2017年山西省太原市高考数学二模试卷(理科)(解析版)

合集下载

【山西省太原第五中学年】2017届高三第二次模拟考试(5月)数学年(理)试题

【山西省太原第五中学年】2017届高三第二次模拟考试(5月)数学年(理)试题
太原市五中 2017 届高三第二次模拟考试(5 月)数学(理)试卷
答案
一、选择题 1~5.CDACB 二、填空题
6~10.BCDCA
11~12.CB
13. 13
14.120 15. 41π 16. 2 017 三、解答题 17.解:(1)在 △BEC 中,据正弦定理,有 BE CE .
sinBCE sin B

2.
5

5
35 2 . 17. 5
4分
1/6
a 16 2 3. 5 9 .
月度市场占有率 y 与月份序号 x 之间的线性回归方程为 y 2x 9 .
5分
当 x 7 时, y 2 7 9 =23 .
故 M 公司 2 017 年 4 月份的市场占有率预计为 2300 .
每辆 B 款车可产生的利润期望值为 2. 7 500 1 200 150 (元).
应该采购 A 款单车.
12 分
19.解:(Ⅰ)取线段 CD 的中点 Q ,连结 KQ ,直线 KQ 即为所求.
如图所示:
10 分
2/6
(Ⅱ)以点 A 为原点, AB 所在直线为 x 轴, AD 所在的直线为 y 轴,建立空间直角坐标系,如图,
B 2π , BE 1,CE 7, sinBCE BE sinB 2 21 .
3
CE
7 14
(2)由平面几何知识,可知 DEA BCE, 在 Rt△AED 中,
A π , AE 5, cosDEA 1 sin2DEA 1 3 5 7 .
当 a 0 时,由 h(x) 0 得, x0 1 a , h(x) 在 ( 1 a , 1 a) 上单调递减,在 ( 1 a , ) 上单调递增.

山西省太原市2017届高三第二次模拟考试理科综合试题含答案模板

山西省太原市2017届高三第二次模拟考试理科综合试题含答案模板

太原市2017年高三年级模拟试题(二)理科综合能力测试(考试时间:上午9:00-11:30)第一部分选择题(一)本题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.结构与功能相适应是生物学的基本观点,下列相关叙述正确的是A.核仁与核糖体的形成密切相关,干细胞中的核仁有利于合成rRNAB.效应T细胞中溶酶体发达可直接用于裂解靶细胞C.人小肠上皮细胞和红细胞吸收葡萄糖的载体蛋白相同D.mRNA、tRNA和rRNA的合成和加工的场所都在细胞核2.—种除草剂能破坏某双子叶植物细胞的生物膜从而干扰其代谢反应,施用该除草剂可直接影响该植物叶肉细胞中的A.基因的复制和转录B.水的光解C.C3化合物的固定D.多肽链的合成3.下列有关人体细胞周期的调控因素中错误的是A.环境因子:一定的离子辐射、化学物质作用和病毒感染B.调控细胞周期的内因包括与细胞周期有关的酶和抑制因子、生长素等各种激素C.环境因子:一定的温度变化和pH变化D.调控细胞周期的内因包括生长因子、原癌基因与抑癌基因的编码产物等4.有科学家发现普遍存在于动物中的磁受体基因,其编码的次数提蛋白能识别外界磁场和顺应磁场方向排列,并据此提出一个新的“生物指南针”分子模型。

下列叙述正确的是A.磁受体基因的骨架是由磷酸和核糖相间排列而成的B.基因中相邻磚基之间通过一个五碳糖和一个磷酸相连C.同位素标记该基因中的两条链,每次复制后带有标记的DNA分子数目不变D.翻译时,每种密码子都有与之相对应的反密码于5.下列人类遗传病调査和优生的叙述错误的是A.调查人群中的遗传病时,最好选取群体中发病率较高的单基因遗传病B.常见的优生措施有禁止近亲结婚、提倡适齡生育和进行产前检测等C.对遗传病的发病率进行统计时,只需在患者家系中进行调査D.通过基因诊断确定脍儿不携带致病基因,但也有可能患染色体异常遗传病6.下列有关实验的说法中,正确的是A.低温诱导染色体数目加倍实验中,须将大蒜根尖制成装片后再进行低温处理B.调查土壤中小动物类群丰富度统计的方法逋常采用取样器取样法C.统计种群密度时,应去掉采集数据中最大、最小值后取平均值D.研究蝾螈细胞核功能的实验中.须将其受精卵横缢成有核和无核两部分7、有机化学与材料、生活和环境密切相关。

2017年名校高考数学二模试卷(理科)(解析版)

2017年名校高考数学二模试卷(理科)(解析版)

