用于单分子动力学实验的微流控混合器
单细胞测序技术及其在传染病研究领域中的应用

单细胞测序技术及其在传染病研究领域中的应用马素芳;严景华【摘要】单细胞测序技术是在单个细胞水平上对基因组或者转录组进行测序,从而分析相同表型细胞的遗传异质性,或获得难以培养微生物的遗传信息.单细胞测序技术的应用已经深刻地改变了我们对一系列生物学现象的理解,包括基因转录、胚胎发育、癌变.对单细胞测序技术的方法和应用进行了概述,并对其在传染病研究中的应用进行了详细介绍.【期刊名称】《生物产业技术》【年(卷),期】2018(000)002【总页数】6页(P85-90)【关键词】单细胞测序;传染病;基因组;转录组;异质性【作者】马素芳;严景华【作者单位】中国科学院微生物研究所,中国科学院微生物生理与代谢工程重点实验室,北京100101;中国科学院微生物研究所,中国科学院微生物生理与代谢工程重点实验室,北京100101;中国科学院微生物研究所,中国科学院病原微生物与免疫学重点实验室,北京 100101【正文语种】中文同一组织中的细胞往往被认为是具有相同状态的功能单位,因此传统的测序技术分析的是细胞群体的总体平均反应。
然而由于细胞存在异质性,即使是来自同一细胞系或者相同细胞,由于基因组和表观基因组的重编程(reprogramming)、DNA 复制错误等会产生不同的基因组、转录组和表观基因组。
而单细胞测序技术(single-cell sequencing,SCS)可以检测单个细胞DNA水平的单核苷酸变异(single nucleotide variations,SNVs)、拷贝数变化(copy number variatons,CNVs)和基因组结构的变化,还可以检测单个细胞RNA水平的基因表达、基因融合和选择性剪切等,以及DNA甲基化、组蛋白修饰等。
近十年来,单细胞测序技术得到了迅猛的发展,已经应用在医学、微生物学和免疫学等多个领域。
本文将对单细胞测序技术的方法和应用进行总结,并对其在传染病研究中的应用进行介绍。
微纳流体力学仿真与微流控芯片设计

微纳流体力学仿真与微流控芯片设计1. 引言微纳流体力学是研究微尺度下流体行为的学科领域,它涵盖了从微观到纳米尺度的流体流动、传热和传质等现象。
近年来,微纳流体力学在医学诊断、生物分析、化学合成等领域得到了广泛的应用。
为了更好地理解和设计微纳流体系统,开展仿真和设计工作显得尤为重要。
本文将介绍微纳流体力学仿真的基本原理和方法,并探讨了微流控芯片的设计与制造过程。
2. 微纳流体力学仿真2.1 离散粒子动力学 (Lattice Boltzmann Method)离散粒子动力学方法是一种基于分子动力学原理的流体力学仿真方法,它通过将流体系统离散为许多粒子,并模拟粒子之间的相互作用,从而研究流体的运动行为。
在微纳尺度下,离散粒子动力学方法具有高效、准确和可靠的优势,被广泛应用于微纳流体力学仿真中。
2.2 多尺度模拟由于微纳流体系统的尺度差异,采用单一的仿真方法往往不能满足需求。
多尺度模拟是一种将不同尺度的仿真方法结合起来,通过耦合不同模型和方法,实现对复杂流动现象的分析与预测。
目前,常用的多尺度模拟方法包括分子动力学与连续介质力学的耦合仿真、多尺度网格方法等。
2.3 流体-结构耦合仿真在微流体系统中,流体与结构的相互作用对流动行为有着重要影响。
流体-结构耦合仿真是一种将流体力学仿真和结构力学仿真相结合的方法,能够模拟流体与结构之间的相互作用和耦合效应。
流体-结构耦合仿真在微纳流体力学领域中具有重要的应用价值,可以用于分析微通道的变形行为、流动对结构的影响等问题。
3. 微流控芯片设计3.1 微流控芯片基本结构微流控芯片是一种集成了微流体器件和微电子器件的芯片,通过精确控制微流体的流动和混合,实现对样品的操控和分析。
微流控芯片的基本结构包括微通道、微阀门、微泵和微感应器等组成部分。
其中,微通道是微流控芯片的核心,其形状和尺寸的设计直接影响流体的流动行为。
3.2 微流控芯片设计流程微流控芯片的设计流程一般包括以下几个步骤:•设计目标确定:根据实际需求确定微流控芯片的设计目标,包括流体流动参数、操控方法等;•结构设计:根据目标要求,设计微通道、微阀门等器件的结构和尺寸;•流场分析:通过数值仿真方法,对微通道内的流场进行模拟和分析,评估设计的可行性和效果;•制造工艺设计:根据设计结果,确定微流控芯片的制造工艺和流程,包括材料选择、薄膜制备、图案化和封装等;•制造与测试:根据制造工艺,制备微流控芯片,并进行相关的测试和评价;•优化和改进:根据测试结果,对设计进行优化和改进,以满足实际需求。
微混合器

动态混合器能较好地解决这些问题, 它主要是通过微型反应器或外加力场来实 现对样品的混合操作。近几年来已经提出 了采用超声波、压电、磁力等驱动方式实 现动态混合。缺点是驱动电压偏高,与微 器件的功率不匹配,只适合于有极性或磁 性的液体等,因此在应用上受到了很大的 限制。
羰基铁粉/ 硅橡胶微混合器是应用在 微生化分析仪中,利用电磁激励高弹性 薄膜谐振驱动对流场产生周期性挠动形 成有漩流动,从而形成强对流来实现样 品与试剂的混合,可以克服混合时间过 长、驱动电压偏高、对流体有限制等问 题。
谢谢观赏
Make Presentation much more fun
@kingsoftwps
Fig. 3 Stress–strain curves (a) and elastic modulus (b) of pure PDMS and different CI–PDMS composites
