 .
第四章 不定积分
第一节 不定积分的计算
sin xdx d(cos x);
sec x tan xdx d(sec x); csc x cot xdx d(csc x).
sec2 xdx d(tan x); csc2 xdx d(cot x);
dx d(arcsin x);
1 x2
dx 1 x2 d(arctan x);
第四章 不定积分
第四章 不定积分
第一节 不定积分的计算
例6 计算
(2 arctan x)2
1 x2
dx.
1 1 x2 dx d(arctan x)
f
(arctan
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果一个函数存在原函数,那么这些原函数之间有什 么关系呢?
一、原函数的概念
定理2
若F(x)是函数f(x)在区间I上的一个原函数,则F(x)+C(C为任意 常数)是fx在区间I上的全体原函数.
定理2说明,若一个函数有原函数,则它必有无穷多个原函数,且 它们彼此相差一个常数. 事实上,设F(x)和G(x)都是f(x)的原函数,则
g(x)=f[φ(x)]φ′(x). 作变量代换u=φ(x),并将φ′(x)dx凑微分成dφ(x),则可将关 于变量x的积分转化为关于变量u的积分,于是有
∫f[φ(x)]φ′(x)dx=∫f(u)du. 如果∫f(u)du 可以求出,那么∫g(x)dx 的问题也就解决了,这就 是第一类换元积分法,又称为凑微分法.
一、第一类换元积分法
【例1】
解 本题的关键是将2xdx凑微分得dx2,然后令u=x2,则
【例2】
解 先将被积表达式中的sec2xdx凑微分得dtanx,然后令 u=tanx,再积分,即
一、第一类换元积分法
【例3】
一、第一类换元积分法
注意
(1)求不定积分的方法不唯一,不同方法算出的 答案也不相同,但它们的导数都是被积函数,经过恒等 变形后可以互化,其结果本质上只相差一个常数.
对于给定的函数fx具备什么条件才有原函数?这个问题将 在下一章讨论,这里先介绍一个结论.
一、原函数的概念
定理1
(原函数存在定理)若函数f(x)在区间I上连续,则函数 f(x)在区间I上存在原函数F(x).
由于初等函数在其定义区间上都是连续的,所以初等函 数在其定义区间上都存在原函数. 如果一个函数存在原函数,那么它的原函数是否唯一?事 实上,函数fx的原函数不是唯一的.例如,x2是2x的一个原 函数,而(x2+1)′=2x,故x2+1也是2x的一个原函数.
二、不定积分的性质
【例5】
解 虽然被积函数是一个无理式,但是这里我们还是可以通 过性质2及不定积分基本公式(2)求解该不定积分.
【例6】
二、不定积分的性质
三角函数的情形是比较复杂的,但是一般 我们可以通过三角恒等变形,得到被积函数的 等价形式,利用不定积分的基本性质,通过对 等价形式的求积分,得到原来函数的不定积 分.我们在以后遇到的很多问题中都应用到恒 等变形的思想.
性质3可以推广到有限个函数的情形,即有
利用基本积分表和不定积分性质,可以直接求一些简单的不 定积分.
二、不定积分的性质
【例4】
解 对于两个有理多项式的商的积分,特别是分母是幂函数 的情形,我们一般可以除下来,利用性质2,把分式函数看 成是一些幂函数相加得到的新函数,再应用不定积分基本 公式(2)求不定积分.
一、基本积分表
(9)∫csc2x dx=-cotx+C; (10)∫secxtanxdx=secx+C ; (11)∫cscxcotx dx=-cscx+C;
以上公式是求不定积分的基础,必须熟记.在应用这些公式时, 有时需要对被积函数做适当的变形.
【例1】
一、基本积分表
解 应用不定积分基本公式(2),有
(2)熟练掌握第一类换元积分法的运用以后,可 以省略写出引进变量u的步骤.
一、第一类换元积分法
下面是常用的凑微分等式,请熟记,对以后解题大有帮 助.