2017年名校高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={x∈N|1<x<lnk},集合A中至少有3个元素,则()A.k>e3B.k≥e3C.k>e4D.k≥e42.i为虚数单位,若(a,b∈R)与(2﹣i)2互为共轭复数,则a﹣b=()A.1 B.﹣1 C.7 D.﹣73.已知f(x)=sinx﹣x,命题p:∃x∈(0,),f(x)<0,则()A.p是假命题,¬p::∀x∈(0,),f(x)≥0B.p是假命题,¬p::∃x∈(0,),f(x)≥0C.P是真命题,¬p::∀x∈(0,),f(x)≥0D.p是真命题,¬p::∃x∈(0,),f(x)≥04.在等差数列{a n}中,a1+3a8+a15=60,则2 a﹣a10的值为()A.6 B.8 C.12 D.135.我国南宋时期的著名数学家秦九韶在他的著作《数学九章》中提出了秦九韶算法来计算多项式的值,在执行如图算法的程序框图时,若输入的n=5,x=2,则输出V的值为()A.15 B.31 C.63 D.1276.一块硬质材料的三视图如图所示,正视图和俯视图都是边长为10cm的正方形,将该木料切削、打磨,加工成球,则能得到的最大球的半径最接近()A.3cm B.4cm C.5cm D.6cm7.若不等式组表示的区域Ω,不等式(x﹣)2+y2表示的区域为Γ,向Ω区域均匀随机撒360颗芝麻,则落在区域Γ中芝麻数约为()A.114 B.10 C.150 D.508.若等边△ABC的边长为3,平面内一点M满足=+,则•的值为()A.﹣B.﹣2 C.D.29.高考结束后高三的8名同学准备拼车去旅游,其中一班、二班、三班、四班每班各两名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置,)其中一班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一班的乘坐方式共有()A.18种B.24种C.48种D.36种10.已知双曲线﹣=1(a>0,b>0),过其左焦点F作x轴的垂线,交双曲线于A,B两点,若双曲线的右顶点在以AB为直径的圆外,则双曲线离心率的取值范围是()A.(1,)B.(1,2)C.(,+∞)D.(2,+∞)11.如图,将绘有函数f(x)=2sin(ωx+φ)(ω>0,<φ<π)的部分图象的纸片沿x轴折成直二面角,若AB之间的空间距离为2,则f(﹣1)=()A.﹣2 B.2 C.﹣D.12.已知函数f(x)=,若F(x)=f[f(x)+1]+m有两个零点x1,x2,则x1•x2的取值范围是()A.[4﹣2ln2,+∞)B.(,+∞)C.(﹣∞,4﹣2ln2]D.(﹣∞,)二、填空题:本大题共4小题,每小题5分,共20分).13.设a=(cosx﹣sinx)dx,则二项式(a﹣)6的展开式中含x2项的系数为.14.已知抛物线C:y2=4x与点M(0,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若•=0,则k= .15.已知函数f(x)=ax2+bx+c(a>0)有两个零点1,2,数列{x n}满足x n+1=x n﹣,设a n=ln,若a1=,x n>2,则数列{a n}的通项公式a n= .16.已知f(x)=x3﹣3x+2+m(m>0),在区间[0,2]上存在三个不同的实数a,b,c,使得以f(a),f(b),f(c)为边长的三角形是直角三角形,则m的取值范围是.三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.在△ABC中,角A,B,C的对边分别为a,b,c,已知b(1+cosC)=c(2﹣cosB).(Ⅰ)求证:a,c,b成等差数列;(Ⅱ)若C=,△ABC的面积为4,求c.18.甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪70元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成5元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到如表频数表:甲公司送餐员送餐单数频数表乙公司送餐员送餐单数频数表(Ⅰ)现从甲公司记录的100天中随机抽取两天,求这两天送餐单数都大于40的概率;(Ⅱ)若将频率视为概率,回答下列问题:(i)记乙公司送餐员日工资为X(单位:元),求X的分布列和数学期望;(ii)小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.19.如图,在三棱柱ABC﹣A1B1C1中,D,E分别是B1C1、BC的中点,∠BAC=90°,AB=AC=2,A1A=4,A1E=.(Ⅰ)证明:A1D⊥平面A1BC;(Ⅱ)求二面角A﹣BD﹣B1的平面角的正弦值.20.已知椭圆E: +=1(a>b>0)的左焦点F1与抛物线y2=﹣4x的焦点重合,椭圆E的离心率为,过点M (m,0)(m>)作斜率不为0的直线l,交椭圆E于A,B两点,点P(,0),且•为定值.(Ⅰ)求椭圆E的方程;(Ⅱ)求△OAB面积的最大值.21.已知函数f(x)=lnx﹣2ax,a∈R.(Ⅰ)若函数y=f(x)存在与直线2x﹣y=0垂直的切线,求实数a的取值范围;(Ⅱ)设g(x)=f(x)+,若g(x)有极大值点x1,求证:>a.[选修4-4:坐标系与参数方程选讲]22.在直角坐标系xOy中,直线l的参数方程为(t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=6sinθ.(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;(Ⅱ)设点P(4,3),直线l与圆C相交于A,B两点,求+的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|+|2x+1|.(Ⅰ)解不等式f(x)>5;(Ⅱ)若关于x的方程=a的解集为空集,求实数a的取值范围.2017年河南省商丘市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={x∈N|1<x<lnk},集合A中至少有3个元素,则()A.k>e3 B.k≥e3 C.k>e4 D.k≥e4【考点】元素与集合关系的判断.【分析】首先确定集合A,由此得到lnk>4,由此求得k的取值范围.【解答】解:∵集合A={x∈N|1<x<lnk},集合A中至少有3个元素,∴A={2,3,4,…},∴lnk>4,∴k>e4.故选:C.2.i为虚数单位,若(a,b∈R)与(2﹣i)2互为共轭复数,则a﹣b=()A.1 B.﹣1 C.7 D.﹣7【考点】复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简,再由复数相等的条件求得a,b的值,则答案可求.【解答】解:∵=,(2﹣i)2=4﹣4i﹣1=3﹣4i,又(a,b∈R)与(2﹣i)2互为共轭复数,∴b=3,a=﹣4,则a﹣b=﹣7.故选:D.3.已知f(x)=sinx﹣x,命题p:∃x∈(0,),f(x)<0,则()A.p是假命题,¬p::∀x∈(0,),f(x)≥0B.p是假命题,¬p::∃x∈(0,),f(x)≥0C.P是真命题,¬p::∀x∈(0,),f(x)≥0D.p是真命题,¬p::∃x∈(0,),f(x)≥0【考点】命题的否定.【分析】直接利用特称命题否定是全称命题写出结果.【解答】解:f(x)=sinx﹣x,x∈(0,),f′(x)=cosx﹣1<0,∴f(x)是(0,)上是减函数,∵f(0)=0,∴f(x)<0,∴命题p:∃x∈(0,),f(x)<0是真命题,¬p:∀x∈(0,),f(x)≥0,故选:C.4.在等差数列{a n}中,a1+3a8+a15=60,则2a﹣a10的值为()A.6 B.8 C.12 D.13【考点】等差数列的通项公式.【分析】由已知条件利用等差数列的通项公式求解.【解答】解:在等差数列{a n}中,∵a1+3a8+a15=60,∴a1+3(a1+7d)+a1+14d=5(a1+7d)=60,∴a1+7d=12,2a﹣a10=2(a1+8d)﹣(a1+9d)=a1+7d=12.故选:C.5.我国南宋时期的著名数学家秦九韶在他的著作《数学九章》中提出了秦九韶算法来计算多项式的值,在执行如图算法的程序框图时,若输入的n=5,x=2,则输出V的值为()A.15 B.31 C.63 D.127【考点】程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量v的值,模拟程序的运行过程,可得答案.【解答】解:∵输入的x=2,n=5,故v=1,i=4,v=1×2+1=3i=3,v=3×2+1=7i=2,v=7×2+1=15i=1,v=15×2+1=31i=0,v=31×2+1=63i=﹣1,跳出循环,输出v的值为63,故选:C6.一块硬质材料的三视图如图所示,正视图和俯视图都是边长为10cm的正方形,将该木料切削、打磨,加工成球,则能得到的最大球的半径最接近()A.3cm B.4cm C.5cm D.6cm【考点】由三视图求面积、体积.【分析】由题意,该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r.【解答】解:由题意,该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r,则10﹣r+10﹣r=10cm,∴r=10﹣5≈3cm.故选:A.7.若不等式组表示的区域Ω,不等式(x﹣)2+y2表示的区域为Γ,向Ω区域均匀随机撒360颗芝麻,则落在区域Γ中芝麻数约为()A.114 B.10 C.150 D.50【考点】几何概型;简单线性规划.【分析】作出两平面区域,计算两区域的公共面积,得出芝麻落在区域Γ内的概率.【解答】解:作出平面区域Ω如图:则区域Ω的面积为S△ABC==区域Γ表示以D()为圆心,以为半径的圆,则区域Ω和Γ的公共面积为S′=+=.∴芝麻落入区域Γ的概率为=.∴落在区域Γ中芝麻数约为360×=30π+20≈114.故选A.8.若等边△ABC的边长为3,平面内一点M满足=+,则•的值为()A.﹣B.﹣2 C.D.2【考点】平面向量数量积的运算.【分析】如图所示,建立直角坐标系.利用向量坐标运算性质、数量积运算性质即可得出.【解答】解:如图所示,建立直角坐标系:B(0,),A(,0),C(﹣,0).=(,),=(3,0)=+=(2,).=(,),∴=(﹣1,),=(,﹣)则•=﹣=﹣2.故选:B.9.高考结束后高三的8名同学准备拼车去旅游,其中一班、二班、三班、四班每班各两名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置,)其中一班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一班的乘坐方式共有()A.18种B.24种C.48种D.36种【考点】排列、组合的实际应用.【分析】分类讨论,第一类,同一班的2名同学在甲车上;第二类,同一班的2名同学不在甲车上,再利用组合知识,问题得以解决.【解答】解:由题意,第一类,同一班的2名同学在甲车上,甲车上剩下两个要来自不同的班级,从三个班级中选两个为C32=3,然后分别从选择的班级中再选择一个学生为C21C21=4,故有3×4=12种.第二类,同一班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的两名同学在甲车上,为C31=3,然后再从剩下的两个班级中分别选择一人为C21C21=4,这时共有3×4=12种,根据分类计数原理得,共有12+12=24种不同的乘车方式,故选:B.10.已知双曲线﹣=1(a>0,b>0),过其左焦点F作x轴的垂线,交双曲线于A,B两点,若双曲线的右顶点在以AB为直径的圆外,则双曲线离心率的取值范围是()A.(1,)B.(1,2)C.(,+∞)D.(2,+∞)【考点】双曲线的简单性质.【分析】由右顶点M在以AB为直径的圆的外,得|MF|>|AF|,将其转化为关于a、b、c的式子,再结合平方关系和离心率的公式,化简整理得e2﹣e﹣2<0,解之即可得到此双曲线的离心率e的取值范围.【解答】解:由于双曲线﹣=1(a>0,b>0),则直线AB方程为:x=﹣c,因此,设A(﹣c,y0),B(﹣c,﹣y0),∴=1,解之得y0=,得|AF|=,∵双曲线的右顶点M(a,0)在以AB为直径的圆外,∴|MF|>|AF|,即a+c>,将b2=c2﹣a2,并化简整理,得2a2+ac﹣c2>0两边都除以a2,整理得e2﹣e﹣2<0,∵e>1,∴解之得1<e<2.故选:B.11.如图,将绘有函数f(x)=2sin(ωx+φ)(ω>0,<φ<π)的部分图象的纸片沿x轴折成直二面角,若AB之间的空间距离为2,则f(﹣1)=()A.﹣2 B.2 C.﹣D.【考点】点、线、面间的距离计算;由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据图象过点(0,1),结合φ的范围求得φ的值,再根据A、B两点之间的距离,求得T的值,可得ω的值,从而求得函数的解析式,从而求得f(﹣1)的值.【解答】解:由函数的图象可得2sinφ=1,可得sinφ=,再根据<φ<π,可得φ=.再根据A、B两点之间的距离为=2,求得T=4,再根据T==4,求得ω=.∴f(x)=2sin(x+),f(﹣1)=2sin(﹣+)=,故选:D.12.已知函数f(x)=,若F(x)=f[f(x)+1]+m有两个零点x1,x2,则x1•x2的取值范围是()A.[4﹣2ln2,+∞)B.(,+∞)C.(﹣∞,4﹣2ln2]D.(﹣∞,)【考点】分段函数的应用.【分析】由题意可知:当x≥1时,f(x)+1≥1,f[f(x)+1]=ln(f(x)+1),当x<1,f(x)=1﹣>,f[f(x)+1]=ln(f(x)+1),f[f(x)+1]=ln(f(x)+1)+m=0,则x1x2=e t(2﹣2t),t>,设g(t)=e t(2﹣2t),t>,求导,利用导数求得函数的单调性区间,即可求得x1x2的取值范围.【解答】解:当x≥1时,f(x)=lnx≥0,∴f(x)+1≥1,∴f[f(x)+1]=ln(f(x)+1),当x<1,f(x)=1﹣>,f(x)+1>,f[f(x)+1]=ln(f(x)+1),综上可知:F[f(x)+1]=ln(f(x)+1)+m=0,则f(x)+1=e﹣m,f(x)=e﹣m﹣1,有两个根x1,x2,(不妨设x1<x2),当x≥1是,lnx2=e﹣m﹣1,当x<1时,1﹣=e﹣m﹣1,令t=e﹣m﹣1>,则lnx2=t,x2=e t,1﹣=t,x1=2﹣2t,∴x1x2=e t(2﹣2t),t>,设g(t)=e t(2﹣2t),t>,求导g′(t)=﹣2te t,t∈(,+∞),g′(t)<0,函数g(t)单调递减,∴g(t)<g()=,∴g(x)的值域为(﹣∞,),∴x1x2取值范围为(﹣∞,),故选:D.二、填空题:本大题共4小题,每小题5分,共20分).13.设a=(cosx﹣sinx)dx,则二项式(a﹣)6的展开式中含x2项的系数为12 .【考点】二项式系数的性质.【分析】根据微积分基本定理首先求出a的值,然后再根据二项式的通项公式求出r的值,问题得以解决.【解答】解:由于a=(cosx﹣sinx)dx=(sinx+cosx)|=﹣1﹣1=﹣2,∴(﹣2﹣)6=(2+)6的通项公式为T r+1=2r C6r•x3﹣r,令3﹣r=2,求得r=1,故含x2项的系数为2C61=12.故答案为:1214.已知抛物线C:y2=4x与点M(0,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若•=0,则k= 8 .【考点】直线与抛物线的位置关系.【分析】设直线AB的方程,代入抛物线方程,利用韦达定理及向量数量积的坐标运算(x1,y1﹣2)(x2,y2﹣2)=0,即可求得k的值.【解答】解:抛物线C :y 2=4x 的焦点为F (1,0),∴直线AB 的方程为y=k (x ﹣1),设A (x 1,y 1),B (x 2,y 2),联立方程组,整理得:k 2x 2﹣(2k 2+4)x +k 2=0,则x 1+x 2==2+.x 1x 2=1.∴y 1+y 2=k (x 1+x 2)﹣2k=,y 1y 2=k 2(x 1﹣1)(x 2﹣1)=k 2[x 1x 2﹣(x 1+x 2)+1]=﹣4,∵•=0,(x 1,y 1﹣2)(x 2,y 2﹣2)=0,即x 1x 2+y 1y 2﹣2(y 1+y 2)+4=0,解得:k=8.故答案为:1.15.已知函数f (x )=ax 2+bx +c (a >0)有两个零点1,2,数列{x n }满足x n +1=x n ﹣,设a n =ln ,若a 1=,x n >2,则数列{a n }的通项公式a n = 2n ﹣2(n ∈N*) .【考点】数列与函数的综合.【分析】由题意可得f (x )=a (x ﹣1)(x ﹣2),求出导数,可得x n +1=,求得a n +1=ln =2ln=2a n ,运用等比数列的通项公式即可得到所求.【解答】解:函数f (x )=ax 2+bx +c (a >0)有两个零点1,2, 可得f (x )=a (x ﹣1)(x ﹣2), f′(x )=a (2x ﹣3),则x n +1=x n ﹣=x n ﹣=,由a 1=,x n >2,则a n +1=ln=ln=2ln =2a n ,即有a n =a 1qn ﹣1=•2n ﹣1=2n ﹣2.故答案为:2n ﹣2(n ∈N*).16.已知f(x)=x3﹣3x+2+m(m>0),在区间[0,2]上存在三个不同的实数a,b,c,使得以f(a),f(b),f(c)为边长的三角形是直角三角形,则m的取值范围是0<m<3+4.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】利用导数求得f(x)=x3﹣3x+3+m(m>0),在区间[0,2]上的最小值、最大值,由题意构造不等式解得范围.【解答】解:f(x)=x3﹣3x+3+m,求导f′(x)=3x2﹣3由f′(x)=0得到x=1或者x=﹣1,又x在[0,2]内,∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,则f(x)min=f(1)=m+1,f(x)max=f(2)=m+5,f(0)=m+3.∵在区间[0,2]上存在三个不同的实数a,b,c,使得以f(a),f(b),f(c)为边长的三角形是构成直角三角形,∴(m+1)2+(m+1)2<(m+5)2,即m2﹣6m﹣23<0,解得3﹣4<m<3+4又已知m>0,∴0<m<3+4.故答案为:0<m<3+4.三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.在△ABC中,角A,B,C的对边分别为a,b,c,已知b(1+cosC)=c(2﹣cosB).(Ⅰ)求证:a,c,b成等差数列;(Ⅱ)若C=,△ABC的面积为4,求c.【考点】正弦定理.【分析】(Ⅰ)由正弦定理,三角形内角和定理,两角和的正弦函数公式化简已知可得sinA+sinB=2sinC,从而可求a+b=2c,即a,c,b成等差数列;(Ⅱ)由已知利用三角形面积公式可求ab=16,进而利用余弦定理可得:c2=(a+b)2﹣3ab,结合a+b=2c,即可解得c的值.【解答】(本题满分为12分)解:(Ⅰ)∵b(1+cosC)=c(2﹣cosB),∴由正弦定理可得:sinB+sinBcosC=2sinC﹣sinCcosB,可得:sinBcosC+sinCcosB+sinB=2sinC,∴sinA+sinB=2sinC,∴a+b=2c,即a,c,b成等差数列;(Ⅱ)∵C=,△ABC的面积为4=absinC=ab,∴ab=16,∵由余弦定理可得:c2=a2+b2﹣2abcosC=a2+b2﹣ab=(a+b)2﹣3ab,∵a+b=2c,∴可得:c2=4c2﹣3×16,解得:c=4.18.甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪70元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成5元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到如表频数表:甲公司送餐员送餐单数频数表乙公司送餐员送餐单数频数表(Ⅰ)现从甲公司记录的100天中随机抽取两天,求这两天送餐单数都大于40的概率;(Ⅱ)若将频率视为概率,回答下列问题:(i)记乙公司送餐员日工资为X(单位:元),求X的分布列和数学期望;(ii)小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)记“抽取的两天送餐单数都大于40”为事件M,可得P(M)=.(Ⅱ)(ⅰ)设乙公司送餐员送餐单数为a,可得当a=38时,X=38×5=190,以此类推可得:当a=39时,当a=40时,X的值.当a=41时,X=40×5+1×7,同理可得:当a=42时,X=214.所以X的所有可能取值为190,1195,200,207,214.可得X的分布列及其数学期望.(ⅱ)依题意,甲公司送餐员日平均送餐单数为38×0.2+39×0.4+40×0.2+41×0.1+42×0.1=39.5.可得甲公司送餐员日平均工资,与乙数学期望比较即可得出.【解答】解:(Ⅰ)记“抽取的两天送餐单数都大于40”为事件M,则P(M)==.(Ⅱ)(ⅰ)设乙公司送餐员送餐单数为a,则当a=38时,X=38×5=190,当a=39时,X=39×5=195,当a=40时,X=40×5=200,当a=41时,X=40×5+1×7=207,当a=42时,X=40×5+2×7=214.所以X的所有可能取值为190,195,200,207,214.故X的分布列为:∴E(X)=190×+195×+200×+207×+214×=.(ⅱ)依题意,甲公司送餐员日平均送餐单数为38×0.2+39×0.4+40×0.2+41×0.1+42×0.1=39.5.所以甲公司送餐员日平均工资为70+4×39.5=228元.由(ⅰ)得乙公司送餐员日平均工资为192.2元.因为192.2<228,故推荐小明去甲公司应聘.19.如图,在三棱柱ABC﹣A1B1C1中,D,E分别是B1C1、BC的中点,∠BAC=90°,AB=AC=2,A1A=4,A1E=.(Ⅰ)证明:A1D⊥平面A1BC;(Ⅱ)求二面角A﹣BD﹣B1的平面角的正弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)先证AE⊥平面A1BC,再证A1D∥AE即可‘’(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.【解答】证明:(Ⅰ)∵在三棱柱ABC﹣A1B1C1中,D,E分别是B1C1、BC的中点,∠BAC=90°,AB=AC=2,∴A1D∥AE,AE⊥BC,AE=BE=,∵A1A=4,A1E=.∴A1E2+AE2=,∴AE⊥A1E,∵A1E∩BC=E,∴AE⊥平面A1BC,∵A1D∥AE,∴A1D⊥平面A1BC.解:(Ⅱ)如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),设平面A1BD的法向量为=(x,y,z),由,可取.设平面B1BD的法向量为=(x,y,z),由,可取.cos<>=又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.20.已知椭圆E: +=1(a>b>0)的左焦点F1与抛物线y2=﹣4x的焦点重合,椭圆E的离心率为,过点M (m,0)(m>)作斜率不为0的直线l,交椭圆E于A,B两点,点P(,0),且•为定值.(Ⅰ)求椭圆E的方程;(Ⅱ)求△OAB面积的最大值.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(Ⅰ)由抛物线方程求出抛物线的焦点坐标,即椭圆左焦点坐标,结合椭圆离心率可得长半轴长,再由b2=a2﹣c2求出短半轴,则椭圆E的标准方程可求;(Ⅱ)设A(x1,y1),B(x2,y2),直线l的方程为:x=ty+m,由整理得(t2+2)y2+2tmy+m2﹣2=0由•为定值,解得m,|AB|=|y1﹣y2|=,点O到直线AB的距离d=,△OAB面积s=即可求得最值【解答】解:(Ⅰ)设F1(﹣c,0),∵抛物线y2=﹣4x的焦点坐标为(﹣1,0),且椭圆E的左焦点F与抛物线y2=﹣4x的焦点重合,∴c=1,又椭圆E的离心率为,得a=,于是有b2=a2﹣c2=1.故椭圆Γ的标准方程为:.(Ⅱ)设A(x1,y1),B(x2,y2),直线l的方程为:x=ty+m,由整理得(t2+2)y2+2tmy+m2﹣2=0,,==(t2+1)y1y2+(tm﹣t)(y1+y2)+m2﹣=.要使•为定值,则,解得m=1或m=(舍)当m=1时,|AB|=|y1﹣y2|=,点O到直线AB的距离d=,△OAB面积s==.∴当t=0,△OAB面积的最大值为,21.已知函数f(x)=lnx﹣2ax,a∈R.(Ⅰ)若函数y=f(x)存在与直线2x﹣y=0垂直的切线,求实数a的取值范围;(Ⅱ)设g(x)=f(x)+,若g(x)有极大值点x1,求证:>a.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,问题转化为x=在(0,+∞)上有解,求出a的范围即可;(Ⅱ)求出g(x)的解析式,通过讨论a的范围,问题转化为证明x1lnx1+1>ax12,令h(x)=﹣﹣x+xlnx+1,x∈(0,1),根据函数的单调性证明即可.【解答】(Ⅰ)解:因为f′(x)=﹣2a,x>0,因为函数y=f(x)存在与直线2x﹣y=0垂直的切线,所以f′(x)=﹣在(0,+∞)上有解,即﹣2a=﹣在(0,+∞)上有解,也即x=在(0,+∞)上有解,所以>0,得a>,故所求实数a的取值范围是(,+∞);(Ⅱ)证明:因为g(x)=f(x)+x2=x2+lnx﹣2ax,因为g′(x)=,①当﹣1≤a≤1时,g(x)单调递增无极值点,不符合题意,②当a>1或a<﹣1时,令g′(x)=0,设x2﹣2ax+1=0的两根为x1和x2,因为x1为函数g(x)的极大值点,所以0<x1<x2,又x1x2=1,x1+x2=2a>0,所以a>1,0<x1<1,所以g′(x1)=x12﹣2ax1+=0,则a=,要证明+>a,只需要证明x1lnx1+1>ax12,因为x1lnx1+1﹣ax12=x1lnx1﹣+1=﹣﹣x1+x1lnx1+1,0<x1<1,令h(x)=﹣x3﹣x+xlnx+1,x∈(0,1),所以h′(x)=﹣x2﹣+lnx,记P(x)=﹣x2﹣+lnx,x∈(0,1),则P′(x)=﹣3x+=,当0<x<时,p′(x)>0,当<x<1时,p′(x)<0,所以p(x)max=p()=﹣1+ln<0,所以h′(x)<0,所以h(x)在(0,1)上单调递减,所以h(x)>h(1)=0,原题得证.[选修4-4:坐标系与参数方程选讲]22.在直角坐标系xOy中,直线l的参数方程为(t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=6sinθ.(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;(Ⅱ)设点P(4,3),直线l与圆C相交于A,B两点,求+的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)把直线l的参数方程消去参数t可得,它的直角坐标方程;把圆C的极坐标方程依据互化公式转化为直角坐标方程.(Ⅱ)把直线l的参数方程(t为参数),代入圆C的直角坐标方程,得,结合根与系数的关系进行解答.【解答】解:(Ⅰ)由直线l的参数方程为(t为参数),得直线l的普通方程为x+y﹣7=0.又由ρ=6sinθ得圆C的直角坐标方程为x2+(y﹣3)2=9;(Ⅱ)把直线l的参数方程(t为参数),代入圆C的直角坐标方程,得,设t1,t2是上述方程的两实数根,所以t1+t2=4,t1t2=7,∴t1>0,t2>0,所以+=.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|+|2x+1|.(Ⅰ)解不等式f(x)>5;(Ⅱ)若关于x的方程=a的解集为空集,求实数a的取值范围.【考点】绝对值不等式的解法.【分析】(Ⅰ)分类讨论求得原不等式解集.(Ⅱ)由分段函数f(x)的解析式可得f(x)的单调性,由此求得函数f(x)的值域,求出的取值范围.再根据关于x的方程=a的解集为空集,求得实数a的取值范围.【解答】解:(Ⅰ)解不等式|x﹣2|+|2x+1|>5,x≥2时,x﹣2+2x+1>5,解得:x>2;﹣<x<2时,2﹣x+2x+1>5,无解,x≤﹣时,2﹣x﹣2x﹣1>5,解得:x<﹣,故不等式的解集是(﹣∞,﹣)∪(2,+∞);(Ⅱ)f(x)=|x﹣2|+|2x+1|=,故f(x)的最小值是,所以函数f(x)的值域为[,+∞),从而f(x)﹣4的取值范围是[﹣,+∞),进而的取值范围是(﹣∞,﹣]∪(0,+∞).根据已知关于x的方程=a的解集为空集,所以实数a的取值范围是(﹣,0].。