Fig. 4 Deflection of differentCI–PDMS elastomermembranes (*1.0 mm in diameter, *100 lm inthickness) under same magnetic field (a). Membrane (ratio = 2) deflection as function of magnet field (b)
2
复合材料的制备
(1)材料---PDMS和羰基铁粉 PDMS 是一种常见的高分子聚合有机 材料具有价格低廉,易于构筑,透光、化 学性质稳定,易于与玻璃等其它材料键合, 无毒及生物兼容性好等优点。但也存在多 孔疏水、表面电荷低、电渗流(EOF)小等 缺点。所以用羰基铁粉作为填充剂改善其 性能。
羰基铁粉的居里温度高,温度稳定性 好,在磁性材料中,它的饱和磁化强度 最高,微波磁导率和介电常数高,采用 羰基铁粉作为填充剂,可以提高材料的 磁学和力学性能,并且稳定性好,适用 于各种微流体装置的应用。
微流控芯片中混合器混合效果的影响因素分析

微流控芯片广泛应用于法医DNA的检测,其原理是控 制流体样本流过不同的温度区域来实现样本温度的改变, 完成变性、退火和延伸3个基本步骤,实现扩增。参与反应的 两种或以上的流体进行充分混合是影响扩增效果的重要因 素。由此产生了检测混合效果的多种方法,混合长度和时间 是表示混合效果的重要指标,在保证混合效果的前提下如 何减少混合长度和时间,是科研人员重点关注的问题。本课 题设计微混合器将两种流体进行充分混合检测,并在微混合 理论分析的基础上进行模拟仿真。 1 微流体的混合机理研究及性能评价 1.1 微流体的扩散控制方程
作者简介:李子晓(1991— ),女,河北邢台人,助理工程师,硕士研究生;研究方向:嵌入式软件开发。
- 21 -
第4期 2 019 年 8月
现 代 盐 化 工·专 论与综 述
N o .4 Aug ust,2019
混合的研究中,其中,计算流体动力学(Computational Fluid Dynamics,CFD)方法简单有效,是研究微通道内流体混合 的有效方法。 1.3 增强流体混合的方法
在没有外界扰动的情况下,微通道传输过程中起主导作 用的是分子的自由扩散[1]。一定温度下,流体分子的扩散可 用Fick’s法则表示:
(1)
其中,J表示扩散通量,kg/m3·s; ∂C 表示扩散方向上流体 ∂x
分 子的浓度梯度;A表 示两种流体的分界面积,m m 2;D表 示扩散系数,m2/s;C表示为分子的浓度,mol/L。扩散时间
常数可表示为:
t~L2/D
(2)
其中,L表示扩散尺寸,mm;D表示流体的扩散系数,m2/s。
流体混合的特征尺度越小,扩散的距离越短,混合所需的时
间越短。
在低雷诺数下,流体的混合主要是依靠流体的分子间扩 散作用实现的,实质上就是质量传输的过程。质量的传输与 流体的物态、组分的梯度以及其扩散能力有关。微通道内两 种流体之间的质量传输可以用对流—扩散方程来描述:
微通道导引下数字微流体快速混合

微通道导引下数字微流体快速混合
章安良;叶丽军;费景臣
【期刊名称】《传感技术学报》
【年(卷),期】2009(022)006
【摘要】微流体混合是微流控芯片急需完善的重要操作单元,提出了在声表面波驱动下实现微通道内数字微流体快速混合方法.在1280YX-LiNbO3基片上设计相互垂直排列的两叉指换能器和反射栅,并在其声传播路径上制作微通道且进行疏水处理以防止微流体偏离运动方向,待混合的数字微流体移液于微通道中,分别在两叉指换能器上分时加RF电信号激发相互垂直声表面波,以驱动微通道中微流体输运、合并及快速混合.输运实验结果表明微流体在没有微通道时运动发生严重偏离声传播方向;混合实验表明:相比于自由扩散混合,声表面波作用极大地提高微通道中微流体混合速度且混合程度更高.
【总页数】4页(P781-784)
【作者】章安良;叶丽军;费景臣
【作者单位】宁波大学信息学院,浙江宁波,315211;宁波大学信息学院,浙江宁波,315211;宁波大学信息学院,浙江宁波,315211
【正文语种】中文
【中图分类】TN722
【相关文献】
1.影响微流体混合的因素及微混合器 [J], 李勇;王欣欣;王瑞金
2.微流体系统中微通道网络成形工艺研究进展 [J], 曹伟龙;田桂中
3.基于声表面波技术数字微流体微混合器研究 [J], 费景臣;章安良
4.压电基片上集成微通道数字微流体微混合器研究 [J], 章安良;叶丽军;费景臣
5.基于声表面波技术实现微通道内微流体的融合 [J], 张悦;高挺;胡楚;黄昶;尉一卿;章安良
因版权原因,仅展示原文概要,查看原文内容请购买。
微流控技术可控制备异形微纤维的研究进展

微流控技术可控制备异形微纤维的研究进展目录1. 内容综述 (2)1.1 研究背景 (3)1.2 研究意义 (4)1.3 研究现状及发展动态 (5)2. 微流控技术概述 (6)2.1 微流控技术定义 (7)2.2 微流控技术原理 (8)2.3 微流控技术特点 (10)3. 异形微纤维制备技术 (11)3.1 异形微纤维概述 (12)3.2 异形微纤维制备工艺 (14)3.3 制备技术中的关键问题 (15)4. 微流控技术在异形微纤维制备中的应用 (16)4.1 微流控技术在微纤维制备中的优势 (18)4.2 微流控技术可控制备异形微纤维的研究进展 (20)4.3 实例分析 (21)5. 异形微纤维的性能与表征 (22)5.1 异形微纤维的性能 (23)5.2 异形微纤维的表征方法 (24)6. 异形微纤维的应用及前景 (25)6.1 异形微纤维的应用领域 (27)6.2 发展趋势及前景展望 (28)7. 研究结论与建议 (30)7.1 研究结论 (31)7.2 对未来研究的建议 (32)1. 内容综述在材料科学中,微流控技术因其精确控制流体和物料的能力,迅速成为制备具有特殊形态结构材料的关键技术之一。