一、第一类换元积分法
【例4】
【例5】
一、第一类换元积分法
【例7】
一、第一类换元积分法
【例8】
解 被积函数中含有正弦函数且为偶次方,在计算这 种积分时,往往要运用三角恒等式,将被积函数降幂转化 为积分公式表中所列的形式.本题利用半角公式sin2x=1- cos2x/2,将被积函数降为一次幂后再积分.
一、基本积分表
(1)∫k dx=kx+C (k是常数);
(2)
(α∈R,α≠-1);
(3)∫1/x dx=ln|x|+C;
(4)∫ax dx=ax/lna+C (a>0,a≠1);
(5)
(6)∫sinx dx=-cosx+C;
(7)∫cosx dx=sinx+C;
(8)∫sec2x dx=tanx+C;
二、不定积分的性质
思考
下列两个式子正确吗?为什么?
第三节
换元积分法
一、第一类换元积分法
运用不定积分的线性运算法则和基本积分公式,可以求 一些简单函数的不定积分.为了求出一些更复杂函数的不定 积分,我们来学习与复合函数求导法则相对应的积分方 法.通常的做法是通过适当的变量代换,将某些比较复杂的 被积函数变换成符合基本积分表中的形式,从而容易求出积 分,这种积分的方法叫换元积分法.不定积分换元积分法通 常分为第一类换元积分法和第二类换元积分法两种.
【例1】
求∫exdx. 解 因为(ex)′=ex,所以
∫exdx =ex+C.
二、不定积分的概念
【例2】
求∫1/xdx. 解 当x>0时,因为(ln x)′=1/x,所以
∫1xdx =ln x+C; 当x<0时,因为
∫1/xdx =ln(-x)+C. 综上可得,∫1/xdx =ln|x|+C.
,所以
y=∫3x2dx =x3+C, 又曲线过点(0,1),从而得C=1,于是所求的曲线方程为
y=x3+1.
第二节
不定积分的基本积分表 与性质
一、基本积分表
由于求不定积分与求导数是互逆的运算, 因此,由导数的基本公式就可以得到相应的不 定积分的基本公式,为了便于记忆和应用,我们 把一些基本的积分公式列成一个表,通常称为 基本积分表.
二、不定积分的性质
性质1
性质1清楚地表明了不定积分运算与微分运算之间的 互逆关系.
二、不定积分的性质
注意
对函数f(x)先求积分,再求导数,其结果等于f (x),而对函数f(x)先求导数,再求积分,其结果 不再是f(x),而是f(x)+C.
二、不定积分的性质
性质2
如果常数k≠0,那么
性质2说明,不定积分中不为零的常数因子可以提到积分号 外面来.
三、不定积分的几何意义
(2)在每一条积分曲线上作横坐标相同的点处的切线, 这些切线的斜率相等,从而使相应点的切线相互平行(见图 4-1).
三、不定积分的几何意义
【例3】
已知曲线上任一点的切线斜率等于该点处横坐标平方 的3倍,且曲线过点(0,1),求此曲线. 解 设所求的曲线方程为y=f(x),由导数的几何意义知, y′=3x2,由不定积分的定义知
二、不定积分的性质
性质3
如果函数f1(x)及f2(x) 的原函数存在,那么
性质3说明∫[f1(x)± f2(x)]dx是f1(x)±f2(x)的原 函数,由于它涉及两个积分记号,形式上含有两个积分常数,把 这两个积分常数合并为一个,因此它实际上是f1(x)±f2(x)的 不定积分,即与∫f1(x) dx±∫f2(x) dx相等.
一、第一类换元积分法
【例9】
【例10】
一、第一类换元积分法
【例11】
注意
当被积函数为两个三角函数(正弦函数和余弦函数) 的一次乘积时,一般要先积化和差再积分.
一、第一类换元积分法
【例12】
一、第一类换元积分法
【例13】
解 凡是分母可以分解因式的分式,一般都需要先将 复杂分式化成几个最简单的分式,再积分.由于
二、不定积分的概念
定义2
若函数Fx是f(x)在区间I上的一个原函数,则函数f(x) 的全体原函数F(x)+C称为fx在区间I上的不定积分,记 为∫f(x)dx,即
∫f(x)dx =F(x)+C, 其中记号“∫ ”称为积分号,f(x)称为被积函数,f(x)dx 称为被积表达式,x称为积分变量,C称为积分常数.