山西省太原市高考数学二模试卷(理科)解析版

山西省太原市高考数学二模试卷(理科)解析版

20. 已知直线 l 与抛物线 C:x2=2py(p>0)相交于 A,B 两个不同点,点 M 是抛物线 C
在点 A,B 处的切线的交点.
(Ⅰ)若直线 l 经过抛物线 C 的焦点 F,求证:FM⊥AB;
(Ⅱ)若点 M 的坐标为(2,-2p),且
,求抛物线 C 的方程.
21. 已知 x1,x2(x1<x2)是函数 f(x)=ex+ln(x+1)-ax(a∈R)的两个极值点. (Ⅰ)求 a 的取值范围; (Ⅱ)证明:f(x2)-f(x1)<2lna.
场馆进行服务,每个运动场馆 3 名志愿者,则其中志愿者甲和乙被分到同一场馆的
概率为______.
第 2 页,共 17 页
14. 在平面直角坐标系内,由曲线

和 轴正半轴所围成的封闭图形的
面积为________.
15. 已知 a,b,c 分别是△ABC 内角 A,B,C 的对边,b2+c2=accosC+c2cosA+a2,
A. 1
B. 2
C. 3
D. 4
8. 已知 α∈(0, ),β∈(0, ),且 sin2α(1+sinβ)=cosβ(1-cos2α),则下列结论
正确的是( )
A. 2α-β=
B. 2α+β=
C. α+β=
D. α-中,SA=SB=SC=AB=2,AC⊥BC,则该三棱锥外接球的体积为 ( )
,则△ABC 周长的最小值为______.
16. 已知函数 f(x)=(ax+sinx)(x-sinx)(x≠0)的图象与 g(x)=x2 的图象有四个 不同交点,其横坐标从小到大依次为 x1,x2,x3,x4,则
=______.

【精品】2017年山西省太原市高考数学二模试卷及参考答案(理科)

【精品】2017年山西省太原市高考数学二模试卷及参考答案(理科)