异形微纤维,以其独特的几何形状及表面特性,广泛应用于过滤、传感、医疗和电子等行业。
本文综述了微流控技术在制备异形微纤维方面的最新研究进展,涉及核心材料的选择、特异性纤维形态的生成机制,以及纤维形态控制对功能性增强的影响。
微流控技术基于芯片内的微通道,允许在不断变化的微流体环境中进行精确的操作。
其工作原理通常依托于在微米级别的混合、传感、分离和分析上操作的连续流体动力学现象。
在制备微纤维领域,微流控技术提供了一种精确的系统和方式,可以实现对流体的精确投射、界面控制、温度和压力调控,从而创新性地创造不同形态的纤维。
异形微纤维的制备涉及对材料科学中特定材料的理解,这些材料可以是天然高分子、合成聚合物、金属有机框架、碳纳米管等,材料本身的特性直接决定了纤维形态的可塑性和功能性。
生物医学领域中量子力学的运用探讨-力学论文-物理论文

生物医学领域中量子力学的运用探讨-力学论文-物理论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——生活中的力学论文第七篇:生物医学领域中量子力学的运用探讨摘要:量子力学是描述微观粒子运动规律的物理学分支。
随着量子理论的快速发展以及仪器和技术的进步,基于量子力学原理的各项技术在不同学科得到应用,如量子计算、量子通讯、量子计量、量子成像、量子点荧光技术以及计算机辅助药物设计等,这些技术的应用为科研工作提供了极大的便利。
文章主要综述了量子力学在生物医学领域的应用。
关键词:量子力学; 量子技术; 生物医学;Quantum mechanics in biomedical scienceFANG Huiling WANG HualiangShanghai Center for Clinical LaboratoryAbstract:Quantum mechanics is a branch of physics,which studies the laws of motion of particles at small scales and atoms at low energy levels. As a result of the rapid development of quantum theory and progress in instruments and techniques,various quantum techniques based on quantum theory are widely used in different disciplines,including quantum computing,quantum communication,quantum metrology,quantum imaging,quantum dot luminescence and computer-aided drug design,which makes scientific researches more convenient. Selected applications for quantummechanics are given in this review mainly focusing on the perspective of biomedical science.量子是表现某物质或物理量特性的最小单元。
生命科学中的微型化技术

生命科学中的微型化技术随着科学技术的不断进步,微型化技术在生命科学中的应用也越来越广泛。
微型化技术是指在微观尺度下进行物质的管理、制造和操作的技术。
它主要应用于微生物学、细胞生物学、组织工程学和生物化学等领域,可以提高实验效率、降低成本和减少实验误差。
下面就让我们深入了解一下生命科学中的微型化技术。
一、微流控技术微流控技术是指利用微加工技术制造微米级流道,在微流控芯片中控制微流体循环和混合的技术。
它具有高灵敏度、高吞吐量、小体积和低成本等特点,被广泛应用于细胞培养、单个细胞分析、DNA测序和分析、蛋白质筛选和药物筛选等领域。
微流控芯片不仅可以大幅度提高实验效率,还可以减少实验误差,同时也可以减少实验成本。
二、人工微环境技术人工微环境技术是指通过微型化技术,构建基于细胞的环境模型,以便更好地研究细胞行为和细胞信号传递。
它可以模拟人体细胞外基质环境、细胞信号传递、细胞-细胞相互作用和细胞-介质相互作用等,用于控制细胞行为、维持细胞生理状态和实现组织、器官的再生。
人工微环境技术不仅可以提高细胞诱导的效率,还可以减少组织损伤和免疫反应,对生物医学领域的发展也有重要的意义。
三、单分子检测技术单分子检测技术是指通过微小化技术和分子生物学技术探测分子的单个分子级别,用于检测分子的结构、功能、动力学和相互作用等特性。
它具有灵敏度高、分辨率高、无需大量样本和简单操作等优点。
单分子检测技术被广泛应用于蛋白质互作、酶动力学、基因表达调控和神经传递等领域,对于揭示生命科学中的分子机制具有重要的作用。
四、微机电系统(MEMS)微机电系统是指通过微机电技术制造微型机械系统,用于生物分析、细胞操作和组织工程等领域。
它可以制造微型针、微泵、微流控芯片、微阀门等微机械器件,实现液体、物质的输送、扫描、分析等功能。