一、第一类换元积分法
定理1
(第一类换元积分法)若已知∫f(u)du=F(u)+C,并且u=φ(x) 是可微函数,则有
∫f[φ(x)]φ′(x)dx=∫f(u)du.(4-1) 证因为∫f(u)du=F(u)+C,所以F′(u)=f(u).根据复合函数的求 导法则,得
因此 证毕.
∫f[φ(x)]φ′(x)dx=∫f(u)du.
一、第一类换元积分法
例如,上节思考题中提到的积分:∫2xcosx2 dx, 观察被积函数发现,不能用直接积分法积出,但被积 表达式中的一部分2xdx如果凑微分变成dx2,再将积 分变量换成变量u=x2,这样被积表达式就和基本积分公 式(7)相同了.因此,本题可这样求解
一、第一类换元积分法
上述这种解题方法的关键是将被积函数的一部分与dx凑微分, 然后引入中间变量,把中间变量看成新的积分变量的情况下,被 积函数就符合了基本积分公式的形式,利用积分公式求出结果, 再把中间变量换回原变量即可,即如果不定积分∫g(x)dx不能直 接利用基本积分公式求解,但被积函数g(x)可变形为
现在要解决其反问题:已知曲线上任意一点x处的 切线的斜率,要求该曲线的方程.为此,引进原函数的 概念.
一、原函数的概念
定义1
设f(x)是定义在区间I上的函数,若存在函数F(x),使得对 任意x∈I均有
F′(x)=f(x)或dFx=fxdx, 则称函数Fx为fx在区间I上的一个原函数.
例如,因为(sin x)′=cos x,故sin x是cos x的一个原函数.又 如,当x>0时,(ln x)′=1/x,所以ln x是1/x在区间0,+∞上的 一个原函数.
【例2】
解 应用不定积分基本公式(2),有
一、基本积分表
注意
上述两个例题实际上是幂函数的积分问题,但是表示 上是取用了根式和分式形式,遇到这样的情况一般先化 成xμ的形式,再根据不定积分基本公式(2)来求不定积分.
一、基本积分表
一、原函数的概念
定理2
若F(x)是函数f(x)在区间I上的一个原函数,则F(x)+C(C为任意 常数)是fx在区间I上的全体原函数.
定理2说明,若一个函数有原函数,则它必有无穷多个原函数,且 它们彼此相差一个常数. 事实上,设F(x)和G(x)都是f(x)的原函数,则
g(x)=f[φ(x)]φ′(x). 作变量代换u=φ(x),并将φ′(x)dx凑微分成dφ(x),则可将关 于变量x的积分转化为关于变量u的积分,于是有
∫f[φ(x)]φ′(x)dx=∫f(u)du. 如果∫f(u)du 可以求出,那么∫g(x)dx 的问题也就解决了,这就 是第一类换元积分法,又称为凑微分法.
一、第一类换元积分法
【例1】
解 本题的关键是将2xdx凑微分得dx2,然后令u=x2,则
【例2】
解 先将被积表达式中的sec2xdx凑微分得dtanx,然后令 u=tanx,再积分,即
一、第一类换元积分法
【例3】
一、第一类换元积分法
注意
(1)求不定积分的方法不唯一,不同方法算出的 答案也不相同,但它们的导数都是被积函数,经过恒等 变形后可以互化,其结果本质上只相差一个常数.
对于给定的函数fx具备什么条件才有原函数?这个问题将 在下一章讨论,这里先介绍一个结论.
一、原函数的概念
定理1
(原函数存在定理)若函数f(x)在区间I上连续,则函数 f(x)在区间I上存在原函数F(x).
由于初等函数在其定义区间上都是连续的,所以初等函 数在其定义区间上都存在原函数. 如果一个函数存在原函数,那么它的原函数是否唯一?事 实上,函数fx的原函数不是唯一的.例如,x2是2x的一个原 函数,而(x2+1)′=2x,故x2+1也是2x的一个原函数.