2017年山西省太原市高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,共32分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知=(1+i)2(i为虚数单位),则复数z的共轭复数为()A.﹣﹣i B.﹣+i C.﹣i D.+i2.(5分)已知全集U=R,A={0,1,2,3},B={y|y=2x,x∈A},则(∁U A)∩B=()A.(﹣∞,0)∪(3,+∞)B.{x|x>3,x∈N} C.{4,8}D.[4,8] 3.(5分)已知=(2,1),=(﹣1,1),则在方向上的投影为()A.﹣B.C.﹣D.4.(5分)已知S n是等差数列a n的前n项和,且S3=2a1,则下列结论错误的是()A.a4=0 B.S4=S3C.S7=0 D.a n是递减数列5.(5分)如图,“赵爽弦图”是由四个全等的直角三角形(阴影部分)围成一个大正方形,中间空出一个小正方形组成的图形,若在大正方形内随机取一点,该点落在小正方形的概率为,则图中直角三角形中较大锐角的正弦值为()A.B.C.D.6.(5分)执行如图的程序框图,则输出的S=()A.B.C.﹣D.07.(5分)函数f(x)=的图象大致为()A.B.C.D.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.9.(5分)已知实数x,y满足,则z=|2x﹣3y+4|的最大值为()A.3 B.5 C.6 D.810.(5分)已知双曲线﹣y2=1的右焦点是抛物线y2=2px(p>0)的焦点,直线y=kx+m与抛物线交于A,B两个不同的点,点M(2,2)是AB的中点,则△OAB(O为坐标原点)的面积是()A.4 B.3C. D.211.(5分)已知f(x)=x2e x,若函数g(x)=f2(x)﹣kf(x)+1恰有四个零点,则实数k的取值范围是()A.(﹣∞,﹣2)∪(2,+∞)B.(2,+)C.(,2)D.(+,+∞)12.(5分)已知函数f(x)=(2a﹣1)x﹣cos2x﹣a(sinx+cosx)在[0,]上单调递增,则实数a的取值范围为()A.(﹣∞,]B.[,1]C.[0,+∞)D.[1,+∞)二、填空题:本大题共4小题,每小题5分,共20分).13.(5分)已知sin(﹣α)=﹣,0<α<π,则sin2α=.14.(5分)(2x+﹣1)5的展开式中常数项是.15.(5分)已知三棱锥A﹣BCD中,AB=AC=BC=2,BD=CD=,点E是BC的中点,点A在平面BCD上的射影恰好为DE的中点,则该三棱锥外接球的表面积为.16.(5分)已知点O是△ABC的内心,∠BAC=30°,BC=1,则△BOC面积的最大值为.三、解答题:本大题共5小题,共48分.解答写出文字说明、证明过程或演算过程.17.(12分)已知数列{a n}的前n项和S n=2n+1﹣2,数列{b n}满足b n=a n+a n+1(n ∈N*).(1)求数列{b n}的通项公式;(2)若c n=log2a n(n∈N*),求数列{b n•c n}的前n项和T n.18.(12分)某商城举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖规则如下:1.抽奖方案有以下两种,方案a:从装有2个红球、3个白球(仅颜色不同)的甲袋中随机摸出2个球,若都是红球,则获得奖金30元;否则,没有奖金,兑奖后将摸出的球放回甲袋中,方案b:从装有3个红球、2个白球(仅颜色相同)的乙袋中随机摸出2个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将摸出的球放回乙袋中.2.抽奖条件是,顾客购买商品的金额买100元,可根据方案a抽奖一次:满150元,可根据方案b抽奖一次(例如某顾客购买商品的金额为260元,则该顾客可以根据方案a抽奖两次或方案b抽奖一次或方案a、b各抽奖一次).已知顾客A在该商场购买商品的金额为350元.(1)若顾客A只选择方案a进行抽奖,求其所获奖金的期望值;(2)要使所获奖金的期望值最大,顾客A应如何抽奖.19.(12分)如图(1)在平面六边形ABCDEF,四边形ABCD是矩形,且AB=4,BC=2,AE=DE=,BF=CF=,点M,N分别是AD,BC的中点,分别沿直线AD,BC将△DEF,△BCF翻折成如图(2)的空间几何体ABCDEF.(1)利用下面的结论1或结论2,证明:E、F、M、N四点共面;结论1:过空间一点作已知直线的垂面,有且只有一个;结论2:过平面内一条直线作该平面的垂面,有且只有一个.(2)若二面角E﹣AD﹣B和二面角F﹣BC﹣A都是60°,求二面角A﹣BE﹣F的余弦值.20.(12分)如图,曲线C由左半椭圆M:+=1(a>b>0,x≤0)和圆N:(x﹣2)2+y2=5在y轴右侧的部分连接而成,A,B是M与N的公共点,点P,Q (均异于点A,B)分别是M,N上的动点.(1)若|PQ|的最大值为4+,求半椭圆M的方程;(2)若直线PQ过点A,且=﹣2,⊥,求半椭圆M的离心率.21.(12分)已知函数f(x)=(mx2﹣x+m)e﹣x(m∈R).(Ⅰ)讨论f(x)的单调性;(Ⅱ)当m>0时,证明:不等式f(x)≤在(0,1+]上恒成立.[选修4-4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(其中φ为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ(tanα•cosθ﹣sinθ)=1(α为常数,0<α<π,且α≠),点A,B(A 在x轴下方)是曲线C1与C2的两个不同交点.(1)求曲线C1普通方程和C2的直角坐标方程;(2)求|AB|的最大值及此时点B的坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x+m|+|2x﹣1|(m>0).(1)当m=1时,解不等式f(x)≥3;(2)当x∈[m,2m2]时,不等式f(x)≤|x+1|恒成立,求实数m的取值范围.2017年山西省太原市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共32分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知=(1+i)2(i为虚数单位),则复数z的共轭复数为()A.﹣﹣i B.﹣+i C.﹣i D.+i【解答】解:由=(1+i)2,得.∴.故选:B.2.(5分)已知全集U=R,A={0,1,2,3},B={y|y=2x,x∈A},则(∁U A)∩B=()A.(﹣∞,0)∪(3,+∞)B.{x|x>3,x∈N} C.{4,8}D.[4,8]【解答】解:全集U=R,A={0,1,2,3},B={y|y=2x,x∈A}={1,2,4,8},∴(∁U A)∩B={4,8},故选:C.3.(5分)已知=(2,1),=(﹣1,1),则在方向上的投影为()A.﹣B.C.﹣D.【解答】解:,;∴在方向上的投影为:.故选:A.4.(5分)已知S n是等差数列a n的前n项和,且S3=2a1,则下列结论错误的是()A.a4=0 B.S4=S3C.S7=0 D.a n是递减数列【解答】解:设等差数列{a n}的公差为d.由S3=2a1,可得:a1+a2+a3═3a1+3d=2a1,可得a1=﹣3d.则a4=﹣3d+3d=0,S4=S3,S7==7a4=0,因此A,B,C正确.由于无法判断d的正负,因此无法判断等差数列{a n}的单调性,因此D错误.故选:D.5.(5分)如图,“赵爽弦图”是由四个全等的直角三角形(阴影部分)围成一个大正方形,中间空出一个小正方形组成的图形,若在大正方形内随机取一点,该点落在小正方形的概率为,则图中直角三角形中较大锐角的正弦值为()A.B.C.D.【解答】解:在大正方形内随机取一点,这一点落在小正方形的概率为,不妨设大正方形面积为5,小正方形面积为1,∴大正方形边长为,小正方形的边长为1.∴四个全等的直角三角形的斜边的长是,较短的直角边的长是1,较长的直角边的长是2,故sinθ=,故选:B.6.(5分)执行如图的程序框图,则输出的S=()A.B.C.﹣D.0【解答】解:模拟程序的运行,可得S=0,n=1满足条件n≤2017,执行循环体,S=,n=2满足条件n≤2017,执行循环体,S=,n=3满足条件n≤2017,执行循环体,S=,n=4满足条件n≤2017,执行循环体,S=,n=5满足条件n≤2017,执行循环体,S=0,n=6满足条件n≤2017,执行循环体,S=0,n=7满足条件n≤2017,执行循环体,S=,n=8…观察规律可知,S的取值以6为最小正周期循环,由于2017=336×6+1,可得:n=2017时,满足条件n≤2017,执行循环体,S=,n=2018不满足条件n≤2017,退出循环,输出S的值为.故选:A.7.(5分)函数f(x)=的图象大致为()A.B.C.D.【解答】解:f(x)=的定义域为(﹣∞,1)∪(1,+∞),且图象关于x=1对称,排除B,C,取特殊值,当x=时,f(x)=2ln<0,故选:D.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:由三视图知:该几何体是一个高h=1的三棱锥S﹣ABC,其中底面△ABC的底AB=1,高CD=1,∴该几何体的体积为V===.故选:D.9.(5分)已知实数x,y满足,则z=|2x﹣3y+4|的最大值为()A.3 B.5 C.6 D.8【解答】解:由约束条件作出可行域如图,由图可知,在目标函数的上方并满足约束条件的区域使得目标函数为负数,故目标函数的绝对值是其相反数,由线性规划可知,目标函数最小值在A(1,4)处取得,(2x﹣3y+4)min=﹣6,故z max=|2x﹣3y+4|=6;由图可知,在目标函数的下方并满足约束条件的区域使得目标函数为正数,故目标函数的绝对值是其本身,由线性规划可知,目标函数最大值在B(2,1)处取得,(2x﹣3y+4)max=5,故z max=|2x﹣3y+4|=5.综上所述,目标函数的最大值为6.故选:C.10.(5分)已知双曲线﹣y2=1的右焦点是抛物线y2=2px(p>0)的焦点,直线y=kx+m与抛物线交于A,B两个不同的点,点M(2,2)是AB的中点,则△OAB(O为坐标原点)的面积是()A.4 B.3C. D.2【解答】解:双曲线﹣y2=1的a=,b=1,c==2,右焦点为(2,0),则抛物线y2=2px(p>0)的焦点为(2,0),即有2=,解得p=4,即抛物线方程为y2=8x,联立直线y=kx+m,可得k2x2+(2km﹣8)x+m2=0,判别式△=(2km﹣8)2﹣4k2m2>0,设A(x1,y1),B(x2,y2),可得x1+x2=,点M(2,2)是AB的中点,可得=4,且2=2k+m,解得k=2,m=﹣2.满足判别式大于0.即有x1+x2=4,x1x2=1,可得弦长AB=•=•=2,点O到直线2x﹣y﹣2=0的距离d==,则△OAB(O为坐标原点)的面积是d•|AB|=××2=2.故选:D.11.(5分)已知f(x)=x2e x,若函数g(x)=f2(x)﹣kf(x)+1恰有四个零点,则实数k的取值范围是()A.(﹣∞,﹣2)∪(2,+∞)B.(2,+)C.(,2)D.(+,+∞)【解答】解:f′(x)=2xe x+x2e x=x(x+2)e x,令f′(x)=0,解得x=0或x=﹣2,∴当x<﹣2或x>0时,f′(x)>0,当﹣2<x<0时,f′(x)<0,∴f(x)在(﹣∞,﹣2)上单调递增,在(﹣2,0)上单调递减,在(0,+∞)上单调递增,∴当x=﹣2时,函数f(x)取得极大值f(﹣2)=,当x=0时,f(x)取得极小值f(0)=0.作出f(x)的大致函数图象如图所示:令f(x)=t,则当t=0或t>时,关于x的方程f(x)=t只有1解;当t=时,关于x的方程f(x)=t有2解;当0<t<时,关于x的方程f(x)=t有3解.∵g(x)=f2(x)﹣kf(x)+1恰有四个零点,∴关于t的方程t2﹣kt+1=0在(0,)上有1解,在(,+∞)∪{0}上有1解,显然t=0不是方程t2﹣kt+1=0的解,∴关于t的方程t2﹣kt+1=0在(0,)和(,+∞)上各有1解,∴,解得k>.故选:D.12.(5分)已知函数f(x)=(2a﹣1)x﹣cos2x﹣a(sinx+cosx)在[0,]上单调递增,则实数a的取值范围为()A.(﹣∞,]B.[,1]C.[0,+∞)D.[1,+∞)【解答】解:f(x)=(2a﹣1)x﹣cos2x﹣a(sinx+cosx),f′(x)=2a﹣1+sin2x﹣a(cosx﹣sinx),若f(x)在[0,]递增,则f′(x)≥0在[0,]恒成立,即a≥在[0,]恒成立,令g(x)=,x∈[0,],则g′(x)=,令g′(x)>0,即sinx>cosx,解得:x>,令g′(x)<0,即sinx<cosx,解得:x<,故g(x)在[0,)递减,在(,]递增,故g(x)max=g(0)或g(),而g(0)=1,g()=,故a≥1,故选:D.二、填空题:本大题共4小题,每小题5分,共20分).13.(5分)已知sin(﹣α)=﹣,0<α<π,则sin2α=﹣.【解答】解:∵sin(﹣α)=cosα=﹣,0<α<π,∴sinα==,则sin2α=2sinαcosα=﹣,故答案为:﹣.14.(5分)(2x+﹣1)5的展开式中常数项是﹣161.=(﹣1)5﹣r.【解答】解:(2x+﹣1)5的展开式中通项公式:T r+1==2r﹣k x r﹣2k.的通项公式:T k+1令r﹣2k=0,则k=0,r=0;k=1,r=2;k=2,r=4.因此常数项=+×2×+=﹣161.故答案为:﹣161.15.(5分)已知三棱锥A﹣BCD中,AB=AC=BC=2,BD=CD=,点E是BC的中点,点A在平面BCD上的射影恰好为DE的中点,则该三棱锥外接球的表面积为.【解答】解:由题意,△BCD为等腰直角三角形,E是外接圆的圆心,点A在平面BCD上的射影恰好为DE的中点F,则BF==,∴AF==,设球心到平面BCD是距离为h,则1+h2=+(﹣h)2,∴h=,r==,∴该三棱锥外接球的表面积为=.故答案为.16.(5分)已知点O是△ABC的内心,∠BAC=30°,BC=1,则△BOC面积的最大值为cot52.5°.【解答】解:∵∠BAC=30°,∴∠ABC+∠ACB=180°﹣30°=150°,∵点O是△ABC的内心,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×150°=75°,∴∠BOC=180°﹣75°=105°.∵BC=1,∴由余弦定理可得:1=OB2+OC2﹣2•OB•OC•cos105°≥2OB•OC﹣2•OB•OC•cos105°,整理可得:OB•OC≤,=OB•OC•sin105°≤×∴S△OBCsin105°===cot52.5°.故答案为:cot52.5°.三、解答题:本大题共5小题,共48分.解答写出文字说明、证明过程或演算过程.17.(12分)已知数列{a n}的前n项和S n=2n+1﹣2,数列{b n}满足b n=a n+a n+1(n ∈N*).(1)求数列{b n}的通项公式;(2)若c n=log2a n(n∈N*),求数列{b n•c n}的前n项和T n.【解答】解:(1)当n≥2时,则a n=S n﹣S n﹣1=2n+1﹣2﹣2n+2=2n,当n=1时,a1=S1=22﹣2=4﹣2=2,满足a n=2n,故数列{a n}的通项公式为a n=2n,∴b n=a n+a n+1=2n+2n+1=3•2n;(2)c n=log2a n=,∴b n•c n=3n•2n.令R n=1•21+2•22+3•23+…+(n﹣1)•2n﹣1+n•2n,则2R n=1•22+2•23+…+(n﹣1)•2n+n•2n+1,∴==(1﹣n)•2n+1﹣2.∴.则.18.(12分)某商城举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖规则如下:1.抽奖方案有以下两种,方案a:从装有2个红球、3个白球(仅颜色不同)的甲袋中随机摸出2个球,若都是红球,则获得奖金30元;否则,没有奖金,兑奖后将摸出的球放回甲袋中,方案b:从装有3个红球、2个白球(仅颜色相同)的乙袋中随机摸出2个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将摸出的球放回乙袋中.2.抽奖条件是,顾客购买商品的金额买100元,可根据方案a抽奖一次:满150元,可根据方案b抽奖一次(例如某顾客购买商品的金额为260元,则该顾客可以根据方案a抽奖两次或方案b抽奖一次或方案a、b各抽奖一次).已知顾客A 在该商场购买商品的金额为350元.(1)若顾客A只选择方案a进行抽奖,求其所获奖金的期望值;(2)要使所获奖金的期望值最大,顾客A应如何抽奖.【解答】解:(1)顾客A只选择方案a进行抽奖,则其抽奖方式为按方案a抽奖三次,按方案a一次抽中的概率P(A)==,此时满足二项分布B(3,),设所得奖金为w 1,则=,∴顾客A只选择方案a进行抽奖,其所获奖金的期望值为9元.(2)按方案b一次抽中的概率P(B)==,假设①,顾客A按方案a抽奖两次,按方案b抽奖一次,此时方案a的抽法满足二项分布B1~(2,),方案b的抽法满足二项分布B2~(1,),设所得奖金为w 2,则==10.5,假设②,顾客A按方案b抽奖两次,此时满足二项分布B~(2,),设所得奖金为w 3,∴=2×=9.∵,∴要使所获奖金的期望值最大,顾客A应按方案a抽奖两次,按方案b抽奖一次.19.(12分)如图(1)在平面六边形ABCDEF,四边形ABCD是矩形,且AB=4,BC=2,AE=DE=,BF=CF=,点M,N分别是AD,BC的中点,分别沿直线AD,BC将△DEF,△BCF翻折成如图(2)的空间几何体ABCDEF.(1)利用下面的结论1或结论2,证明:E、F、M、N四点共面;结论1:过空间一点作已知直线的垂面,有且只有一个;结论2:过平面内一条直线作该平面的垂面,有且只有一个.(2)若二面角E﹣AD﹣B和二面角F﹣BC﹣A都是60°,求二面角A﹣BE﹣F的余弦值.【解答】证明:(1)分别连结MN、EM、FN,则由题意知:①AD⊥MN,AD⊥EM,∵MN、EM⊂平面EMN,∴AD⊥平面EMN.②BC⊥MN,BC⊥FN,∵MN,FN⊂平面FMN,∴BC⊥平面FMN.由结论1:过空间一点作已知直线的垂面,有且只有一个,得到平面EMN和平面FMN都是唯一的.又∵AD、BC⊂平面ABCD,MN⊂平面ABCD,由结论2:过平面内一条直线作该平面的垂面,有且只有一个,得到过MN垂直于平面ABCD的面是唯一的,∴平面EMN和平面FMN重合,∴E、F、M、N四点共面.解:(2)分别过点E、F作平面ABCD的垂线,分别交MN于点E′,F′,则∠EME′=∠FNF′=60°,由题意可知:EM=1,FN=2,∴ME′=,EE′=,NF′=1,FF′=,E′F′=,,以E′为原点,在平面ABCD内过E′作MN的垂线为x轴,E′N为y轴,E′E为z轴,建立空间直角坐标系,则A(1,﹣,0),B(1,,0),E(0,0,),F(0,,),=(0,4,0),=(1,﹣),=(0,),=(1,,﹣),设平面ABE的法向量=(x,y,z),则,取z=2,得=(),设平面BEF的法向量=(a,b,c),则,取c=﹣5,得=(﹣6,,﹣5),∴cos<>==﹣,由图形知二面角A﹣BE﹣F是钝二面角,故二面角A﹣BE﹣F的余弦值为﹣.20.(12分)如图,曲线C由左半椭圆M:+=1(a>b>0,x≤0)和圆N:(x﹣2)2+y2=5在y轴右侧的部分连接而成,A,B是M与N的公共点,点P,Q (均异于点A,B)分别是M,N上的动点.(1)若|PQ|的最大值为4+,求半椭圆M的方程;(2)若直线PQ过点A,且=﹣2,⊥,求半椭圆M的离心率.【解答】解:(1)A(0,1),B(0,﹣1),故b=1,|PQ|的最大值为4+=a+2+,解得a=2.∴半椭圆M的方程为:+y2=1(﹣2≤x≤0).(2)设PQ方程:y=kx+1,与圆N的方程联立可得:(k2+1)x2+(2k﹣4)x=0,x A+x Q=,x A=0,∴Q.,可得(x Q,y Q﹣1)=﹣2(x P,y P﹣1),故P.=(x P,y P+1),=(x Q,y Q+1).由⊥,可得:x P•x Q+(y P+1)•(y Q+1)=0,把点P,Q的坐标代入可得:•+•=0,解得k=,∴P.联立直线PQ与作半椭圆M可得:x2+=0,可得x P=﹣=﹣,解得a=,∴e===.21.(12分)已知函数f(x)=(mx2﹣x+m)e﹣x(m∈R).(Ⅰ)讨论f(x)的单调性;(Ⅱ)当m>0时,证明:不等式f(x)≤在(0,1+]上恒成立.【解答】解:(Ⅰ)f′(x)=﹣[mx﹣(m+1)](x﹣1)e﹣x,(1)m=0时,则f′(x)=(x﹣1)e﹣x,令f′(x)>0,解得:x>1,令f′(x)<0,解得:x<1,故f(x)在(﹣∞,1]递减,在(1,+∞)递增;(2)m<0时,令f′(x)<0,则1+<x<1,令f′(x)>0,则x<1+或x>1,故f(x)在(﹣∞,1+]和(1,+∞)递增,在(1+,1)递减;(3)m>0时,令f′(x)<0,则x<1或x>1+,令f′(x)>0,则1<x<1+,则f(x)在(﹣∞,1]和(1+,+∞)递减,在(1,1+)递增;(Ⅱ)由(Ⅰ)得,m>0时,f(x)在(0,1]递减,在(1,1+)递增,x∈(0,1]时,f(x)=<≤<m≤,x∈(1,1+)时,f(x)<f(1+)=(2m+1),=,下面证明(2≤,即证≥(1+)(2+),令g(x)=e x﹣x(x+1),x>1,则g′(x)=e x﹣(2x+1),令h(x)=e x﹣(2x+1),x>1,则h′(x)=e x﹣2>0,故h(x)=g′(x)在(1+∞)递增,且g′(1)=e﹣3<0,g′()=﹣4>0,故存在x0∈(1,),使得g′(x0)=0,即﹣(2x0+1)=0,故x∈(1,x0)时,g′(x)<0,x∈(x0,)时,g′(x)>0,故g(x)在(1,x0)递减,在(x0,)递增,故g(x)min=g(x0)=﹣﹣x0=﹣+x0+1=﹣+>0,x>1时,g(x)>0,即e x>x(x+1),故≥(1+)(2+),∴不等式f(x)≤在(0,1+]上恒成立.[选修4-4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(其中φ为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ(tanα•cosθ﹣sinθ)=1(α为常数,0<α<π,且α≠),点A,B(A 在x轴下方)是曲线C1与C2的两个不同交点.(1)求曲线C 1普通方程和C2的直角坐标方程;(2)求|AB|的最大值及此时点B的坐标.【解答】解:(1)曲线C1的参数方程为(其中φ为参数),普通方程为=1;曲线C2的极坐标方程为ρ(tanα•cosθ﹣sinθ)=1,直角坐标方程为xtanα﹣y﹣1=0;(2)C2的参数方程为(t为参数),代入=1,得﹣2t sinα=0,∴t1+t2=,t1t2=0,∴|AB|=||=||,∵0<α<π,且α≠,∴sinα∈(0,1),∴|AB|max=,此时B的坐标为(,).[选修4-5:不等式选讲]23.已知函数f(x)=|x+m|+|2x﹣1|(m>0).(1)当m=1时,解不等式f(x)≥3;(2)当x∈[m,2m2]时,不等式f(x)≤|x+1|恒成立,求实数m的取值范围.【解答】解:(1)m=1时,f(x)=|x+1|+|2x﹣1|,f(x)=,∴f(x)≥3,解得:x≤﹣1或x≥1;(2)f (x )≤|+1|⇒|x +m |+|2x ﹣1|≤|x +1|,∵x ∈[m ,2m 2]且m >0, ∴x +≤|x +1|﹣|2x ﹣1|⇒m ≤2|x +1|﹣|2x ﹣1|﹣x ,令t (x )=2|x +1|﹣|2x ﹣1|﹣x=, 由题意得⇒m >,t (x )min =t (2m 2)≥m ⇒m ≤1, ∴<m ≤1.赠送:初中数学几何模型举例 【模型四】几何最值模型:图形特征: PA Bl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。