微电子系统可以大幅度提高实验效率,减小实验批次和时间,同时也可以避免实验误差和减少实验成本,对于生命科学的研究也有重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.⁃Chim.Sin .2011,27(8),1990-1995AugustReceived:April 27,2011;Revised:June 1,2011;Published on Web:June 9,2011.∗Corresponding author.Email:zhaoxs@;Tel:+86-10-62751727.The project was supported by the National Natural Science Foundation of China (20733001,20973015)and National Key Basic Research Program of China (973)(2006CB910300,2010CB912302).国家自然科学基金(20733001,20973015)和国家重点基础研究发展规划项目(973)(2006CB910300,2010CB912302)资助ⒸEditorial office of Acta Physico ⁃Chimica Sinica用于单分子动力学实验的微流控混合器支泽勇1,3刘鹏程1,3黄岩谊2,3赵新生1,3,*(1北京大学化学与分子工程学院化学生物学系,北京分子科学国家实验室,分子动态与稳态结构国家重点实验室,北京100871;2北京大学工学院,北京100871;3北京大学生物动态光学成像中心,北京100871)摘要:设计制作了用于单分子动力学实验的微流控混合器,该混合器用聚二甲基硅氧烷(PDMS)芯片和石英载玻片密封而成,具有低的荧光背景,广泛的生物相容性,结合激光共聚焦显微镜能够在非平衡态下进行单分子荧光探测.我们设计的压力控制系统和进样流路方便而稳定,保证了微流路中流形的长时间稳定,从而实现了样品流速和流量的精准控制.这些技术特点保证了单分子探测得到准确和高信噪比的结果.利用蛋白质的塌缩过程远快于混合过程的特点,采用荧光标记的金黄色葡萄球菌核酸酶作为指示物,分辨出蛋白质变性态的特征峰,并利用变性态的荧光共振能量传递效率随时间的变化表征出混合器在适合于单分子探测条件下的混合时间为150ms.关键词:微流控混合;单分子探测;荧光共振能量传递;蛋白质折叠;金黄色葡萄球菌核酸酶中图分类号:O643A Microfluidic Mixer for Single-Molecule Kinetics ExperimentsZHI Ze-Yong 1,3LIU Peng-Cheng 1,3HUANG Yan-Yi 2,3ZHAO Xin-Sheng 1,3,*(1Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species,Department of Chemical Biology,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P .R.China ;2College of Engineering,Peking University,Beijing 100871,P .R.China ;3Biodynamic Optical Imaging Center,Peking University,Beijing 100871,P .R.China )Abstract:We designed and built a microfluidic mixer based on the principle of hydrodynamic focusing governed by Navier-Stokes equation for single-molecule kinetics experiments.The mixer is a cast of poly(dimethylsiloxane)(PDMS)sealed with transparent fused-silica coverglass,which results in low fluorescence background and broad biological compatibility and this enables single-molecule fluorescence detection under nonequilibrium conditions.The pressure regulated sample delivery system is convenient for loading a sample and allows for precise and stable flow velocity control.The combination of microfluidic mixer and single-molecule fluorescence resonance energy transfer (smFRET)allows us to measure the time course of the distribution of the smFRET efficiency in protein folding.We used the fact that denatured protein collapses much faster than the mixing process to characterize the mixing time using donor and acceptor dyes labeled staphylococcal nuclease (SNase)as an smFRET efficiency indicator.By monitoring