二、不定积分的性质
【例5】
解 虽然被积函数是一个无理式,但是这里我们还是可以通 过性质2及不定积分基本公式(2)求解该不定积分.
【例6】
二、不定积分的性质
三角函数的情形是比较复杂的,但是一般 我们可以通过三角恒等变形,得到被积函数的 等价形式,利用不定积分的基本性质,通过对 等价形式的求积分,得到原来函数的不定积 分.我们在以后遇到的很多问题中都应用到恒 等变形的思想.
性质3可以推广到有限个函数的情形,即有
利用基本积分表和不定积分性质,可以直接求一些简单的不 定积分.
二、不定积分的性质
【例4】
解 对于两个有理多项式的商的积分,特别是分母是幂函数 的情形,我们一般可以除下来,利用性质2,把分式函数看 成是一些幂函数相加得到的新函数,再应用不定积分基本 公式(2)求不定积分.
一、基本积分表
(9)∫csc2x dx=-cotx+C; (10)∫secxtanxdx=secx+C ; (11)∫cscxcotx dx=-cscx+C;
以上公式是求不定积分的基础,必须熟记.在应用这些公式时, 有时需要对被积函数做适当的变形.
【例1】
一、基本积分表
解 应用不定积分基本公式(2),有
(2)熟练掌握第一类换元积分法的运用以后,可 以省略写出引进变量u的步骤.
一、第一类换元积分法
下面是常用的凑微分等式,请熟记,对以后解题大有帮 助.
一、第一类换元积分法
【例4】
【例5】
一、第一类换元积分法
【例7】
一、第一类换元积分法
【例8】
解 被积函数中含有正弦函数且为偶次方,在计算这 种积分时,往往要运用三角恒等式,将被积函数降幂转化 为积分公式表中所列的形式.本题利用半角公式sin2x=1- cos2x/2,将被积函数降为一次幂后再积分.
一、基本积分表
(1)∫k dx=kx+C (k是常数);
(2)
(α∈R,α≠-1);
(3)∫1/x dx=ln|x|+C;
(4)∫ax dx=ax/lna+C (a>0,a≠1);
(5)
(6)∫sinx dx=-cosx+C;
(7)∫cosx dx=sinx+C;
(8)∫sec2x dx=tanx+C;
二、不定积分的性质
思考
下列两个式子正确吗?为什么?
第三节
换元积分法
一、第一类换元积分法
运用不定积分的线性运算法则和基本积分公式,可以求 一些简单函数的不定积分.为了求出一些更复杂函数的不定 积分,我们来学习与复合函数求导法则相对应的积分方 法.通常的做法是通过适当的变量代换,将某些比较复杂的 被积函数变换成符合基本积分表中的形式,从而容易求出积 分,这种积分的方法叫换元积分法.不定积分换元积分法通 常分为第一类换元积分法和第二类换元积分法两种.
【例1】
求∫exdx. 解 因为(ex)′=ex,所以
∫exdx =ex+C.
二、不定积分的概念
【例2】
求∫1/xdx. 解 当x>0时,因为(ln x)′=1/x,所以
∫1xdx =ln x+C; 当x<0时,因为
∫1/xdx =ln(-x)+C. 综上可得,∫1/xdx =ln|x|+C.
,所以
y=∫3x2dx =x3+C, 又曲线过点(0,1),从而得C=1,于是所求的曲线方程为
y=x3+1.
第二节
不定积分的基本积分表 与性质
一、基本积分表
由于求不定积分与求导数是互逆的运算, 因此,由导数的基本公式就可以得到相应的不 定积分的基本公式,为了便于记忆和应用,我们 把一些基本的积分公式列成一个表,通常称为 基本积分表.
二、不定积分的性质
性质1
性质1清楚地表明了不定积分运算与微分运算之间的 互逆关系.