山西省太原市第五中学2017届高三第二次模拟考试(5月)

山西省太原市第五中学2017届高三第二次模拟考试(5月)

太原五中2016-2017学年度第二学期阶段性检测高 三 数 学(理)出题人、校对人:张福兰、王彩凤、李小丽(2017年5月8日)一、选择题(每小题5分,共60分,每小题只有一个正确答案)1.已知全集R U =,}02{2<-=x x x A ,}1{≥=x x B ,则=)(B C A UA .),0(+∞ B. )1,(-∞ C .)2,(-∞ D . (0,1) 2. 如果复数21iz =-+,则 A .的共轭复数为1i + B .的实部为1 C .2z =D .的虚部为1-3.假设有两个分类变量X 和Y 的2×2列联表:对同一样本,以下数据能说明X 与Y 有关系的可能性最大的一组为 A .a=45,c=15 B .a=40,c=20 C .a=35,c=25D .a=30,c=304. 正项等比数列{}n a 中的14033,a a 是函数()3214633f x x x x =-+-的极值点,则62017log a =A.1B.2C.12D. 1- 5.已知错误!未找到引用源。

是坐标原点,点错误!未找到引用源。

,若点错误!未找到引用源。

为平面区域122x y x y ≤⎧⎪≤⎨⎪+≥⎩错误!未找到引用源。

上一个动点,则错误!未找到引用源。

的最大值为A.3B.2C.1D.0 6.我们可以用随机模拟的方法估计π的值,如图程序框图表示其基本步骤(函数RAND 是产生随机数的函数,它能随机产生()01,内的任何一个实数).若输出的结果为521,则由此可估计π的近似值为A .3.119B .3.126C .3.132D .3.1517.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,且2AF BF =,则直线AB 的斜率为A ...- D .8.某几何体的三视图如图所示,则该几何体的体积为A .5B .163 C .7 D .1739.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为 A .60 B .72C .84D .9610.将函数()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭的图像向左平移π12个单位,再向上平移1个单位,得到()g x 的图像.若()()129g x g x =,且[]12,2π,2πx x ∈-,则122x x -的最大值为A .π1249 B.35π6 C.25π6 D.17π411.已知双曲线Γ:)0,0(12222>>=-b a by a x 的焦距为2c ,直线:l y kx kc =-.若k =则l 与Γ的左、右两支各有一个交点;若k =l 与Γ的右支有两个不同的交点,则Γ的离心率的取值范围为 A .(1,2)B .(1,4)C .(2,4)D .(4,16)12.已知函数()()()()221128122x x x f x e x x x -⎧--≤⎪=⎨-+->⎪⎩,如在区间()1 +∞,上存在()2n n ≥个不同的数123 n x x x x ,,,…,,使得比值()()()1212n nf x f x f x x x x ==…=成立,则n 的取值集合是A.{}2 3 4 5,,,B.{}2 3,C.{}2 3 5,,D.{}2 3 4,, 二、填空题(每小题5分,共20分)13.已知12⎛= ⎝⎭a ,()2cos ,2sin αα=b ,a 与b 的夹角为60︒,则2-=a b ___________.14.已知n y x x )2(2-+的展开式中各项系数的和为32,则展开式中25y x 的系数为 .(用数字作答)15.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、 前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经错误!未找到引用源。

【配套K12】山西省太原市第五中学2017届高三数学第二次模拟考试试题 理(含解析)

【配套K12】山西省太原市第五中学2017届高三数学第二次模拟考试试题 理(含解析)

太原五中2016-2017学年度第二学期阶段性检测高三数学(理)一、选择题(每小题5分,共60分,每小题只有一个正确答案)1. 已知全集,,,则A. B. C. D. (0,1)【答案】C【解析】由题意得,集合,,所以,所以,故选C.2. 如果复数,则A. 的共轭复数为B. 的实部为1C. D. 的虚部为【答案】D【解析】 ,因此的共轭复数为 ,实部为,虚部为,模为,选D. 点睛:对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为3. 假设有两个分类变量X和Y的2×2列联表:对同一样本,以下数据能说明X与Y有关系的可能性最大的一组为A. a=45,c=15B. a=40,c=20C. a=35,c=25D. a=30,c=30【答案】A结合选项计算可得A选项符合题意.本题选择A选项.4. 正项等比数列中的是函数的极值点,则A. 1B. 2C.D.【答案】C【解析】由函数的解析式可得:f′(x)=x2−8x+6,∵正项等比数列{a n}中的a1,a4033是函数f(x)的极值点,∴a1×a4033=6,∴,∴ .本题选择C选项.点睛:熟练掌握等比数列的一些性质可提高解题速度,历年高考对等比数列的性质考查较多,主要是考查“等积性”,题目“小而巧”且背景不断更新.解题时要善于类比并且要能正确区分等差、等比数列的性质,不要把两者的性质搞混.5. 已知是坐标原点,点,若点为平面区域上一个动点,则的最大值为A. 3B. 2C. 1D. 0【答案】B【解析】由题意可得:,绘制不等式组表示的可行域,结合目标函数的几何意义可得目标函数在点处取得最大值 .本题选择B选项.6. 我们可以用随机模拟的方法估计π的值,如图程序框图表示其基本步骤(函数是产生随机数的函数,它能随机产生内的任何一个实数).若输出的结果为,则由此可估计π的近似值为A. 3.119B. 3.126C. 3.132D. 3.151【答案】B【解析】发生的概率为,当输出结果为时,,发生的概率为,所以,即故选B.7. 过抛物线的焦点的直线交抛物线于两点,且,则直线的斜率为A. B. C. 或 D.【答案】C【解析】由题意,知,则设直线的的方程为,代入抛物线消去,得.设,则①,②.因为,所以③.联立①②③解得,所以直线的斜率为,故选C.8. 某几何体的三视图如图所示,则该几何体的体积为A. 5B.C.D.【答案】D【解析】几何体如下图,几何体为底面为直角梯形的直四棱柱,截去阴影表示的三棱锥,所以体积为 ,故选D.9. 小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为A. 60B. 72C. 84D. 96【答案】C【解析】根据题意,可分三种情况讨论:①若小明的父母只有一人与小明相邻且父母不相邻时,先在其父母中选一人与小明相邻,有种情况,将小明与选出的家长看出一个整体,考虑其顺序种情况,当父母不相邻时,需要将爷爷奶奶进行全排列,将整体与另一个家长安排在空位中,有种安排方法,此时有种不同坐法;②若小明的父母的只有一人与小明相邻且父母相邻时,将父母及小明看成一个整体,小明在一端,有种情况,考虑父母之间的顺序,有种情况,则这个整体内部有种情况,将这个整体与爷爷奶奶进行全排列,有种情况,此时有种不同坐法;③小明的父母都小明相邻,即小明在中间,父母在两边,将人看成一个整体,考虑父母的顺序,有种情况,将这个整体与爷爷奶奶进行全排列,有种情况,此时,共有种不同坐法;综上所述,共有种不同的坐法,故选C.点睛:本题考查了排列、组合的综合应用问题,关键是根据题意,认真审题,进行不重不漏的分类讨论,本题的解答中,分三种情况:①小明的父母中只有一个人与小明相邻且父母不相邻;②小明的父母有一个人与小明相邻且父母相邻;③小明的父母都与小明相邻,分别求解每一种情况的排法,即可得到答案。