the smFRET efficiency of denatured SNase during the course of mixing,we determined that the mixing time was 150ms under conditions suitable for single-molecule detection.Key Words:Microfluidic mixing;Single-molecule detection;Fluorescence resonance energy transfer;Protein folding;Staphylococcal nuclease1990ZHI Ze-Yong et al.:A Microfluidic Mixer for Single-Molecule Kinetics Experiments No.81IntroductionThe protein folding study involves structure,thermodynam-ics,and kinetics.The kinetics of protein folding concerns the folding pathway,the rate,and the energy landscape.1-3In order to characterize the protein folding,experiments needs to be per-formed both under equilibrium and nonequilibrium conditions.4,5 Single-molecule fluorescence resonance energy transfer (smFRET)can separate the subpopulations of the protein mole-cules beyond the capacity of common ensemble experi-ments.6-8Equilibrium smFRET experiments have addressed a number of important issues in protein folding by resolving the thermodynamic states and the sizes of the protein molecules within a heterogeneous mixture.9-12Microfluidic laminar-flow mixers have been applied in many fields for kinetics measurements of biomolecular confor-mational changes with ultrafast mixing times.13-18Microfabri-cated mixers often utilize hydrodynamic focusing to squeeze the sample stream into submicron width to achieve extremely fast mixing through molecular diffusion.19Compared with tradi-tional stopped flow method,the microfluidic mixer has advan-tages of submillisecond mixing time,greater uniformity,and low sample consumption.The mixing devices have the capaci-ty of single-molecule fluorescence detection with the accessi-ble window for high numerical aperture objectives.20-22Ensem-ble nonequilibrium experiments can only measure the kinetics of protein folding with the averaged and overall information, while the individual processes were indirectly resolved with ki-netic modeling.23Single-molecule fluorescence detection under nonequilibrium conditions can be used to study the protein folding kinetics with the full distribution of conformations to separate the unfolded and folded states.24The combination of smFRET and a microfluidic mixer will generate novel insights into protein folding mechanism and is a powerful method to study biomolecular interactions and reactions.Here,we constructed a microfluidic mixing system