二、不定积分的性质
注意
对函数f(x)先求积分,再求导数,其结果等于f (x),而对函数f(x)先求导数,再求积分,其结果 不再是f(x),而是f(x)+C.
二、不定积分的性质
性质2
如果常数k≠0,那么
性质2说明,不定积分中不为零的常数因子可以提到积分号 外面来.
三、不定积分的几何意义
(2)在每一条积分曲线上作横坐标相同的点处的切线, 这些切线的斜率相等,从而使相应点的切线相互平行(见图 4-1).
三、不定积分的几何意义
【例3】
已知曲线上任一点的切线斜率等于该点处横坐标平方 的3倍,且曲线过点(0,1),求此曲线. 解 设所求的曲线方程为y=f(x),由导数的几何意义知, y′=3x2,由不定积分的定义知
二、不定积分的性质
性质3
如果函数f1(x)及f2(x) 的原函数存在,那么
性质3说明∫[f1(x)± f2(x)]dx是f1(x)±f2(x)的原 函数,由于它涉及两个积分记号,形式上含有两个积分常数,把 这两个积分常数合并为一个,因此它实际上是f1(x)±f2(x)的 不定积分,即与∫f1(x) dx±∫f2(x) dx相等.
一、第一类换元积分法
【例9】
【例10】
一、第一类换元积分法
【例11】
注意
当被积函数为两个三角函数(正弦函数和余弦函数) 的一次乘积时,一般要先积化和差再积分.
一、第一类换元积分法
【例12】
一、第一类换元积分法
【例13】
解 凡是分母可以分解因式的分式,一般都需要先将 复杂分式化成几个最简单的分式,再积分.由于
二、不定积分的概念
定义2
若函数Fx是f(x)在区间I上的一个原函数,则函数f(x) 的全体原函数F(x)+C称为fx在区间I上的不定积分,记 为∫f(x)dx,即
∫f(x)dx =F(x)+C, 其中记号“∫ ”称为积分号,f(x)称为被积函数,f(x)dx 称为被积表达式,x称为积分变量,C称为积分常数.
一、第一类换元积分法
定理1
(第一类换元积分法)若已知∫f(u)du=F(u)+C,并且u=φ(x) 是可微函数,则有
∫f[φ(x)]φ′(x)dx=∫f(u)du.(4-1) 证因为∫f(u)du=F(u)+C,所以F′(u)=f(u).根据复合函数的求 导法则,得
因此 证毕.
∫f[φ(x)]φ′(x)dx=∫f(u)du.
一、第一类换元积分法
例如,上节思考题中提到的积分:∫2xcosx2 dx, 观察被积函数发现,不能用直接积分法积出,但被积 表达式中的一部分2xdx如果凑微分变成dx2,再将积 分变量换成变量u=x2,这样被积表达式就和基本积分公 式(7)相同了.因此,本题可这样求解
一、第一类换元积分法
上述这种解题方法的关键是将被积函数的一部分与dx凑微分, 然后引入中间变量,把中间变量看成新的积分变量的情况下,被 积函数就符合了基本积分公式的形式,利用积分公式求出结果, 再把中间变量换回原变量即可,即如果不定积分∫g(x)dx不能直 接利用基本积分公式求解,但被积函数g(x)可变形为
现在要解决其反问题:已知曲线上任意一点x处的 切线的斜率,要求该曲线的方程.为此,引进原函数的 概念.
一、原函数的概念
定义1
设f(x)是定义在区间I上的函数,若存在函数F(x),使得对 任意x∈I均有
F′(x)=f(x)或dFx=fxdx, 则称函数Fx为fx在区间I上的一个原函数.
例如,因为(sin x)′=cos x,故sin x是cos x的一个原函数.又 如,当x>0时,(ln x)′=1/x,所以ln x是1/x在区间0,+∞上的 一个原函数.
【例2】
解 应用不定积分基本公式(2),有
一、基本积分表
注意
上述两个例题实际上是幂函数的积分问题,但是表示 上是取用了根式和分式形式,遇到这样的情况一般先化 成xμ的形式,再根据不定积分基本公式(2)来求不定积分.
一、基本积分表