山西省太原市高考数学二模试卷(理科)

山西省太原市高考数学二模试卷(理科)

2017年山西省太原市高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,共32分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知=(1+i)2(i为虚数单位),则复数z的共轭复数为()A.﹣﹣i B.﹣+i C.﹣i D. +i2.已知全集U=R,A={0,1,2,3},B={y|y=2x,x∈A},则(∁U A)∩B=()A.(﹣∞,0)∪(3,+∞)B.{x|x>3,x∈N} C.{4,8}D.[4,8] 3.已知=(2,1),=(﹣1,1),则在方向上的投影为()A.﹣B.C.﹣D.4.已知S n是等差数列a n的前n项和,且S3=2a1,则下列结论错误的是()A.a4=0 B.S4=S3C.S7=0 D.a n是递减数列5.如图,“赵爽弦图”是由四个全等的直角三角形(阴影部分)围成一个大正方形,中间空出一个小正方形组成的图形,若在大正方形内随机取一点,该点落在小正方形的概率为,则图中直角三角形中较大锐角的正弦值为()A.B.C.D.6.执行如图的程序框图,则输出的S=()A.B.C.﹣D.07.函数f(x)=的图象大致为()A.B.C.D.8.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.9.已知实数x,y满足,则z=|2x﹣3y+4|的最大值为()A.3 B.5 C.6 D.810.已知双曲线﹣y2=1的右焦点是抛物线y2=2px(p>0)的焦点,直线y=kx+m 与抛物线交于A,B两个不同的点,点M(2,2)是AB的中点,则△OAB(O为坐标原点)的面积是()A.4 B.3C. D.211.已知f(x)=x2e x,若函数g(x)=f2(x)﹣kf(x)+1恰有四个零点,则实数k的取值范围是()A.(﹣∞,﹣2)∪(2,+∞)B.(2, +)C.(,2)D.(+,+∞)12.已知函数f(x)=(2a﹣1)x﹣cos2x﹣a(sinx+cosx)在[0,]上单调递增,则实数a的取值范围为()A.(﹣∞,]B.[,1]C.[0,+∞)D.[1,+∞)二、填空题:本大题共4小题,每小题5分,共20分).13.已知sin(﹣α)=﹣,0<α<π,则sin2α=.14.(2x+﹣1)5的展开式中常数项是.15.已知三棱锥A﹣BCD中,AB=AC=BC=2,BD=CD=,点E是BC的中点,点A 在平面BCD上的射影恰好为DE的中点,则该三棱锥外接球的表面积为.16.已知点O是△ABC的内心,∠BAC=30°,BC=1,则△BOC面积的最大值为.三、解答题:本大题共5小题,共48分.解答写出文字说明、证明过程或演算过程.17.已知数列{a n}的前n项和S n=2n+1﹣2,数列{b n}满足b n=a n+a n(n∈N*).+1(1)求数列{b n}的通项公式;(2)若c n=log2a n(n∈N*),求数列{b n•c n}的前n项和T n.18.某商城举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖规则如下:1.抽奖方案有以下两种,方案a:从装有2个红球、3个白球(仅颜色不同)的甲袋中随机摸出2个球,若都是红球,则获得奖金30元;否则,没有奖金,兑奖后将摸出的球放回甲袋中,方案b:从装有3个红球、2个白球(仅颜色相同)的乙袋中随机摸出2个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将摸出的球放回乙袋中.2.抽奖条件是,顾客购买商品的金额买100元,可根据方案a抽奖一次:满150元,可根据方案b抽奖一次(例如某顾客购买商品的金额为260元,则该顾客可以根据方案a抽奖两次或方案b抽奖一次或方案a、b各抽奖一次).已知顾客A 在该商场购买商品的金额为350元.(1)若顾客A只选择方案a进行抽奖,求其所获奖金的期望值;(2)要使所获奖金的期望值最大,顾客A 应如何抽奖.19.如图(1)在平面六边形ABCDEF ,四边形ABCD 是矩形,且AB=4,BC=2,AE=DE=,BF=CF=,点M ,N 分别是AD ,BC 的中点,分别沿直线AD ,BC将△DEF ,△BCF 翻折成如图(2)的空间几何体ABCDEF .(1)利用下面的结论1或结论2,证明:E 、F 、M 、N 四点共面; 结论1:过空间一点作已知直线的垂面,有且只有一个; 结论2:过平面内一条直线作该平面的垂面,有且只有一个.(2)若二面角E ﹣AD ﹣B 和二面角F ﹣BC ﹣A 都是60°,求二面角A ﹣BE ﹣F 的余弦值.20.如图,曲线C 由左半椭圆M :+=1(a >b >0,x ≤0)和圆N :(x ﹣2)2+y 2=5在y 轴右侧的部分连接而成,A ,B 是M 与N 的公共点,点P ,Q (均异于点A ,B )分别是M ,N 上的动点.(1)若|PQ |的最大值为4+,求半椭圆M 的方程;(2)若直线PQ 过点A ,且=﹣2,⊥,求半椭圆M 的离心率.21.已知函数f (x )=(mx 2﹣x +m )e ﹣x (m ∈R ). (Ⅰ)讨论f (x )的单调性;(Ⅱ)当m >0时,证明:不等式f (x )≤在(0,1+]上恒成立.[选修4-4:坐标系与参数方程选讲]22.在直角坐标系xOy中,曲线C1的参数方程为(其中φ为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ(tanα•cosθ﹣sinθ)=1(α为常数,0<α<π,且α≠),点A,B(A在x轴下方)是曲线C1与C2的两个不同交点.(1)求曲线C1普通方程和C2的直角坐标方程;(2)求|AB|的最大值及此时点B的坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x+m|+|2x﹣1|(m>0).(1)当m=1时,解不等式f(x)≥3;(2)当x∈[m,2m2]时,不等式f(x)≤|x+1|恒成立,求实数m的取值范围.2017年山西省太原市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共32分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知=(1+i)2(i为虚数单位),则复数z的共轭复数为()A.﹣﹣i B.﹣+i C.﹣i D. +i【考点】A5:复数代数形式的乘除运算.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,则答案可求.【解答】解:由=(1+i)2,得.∴.故选:B.2.已知全集U=R,A={0,1,2,3},B={y|y=2x,x∈A},则(∁U A)∩B=()A.(﹣∞,0)∪(3,+∞)B.{x|x>3,x∈N} C.{4,8}D.[4,8]【考点】1H:交、并、补集的混合运算.【分析】根据全集U及A求出A的补集,找出A补集与B的交集即可.【解答】解:全集U=R,A={0,1,2,3},B={y|y=2x,x∈A}={1,2,4,8},∴(∁U A)∩B={4,8},故选:C3.已知=(2,1),=(﹣1,1),则在方向上的投影为()A.﹣B.C.﹣D.【考点】9R:平面向量数量积的运算.【分析】根据条件即可求出及的值,而在方向上的投影计算公式为,从而求出该投影的值.【解答】解:,;∴在方向上的投影为:.故选A.4.已知S n是等差数列a n的前n项和,且S3=2a1,则下列结论错误的是()A.a4=0 B.S4=S3C.S7=0 D.a n是递减数列【考点】85:等差数列的前n项和.【分析】设等差数列{a n}的公差为d.由S3=2a1,可得:a1+a2+a3═3a1+3d=2a1,可得a1=﹣3d.利用通项公式与求和公式即可判断出A,B,C的正误.由于无法判断d的正负,因此无法判断等差数列{a n}的单调性,即可判断出D的正误.【解答】解:设等差数列{a n}的公差为d.由S3=2a1,可得:a1+a2+a3═3a1+3d=2a1,可得a1=﹣3d.则a4=﹣3d+3d=0,S4=S3,S7==7a4=0,因此A,B,C正确.由于无法判断d的正负,因此无法判断等差数列{a n}的单调性,因此D错误.故选:D.5.如图,“赵爽弦图”是由四个全等的直角三角形(阴影部分)围成一个大正方形,中间空出一个小正方形组成的图形,若在大正方形内随机取一点,该点落在小正方形的概率为,则图中直角三角形中较大锐角的正弦值为()A.B.C.D.【考点】CE:模拟方法估计概率.【分析】求出四个全等的直角三角形的三边的关系,从而求出sinθ的值即可.【解答】解:在大正方形内随机取一点,这一点落在小正方形的概率为,不妨设大正方形面积为5,小正方形面积为1,∴大正方形边长为,小正方形的边长为1.∴四个全等的直角三角形的斜边的长是,较短的直角边的长是1,较长的直角边的长是2,故sinθ=,故选:B.6.执行如图的程序框图,则输出的S=()A.B.C.﹣D.0【考点】EF:程序框图.【分析】模拟程序的运行,依次写出前几次循环得到的S,n的值,观察规律可知,S的取值以6为最小正周期循环,由于2017=336×6+1,可得:n=2018时不满足条件n≤2017,退出循环,输出S的值为.【解答】解:模拟程序的运行,可得S=0,n=1满足条件n≤2017,执行循环体,S=,n=2满足条件n≤2017,执行循环体,S=,n=3满足条件n≤2017,执行循环体,S=,n=4满足条件n≤2017,执行循环体,S=,n=5满足条件n≤2017,执行循环体,S=0,n=6满足条件n≤2017,执行循环体,S=0,n=7满足条件n≤2017,执行循环体,S=,n=8…观察规律可知,S的取值以6为最小正周期循环,由于2017=336×6+1,可得:n=2017时,满足条件n≤2017,执行循环体,S=,n=2018不满足条件n≤2017,退出循环,输出S的值为.故选:A.7.函数f(x)=的图象大致为()A.B.C.D.【考点】3O:函数的图象.【分析】求出函数的定义域,得到函数的函数的对称轴,再取特殊值即可判断.【解答】解:f(x)=的定义域为(﹣∞,1)∪(1,+∞),且图象关于x=1对称,排除B,C,取特殊值,当x=时,f(x)=2ln<0,故选:D8.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【考点】L!:由三视图求面积、体积.【分析】由三视图知:该几何体是一个高h=1的三棱锥S﹣ABC,其中底面△ABC 的底AB=1,高CD=1,由此能求出该几何体的体积.【解答】解:由三视图知:该几何体是一个高h=1的三棱锥S﹣ABC,其中底面△ABC的底AB=1,高CD=1,∴该几何体的体积为V===.故选:D.9.已知实数x,y满足,则z=|2x﹣3y+4|的最大值为()A.3 B.5 C.6 D.8【考点】7C:简单线性规划.【分析】由约束条件作出可行域,画出2x﹣3y+4=0对应的直线,然后分类求出目标函数的最大值得答案.【解答】解:由约束条件作出可行域如图,由图可知,在目标函数的上方并满足约束条件的区域使得目标函数为负数,故目标函数的绝对值是其相反数,由线性规划可知,目标函数最小值在A(1,4)处取得,(2x﹣3y+4)min=﹣6,故z max=|2x﹣3y+4|=6;由图可知,在目标函数的下方并满足约束条件的区域使得目标函数为正数,故目标函数的绝对值是其本身,由线性规划可知,目标函数最大值在B(2,1)处取得,(2x﹣3y+4)max=5,故z max=|2x﹣3y+4|=5.综上所述,目标函数的最大值为6.故选:C.10.已知双曲线﹣y2=1的右焦点是抛物线y2=2px(p>0)的焦点,直线y=kx+m 与抛物线交于A,B两个不同的点,点M(2,2)是AB的中点,则△OAB(O为坐标原点)的面积是()A.4 B.3C. D.2【考点】KC:双曲线的简单性质.【分析】求出双曲线方程的a,b,c,可得右焦点,即为抛物线的焦点,可得抛物线的方程,联立直线方程,可得x的二次方程,运用判别式大于0以及韦达定理和中点坐标公式,以及弦长公式求得AB的长,由点到直线的距离公式可得O 到AB的距离,再由三角形的面积公式,计算即可得到所求值.【解答】解:双曲线﹣y2=1的a=,b=1,c==2,右焦点为(2,0),则抛物线y2=2px(p>0)的焦点为(2,0),即有2=,解得p=4,即抛物线方程为y2=8x,联立直线y=kx+m,可得k2x2+(2km﹣8)x+m2=0,判别式△=(2km﹣8)2﹣4k2m2>0,设A(x1,y1),B(x2,y2),可得x1+x2=,点M(2,2)是AB的中点,可得=4,且2=2k+m,解得k=2,m=﹣2.满足判别式大于0.即有x1+x2=4,x1x2=1,可得弦长AB=•=•=2,点O到直线2x﹣y﹣2=0的距离d==,则△OAB(O为坐标原点)的面积是d•|AB|=××2=2.故选:D.11.已知f(x)=x2e x,若函数g(x)=f2(x)﹣kf(x)+1恰有四个零点,则实数k的取值范围是()A.(﹣∞,﹣2)∪(2,+∞)B.(2, +)C.(,2)D.(+,+∞)【考点】52:函数零点的判定定理.【分析】利用导数的性质判断f(x)的单调性和极值,得出方程f(x)=t的根的分布情况,从而得出关于t的方程t2﹣kt+1=0的根的分布情况,利用二次函数函数的性质列不等式求出k的范围.【解答】解:f′(x)=2xe x+x2e x=x(x+2)e x,令f′(x)=0,解得x=0或x=﹣2,∴当x<﹣2或x>0时,f′(x)>0,当﹣2<x<0时,f′(x)<0,∴f(x)在(﹣∞,﹣2)上单调递增,在(﹣2,0)上单调递减,在(0,+∞)上单调递增,∴当x=﹣2时,函数f(x)取得极大值f(﹣2)=,当x=0时,f(x)取得极小值f(0)=0.作出f(x)的大致函数图象如图所示:令f(x)=t,则当t=0或t>时,关于x的方程f(x)=t只有1解;当t=时,关于x的方程f(x)=t有2解;当0<t<时,关于x的方程f(x)=t有3解.∵g(x)=f2(x)﹣kf(x)+1恰有四个零点,∴关于t的方程t2﹣kt+1=0在(0,)上有1解,在(,+∞)∪{0}上有1解,显然t=0不是方程t2﹣kt+1=0的解,∴关于t的方程t2﹣kt+1=0在(0,)和(,+∞)上各有1解,∴,解得k>.故选D.12.已知函数f(x)=(2a﹣1)x﹣cos2x﹣a(sinx+cosx)在[0,]上单调递增,则实数a的取值范围为()A.(﹣∞,]B.[,1]C.[0,+∞)D.[1,+∞)【考点】6B:利用导数研究函数的单调性.【分析】求出函数f(x)的导数,问题转化为a≥在[0,]恒成立,令g(x)=,x∈[0,],根据函数的单调性求出a的范围即可.【解答】解:f(x)=(2a﹣1)x﹣cos2x﹣a(sinx+cosx),f′(x)=2a﹣1+sin2x﹣a(cosx﹣sinx),若f(x)在[0,]递增,则f′(x)≥0在[0,]恒成立,即a≥在[0,]恒成立,令g(x)=,x∈[0,],则g′(x)=,令g′(x)>0,即sinx>cosx,解得:x>,令g′(x)<0,即sinx<cosx,解得:x<,故g(x)在[0,)递减,在(,]递增,故g(x)max=g(0)或g(),而g(0)=1,g()=,故a≥1,故选:D.二、填空题:本大题共4小题,每小题5分,共20分).13.已知sin(﹣α)=﹣,0<α<π,则sin2α=﹣.【考点】GS:二倍角的正弦.【分析】利用诱导公式、二倍角公式,求得sin2α的值.【解答】解:∵sin(﹣α)=cosα=﹣,0<α<π,∴sinα==,则sin2α=2sinαcosα=﹣,故答案为:﹣.14.(2x+﹣1)5的展开式中常数项是﹣161.【考点】DB:二项式系数的性质.=(﹣1)5﹣r.【分析】(2x+﹣1)5的展开式中通项公式:T r+1==2r﹣k x r﹣2k.令r﹣2k=0,即可得出.的通项公式:T k+1=(﹣1)5﹣r.【解答】解:(2x+﹣1)5的展开式中通项公式:T r+1==2r﹣k x r﹣2k.的通项公式:T k+1令r﹣2k=0,则k=0,r=0;k=1,r=2;k=2,r=4.因此常数项=+×2×+=﹣161.故答案为:﹣161.15.已知三棱锥A﹣BCD中,AB=AC=BC=2,BD=CD=,点E是BC的中点,点A 在平面BCD上的射影恰好为DE的中点,则该三棱锥外接球的表面积为.【考点】LG:球的体积和表面积;LR:球内接多面体.【分析】由题意,△BCD为等腰直角三角形,E是外接圆的圆心,点A在平面BCD 上的射影恰好为DE的中点,利用勾股定理,建立方程,求出三棱锥外接球的半径,即可得出结论.【解答】解:由题意,△BCD为等腰直角三角形,E是外接圆的圆心,点A在平面BCD上的射影恰好为DE的中点F,则BF==,∴AF==,设球心到平面BCD是距离为h,则1+h2=+(﹣h)2,∴h=,r==,∴该三棱锥外接球的表面积为=.故答案为.16.已知点O是△ABC的内心,∠BAC=30°,BC=1,则△BOC面积的最大值为cot52.5°.【考点】HP:正弦定理.【分析】根据三角形内角和定理求出∠ACB+∠ABC,求出∠OBC+∠OCB=(∠ABC+∠ACB),求出∠OBC+∠OCB的度数,根据三角形的内角和定理求出∠BOC,由余弦定理,基本不等式可求OB•OC≤,进而利用三角形面积公式即可计算得解.【解答】解:∵∠BAC=30°,∴∠ABC+∠ACB=180°﹣30°=150°,∵点O是△ABC的内心,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×150°=75°,∴∠BOC=180°﹣75°=105°.∵BC=1,∴由余弦定理可得:1=OB2+OC2﹣2•OB•OC•cos105°≥2OB•OC﹣2•OB•OC•cos105°,整理可得:OB•OC≤,=OB•OC•sin105°≤×sin105°=∴S△OBC==cot52.5°.故答案为:cot52.5°.三、解答题:本大题共5小题,共48分.解答写出文字说明、证明过程或演算过程.17.已知数列{a n}的前n项和S n=2n+1﹣2,数列{b n}满足b n=a n+a n(n∈N*).+1(1)求数列{b n}的通项公式;(2)若c n=log2a n(n∈N*),求数列{b n•c n}的前n项和T n.【考点】8E:数列的求和;8H:数列递推式.【分析】(1)当n≥2时,a n=S n﹣S n﹣1,已知首项后可得数列{a n}的通项公式,代入b n=a n+a n+1得数列{b n}的通项公式;(2)由c n=log2a n求得数列{c n}的通项公式,进一步得到数列{b n•c n}的通项公式,再由错位相减法求得数列{b n•c n}的前n项和T n.【解答】解:(1)当n≥2时,则a n=S n﹣S n﹣1=2n+1﹣2﹣2n+2=2n,当n=1时,a1=S1=22﹣2=4﹣2=2,满足a n=2n,故数列{a n}的通项公式为a n=2n,∴b n=a n+a n+1=2n+2n+1=3•2n;(2)c n=log2a n=,∴b n•c n=3n•2n.令R n=1•21+2•22+3•23+…+(n﹣1)•2n﹣1+n•2n,则2R n=1•22+2•23+…+(n﹣1)•2n+n•2n+1,∴==(1﹣n)•2n+1﹣2.∴.则.18.某商城举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖规则如下:1.抽奖方案有以下两种,方案a:从装有2个红球、3个白球(仅颜色不同)的甲袋中随机摸出2个球,若都是红球,则获得奖金30元;否则,没有奖金,兑奖后将摸出的球放回甲袋中,方案b:从装有3个红球、2个白球(仅颜色相同)的乙袋中随机摸出2个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将摸出的球放回乙袋中.2.抽奖条件是,顾客购买商品的金额买100元,可根据方案a抽奖一次:满150元,可根据方案b抽奖一次(例如某顾客购买商品的金额为260元,则该顾客可以根据方案a抽奖两次或方案b抽奖一次或方案a、b各抽奖一次).已知顾客A 在该商场购买商品的金额为350元.(1)若顾客A只选择方案a进行抽奖,求其所获奖金的期望值;(2)要使所获奖金的期望值最大,顾客A应如何抽奖.【考点】CH:离散型随机变量的期望与方差.【分析】(1)顾客A只选择方案a进行抽奖,则其抽奖方式为按方案a抽奖三次,满足二项分布B(3,),由此能求出顾客A只选择方案a进行抽奖,其所获奖金的期望值.(2)按方案b一次抽中的概率P(B)==,假设①,顾客A按方案a抽奖两次,按方案b抽奖一次,此时方案a的抽法满足二项分布B1~(2,),方案b的抽法满足二项分布B2~(1,),设所得奖金为w2,求出;假设②,顾客A按方案b抽奖两次,此时满足二项分布B~(2,),设所得奖金为w3,求出.由此能求出要使所获奖金的期望值最大,顾客A应按方案a抽奖两次,按方案b抽奖一次.【解答】解:(1)顾客A只选择方案a进行抽奖,则其抽奖方式为按方案a抽奖三次,按方案a一次抽中的概率P(A)==,此时满足二项分布B(3,),设所得奖金为w1,则=,∴顾客A只选择方案a进行抽奖,其所获奖金的期望值为9元.(2)按方案b一次抽中的概率P(B)==,假设①,顾客A按方案a抽奖两次,按方案b抽奖一次,此时方案a的抽法满足二项分布B1~(2,),方案b的抽法满足二项分布B2~(1,),设所得奖金为w2,则==10.5,假设②,顾客A按方案b抽奖两次,此时满足二项分布B~(2,),设所得奖金为w3,∴=2×=9.∵,∴要使所获奖金的期望值最大,顾客A应按方案a抽奖两次,按方案b抽奖一次.19.如图(1)在平面六边形ABCDEF,四边形ABCD是矩形,且AB=4,BC=2,AE=DE=,BF=CF=,点M,N分别是AD,BC的中点,分别沿直线AD,BC 将△DEF,△BCF翻折成如图(2)的空间几何体ABCDEF.(1)利用下面的结论1或结论2,证明:E、F、M、N四点共面;结论1:过空间一点作已知直线的垂面,有且只有一个;结论2:过平面内一条直线作该平面的垂面,有且只有一个.(2)若二面角E﹣AD﹣B和二面角F﹣BC﹣A都是60°,求二面角A﹣BE﹣F的余弦值.【考点】MT:二面角的平面角及求法;LW:直线与平面垂直的判定.【分析】(1)分别连结MN、EM、FN,推导出AD⊥平面EMN,BC⊥平面FMN,由结论1得到平面EMN和平面FMN都是唯一的.再由AD、BC⊂平面ABCD,MN⊂平面ABCD,利用结论2得到平面EMN和平面FMN重合,由此能证明E、F、M、N四点共面.(2)分别过点E、F作平面ABCD的垂线,分别交MN于点E′,F′,以E′为原点,在平面ABCD内过E′作MN的垂线为x轴,E′N为y轴,E′E为z轴,建立空间直角坐标系,利用向量法能求出二面角A﹣BE﹣F的余弦值.【解答】证明:(1)分别连结MN、EM、FN,则由题意知:①AD⊥MN,AD⊥EM,∵MN、EM⊂平面EMN,∴AD⊥平面EMN.②BC⊥MN,BC⊥FN,∵MN,FN⊂平面FMN,∴BC⊥平面FMN.由结论1:过空间一点作已知直线的垂面,有且只有一个,得到平面EMN和平面FMN都是唯一的.又∵AD、BC⊂平面ABCD,MN⊂平面ABCD,由结论2:过平面内一条直线作该平面的垂面,有且只有一个,得到过MN垂直于平面ABCD的面是唯一的,∴平面EMN和平面FMN重合,∴E、F、M、N四点共面.解:(2)分别过点E、F作平面ABCD的垂线,分别交MN于点E′,F′,则∠EME′=∠FNF′=60°,由题意可知:EM=1,FN=2,∴ME′=,EE′=,NF′=1,FF′=,E′F′=,,以E′为原点,在平面ABCD内过E′作MN的垂线为x轴,E′N为y轴,E′E为z轴,建立空间直角坐标系,则A(1,﹣,0),B(1,,0),E(0,0,),F(0,,),=(0,4,0),=(1,﹣),=(0,),=(1,,﹣),设平面ABE的法向量=(x,y,z),则,取z=2,得=(),设平面BEF的法向量=(a,b,c),则,取c=﹣5,得=(﹣6,,﹣5),∴cos<>==﹣,由图形知二面角A﹣BE﹣F是钝二面角,故二面角A﹣BE﹣F的余弦值为﹣.20.如图,曲线C由左半椭圆M: +=1(a>b>0,x≤0)和圆N:(x﹣2)2+y2=5在y轴右侧的部分连接而成,A,B是M与N的公共点,点P,Q(均异于点A,B)分别是M,N上的动点.(1)若|PQ|的最大值为4+,求半椭圆M的方程;(2)若直线PQ过点A,且=﹣2,⊥,求半椭圆M的离心率.【考点】KL:直线与椭圆的位置关系;K3:椭圆的标准方程.【分析】(1)A(0,1),B(0,﹣1),故b=1,|PQ|的最大值为4+=a+2+,解得a,即可得出.(2)设PQ方程:y=kx+1,与圆N的方程联立可得:(k2+1)x2+(2k﹣4)x=0,解得Q.根据,可得P.由⊥,可得:x P•x Q+(y P+1)•(y Q+1)=0,把点P,Q的坐标代入可得:解得k,即可得出.【解答】解:(1)A(0,1),B(0,﹣1),故b=1,|PQ|的最大值为4+=a+2+,解得a=2.∴半椭圆M的方程为: +y2=1(﹣2≤x≤0).(2)设PQ方程:y=kx+1,与圆N的方程联立可得:(k2+1)x2+(2k﹣4)x=0,x A+x Q=,x A=0,∴Q.,可得(x Q,y Q﹣1)=﹣2(x P,y P﹣1),故P.=(x P,y P+1),=(x Q,y Q+1).由⊥,可得:x P•x Q+(y P+1)•(y Q+1)=0,把点P,Q的坐标代入可得:•+•=0,解得k=,∴P.联立直线PQ与作半椭圆M可得:x2+=0,可得x P=﹣=﹣,解得a=,∴e===.21.已知函数f(x)=(mx2﹣x+m)e﹣x(m∈R).(Ⅰ)讨论f(x)的单调性;(Ⅱ)当m>0时,证明:不等式f(x)≤在(0,1+]上恒成立.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值;6K:导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出函数的导数,通过讨论m的范围,求出函数的单调区间即可;(Ⅱ)根据函数的单调性,问题转化为≥(1+)(2+),令g(x)=e x﹣x (x+1),x>1,则g′(x)=e x﹣(2x+1),令h(x)=e x﹣(2x+1),x>1,根据函数的单调性证明即可.【解答】解:(Ⅰ)f′(x)=﹣[mx﹣(m+1)](x﹣1)e﹣x,(1)m=0时,则f′(x)=(x﹣1)e﹣x,令f′(x)>0,解得:x>1,令f′(x)<0,解得:x<1,故f(x)在(﹣∞,1]递减,在(1,+∞)递增;(2)m<0时,令f′(x)<0,则1+<x<1,令f′(x)>0,则x<1+或x>1,故f(x)在(﹣∞,1+]和(1,+∞)递增,在(1+,1)递减;(3)m>0时,令f′(x)<0,则x<1或x>1+,令f′(x)>0,则1<x<1+,则f(x)在(﹣∞,1]和(1+,+∞)递减,在(1,1+)递增;(Ⅱ)由(Ⅰ)得,m>0时,f(x)在(0,1]递减,在(1,1+)递增,x∈(0,1]时,f(x)=<≤<m≤,x∈(1,1+)时,f(x)<f(1+)=(2m+1),=,下面证明(2≤,即证≥(1+)(2+),令g(x)=e x﹣x(x+1),x>1,则g′(x)=e x﹣(2x+1),令h(x)=e x﹣(2x+1),x>1,则h′(x)=e x﹣2>0,故h(x)=g′(x)在(1+∞)递增,且g′(1)=e﹣3<0,g′()=﹣4>0,故存在x0∈(1,),使得g′(x0)=0,即﹣(2x0+1)=0,故x∈(1,x0)时,g′(x)<0,x∈(x0,)时,g′(x)>0,故g(x)在(1,x0)递减,在(x0,)递增,故g(x)min=g(x0)=﹣﹣x0=﹣+x0+1=﹣+>0,x>1时,g(x)>0,即e x>x(x+1),故≥(1+)(2+),∴不等式f(x)≤在(0,1+]上恒成立.[选修4-4:坐标系与参数方程选讲]22.在直角坐标系xOy中,曲线C1的参数方程为(其中φ为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ(tanα•cosθ﹣sinθ)=1(α为常数,0<α<π,且α≠),点A,B(A在x轴下方)是曲线C1与C2的两个不同交点.(1)求曲线C1普通方程和C2的直角坐标方程;(2)求|AB|的最大值及此时点B的坐标.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(1)利用三种方程的转化方法,求曲线C1普通方程和C2的直角坐标方程;(2)C2的参数方程为(t为参数),代入=1,得﹣2tsinα=0,利用参数的意义,求|AB|的最大值及此时点B的坐标.【解答】解:(1)曲线C1的参数方程为(其中φ为参数),普通方程为=1;曲线C2的极坐标方程为ρ(tanα•cosθ﹣sinθ)=1,直角坐标方程为xtanα﹣y﹣1=0;(2)C2的参数方程为(t为参数),代入=1,得﹣2tsinα=0,∴t1+t2=,t1t2=0,∴|AB|=||=||,∵0<α<π,且α≠,∴sinα∈(0,1),∴|AB|max=,此时B的坐标为(,).[选修4-5:不等式选讲]23.已知函数f(x)=|x+m|+|2x﹣1|(m>0).(1)当m=1时,解不等式f(x)≥3;(2)当x∈[m,2m2]时,不等式f(x)≤|x+1|恒成立,求实数m的取值范围.【考点】3R:函数恒成立问题.【分析】(1)求出f(x)的分段函数的形式,解不等式即可;(2)问题转化为m≤2|x+1|﹣|2x﹣1|﹣x,令t(x)=2|x+1|﹣|2x﹣1|﹣x,求出t(x)的最小值,求出m的范围即可.【解答】解:(1)m=1时,f(x)=|x+1|+|2x﹣1|,f(x)=,∴f(x)≥3,解得:x≤﹣1或x≥1;(2)f(x)≤|+1|⇒|x+m|+|2x﹣1|≤|x+1|,∵x∈[m,2m2]且m>0,∴x+≤|x+1|﹣|2x﹣1|⇒m≤2|x+1|﹣|2x﹣1|﹣x,令t(x)=2|x+1|﹣|2x﹣1|﹣x=,由题意得⇒m>,t(x)min=t(2m2)≥m⇒m≤1,∴<m≤1.2017年6月3日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

k 的取值范围是( )
A.(﹣∞,﹣2)∪(2,+∞)
B.(2, + )
C.( ,2)
D.( + ,+∞)
12.(5 分)已知函数 f(x)=(2a﹣1)x﹣ cos2x﹣a(sinx+cosx)在[0, ]上单调递增,
则实数 a 的取值范围为( )
A.(﹣∞, ]
B.[ ,1]
C.[0,+∞)
D.[1,+∞)
第 1 页(共 22 页)
A.
B.
7.(5 分)函数 f(x)=
C.﹣ 的图象大致为( )
D.0
A.
B.
C.
D.
8.(5 分)某几何体的三视图如图所示,则该几何体的体积为( )
A.
B.
C.
D.
9.(5 分)已知实数 x,y 满足
,则 z=|2x﹣3y+4|的最大值为( )
A.3
B.5
C.6
第 2 页(共 22 页)
2.(5 分)已知全集 U=R,A={0,1,2,3},B={y|y=2x,x∈A},则(∁UA)∩B=( )
A.(﹣∞,0)∪(3,+∞)
B.{x|x>3,x∈N}
C.{4,8}
D.[4,8]
3.(5 分)已知 =(2,1), =(﹣1,1),则 在 方向上的投影为( )
A.﹣
B.
C.﹣
D.
4.(5 分)已知 Sn 是等差数列 an 的前 n 项和,且 S3=2a1,则下列结论错误的是( )
第 4 页(共 22 页)
21.(12 分)已知函数 f(x)=(mx2﹣x+m)e﹣x(m∈R). (Ⅰ)讨论 f(x)的单调性; (Ⅱ)当 m>0 时,证明:不等式 f(x)≤ 在(0,1+ ]上恒成立.
[选修 4-4:坐标系与参数方程选讲] 22.(10 分)在直角坐标系 xOy 中,曲线 C1 的参数方程为
下:
1.抽奖方案有以下两种,方案 a:从装有 2 个红球、3 个白球(仅颜色不同)的甲袋中随机
摸出 2 个球,若都是红球,则获得奖金 30 元;否则,没有奖金,兑奖后将摸出的球放回
第 3 页(共 22 页)
甲袋中,方案 b:从装有 3 个红球、2 个白球(仅颜色相同)的乙袋中随机摸出 2 个球, 若都是红球,则获得奖金 15 元;否则,没有奖金,兑奖后将摸出的球放回乙袋中. 2.抽奖条件是,顾客购买商品的金额买 100 元,可根据方案 a 抽奖一次:满 150 元,可根 据方案 b 抽奖一次(例如某顾客购买商品的金额为 260 元,则该顾客可以根据方案 a 抽 奖两次或方案 b 抽奖一次或方案 a、b 各抽奖一次).已知顾客 A 在该商场购买商品的金 额为 350 元. (1)若顾客 A 只选择方案 a 进行抽奖,求其所获奖金的期望值; (2)要使所获奖金的期望值最大,顾客 A 应如何抽奖. 19.(12 分)如图(1)在平面六边形 ABCDEF,四边形 ABCD 是矩形,且 AB=4,BC=2, AE=DE= ,BF=CF= ,点 M,N 分别是 AD,BC 的中点,分别沿直线 AD,BC 将△DEF,△BCF 翻折成如图(2)的空间几何体 ABCDEF. (1)利用下面的结论 1 或结论 2,证明:E、F、M、N 四点共面; 结论 1:过空间一点作已知直线的垂面,有且只有一个; 结论 2:过平面内一条直线作该平面的垂面,有且只有一个. (2)若二面角 E﹣AD﹣B 和二面角 F﹣BC﹣A 都是 60°,求二面角 A﹣BE﹣F 的余弦值.
2017 年山西省太原市高考数学二模试卷(理科)
一、选择题:本大题共 12 小题,每小题 5 分,共 32 分.在每小题给出的四个选项中,只 有一个是符合题目要求的.
1.(5 分)已知 =(1+i)2(i 为虚数单位),则复数 z 的共轭复数为( )
A.﹣ ﹣ i
B.﹣ + i
C. ﹣ i
D. + i
A.a4=0
B.S4=S3
C.S7=0
D.an 是递减数列
5.(5 分)如图,“赵爽弦图”是由四个全等的直角三角形(阴影部分)围成一个大正方形,
中间空出一个小正方形组成的图形,若在大正方形内随机取一点,该点落在小正方形的
概率为 ,则图中直角三角形中较大锐角的正弦值为( )
A.
B.
C.
D.
6.(5 分)执行如图的程序框图,则输出的 S=( )
D.8
10.(5 分)已知双曲线 ﹣y2=1 的右焦点是抛物线 y2=2px(p>0)的焦点,直线 y=kx+m
与抛物线交于 A,B 两个不同的点,点 M(2,2)是 AB 的中点,则△OAB(O 为坐标原
点)的面积是( )
A.4
B.3
C.D.2ຫໍສະໝຸດ 11.(5 分)已知 f(x)=x2ex,若函数 g(x)=f2(x)﹣kf(x)+1 恰有四个零点,则实数
点 A 在平面 BCD 上的射影恰好为 DE 的中点,则该三棱锥外接球的表面积为

16.(5 分)已知点 O 是△ABC 的内心,∠BAC=30°,BC=1,则△BOC 面积的最大值


三、解答题:本大题共 5 小题,共 48 分.解答写出文字说明、证明过程或演算过程. 17.(12 分)已知数列{an}的前 n 项和 Sn=2n+1﹣2,数列{bn}满足 bn=an+an+1(n∈N*). (1)求数列{bn}的通项公式; (2)若 cn=log2an(n∈N*),求数列{bn•cn}的前 n 项和 Tn. 18.(12 分)某商城举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖规则如
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分).
13.(5 分)已知 sin( ﹣α)=﹣ ,0<α<π,则 sin2α=

14.(5 分)(2x+ ﹣1)5 的展开式中常数项是

15.(5 分)已知三棱锥 A﹣BCD 中,AB=AC=BC=2,BD=CD= ,点 E 是 BC 的中点,
20.(12 分)如图,曲线 C 由左半椭圆 M: + =1(a>b>0,x≤0)和圆 N:(x﹣2) 2+y2=5 在 y 轴右侧的部分连接而成,A,B 是 M 与 N 的公共点,点 P,Q(均异于点 A, B)分别是 M,N 上的动点.
(1)若|PQ|的最大值为 4+ ,求半椭圆 M 的方程; (2)若直线 PQ 过点 A,且 =﹣2 , ⊥ ,求半椭圆 M 的离心率.
(其中 φ 为参数),
相关文档
最新文档