suitable for single-molecule fluorescence detection,which requires high signal-to-noise ratio,low protein adhesion,and stable flow rate for a long time.The mixing device was made of a cast of poly(dimethylsiloxane)(PDMS)sealed by a microscop-ic coverglass.The mixer channel pattern was designed to achieve comprehensive mixing at a minimal dead time and the flow was then slowed down to provide sufficient dwell time for single-molecule detection,and the device possessed wide biological compatibility.The mixer was easy to fabricate with common apparatus and could be improved for faster mixing with finer design and fabrication.The device was optimized to reduce the protein adhesion to the channel walls by using a long period of cure time and by adding wild-type protein at mi-cromolar concentration into the injected sample.Novel design was implemented on the pressure regulation and sample-inlet lines so as to achieve a stable hydrodynamic flow in the mixer for many hours,which was a key factor for the single-molecule fluorescence measurements.To our knowledge,for the first time the mixing process along the mixing channel using smFRET histograms and the accurate flow velocity profile us-ing fluorescence correlation spectroscopy(FCS)were charac-terized simultaneously.Then,the mixing time was determined by monitoring the collapse of denatured staphylococcal nucle-ase(SNase).25Although the mixing system was designed for single-molecule experiments,the mixer can also be used in en-semble measurements with a submillisecond time resolution by applying higher pressures.2Materials and methods2.1Construction of microfluidic mixing deviceThe channel drawing was created using computer-aided soft-ware.The patten was written by an electron beam on a chrome coated glass plate to generate the mask.The microfluidic mixer was made of a PDMS chip(RTV615,GE Silicones)sealed to a No.1coverglass(Fisher Scientific).The master was fabricat-ed by contact photolithography.A20μm layer of SU-82010 (MicroChem,U.S.)was spin-coated onto a cleaned silicon wa-fer,after a soft bake the photoresist was exposed to UV light with144mJ·cm-2through the mask and the wafer was then baked on a hot-plate for4.5min at95°C and developed.In order to prevent PDMS adhesion,the master was si-lanized by exposure to a vapor of chlorotrimethylsilane (TMCS)in a sealed box for15min.To make the PDMS chip, a~4mm thick layer of PDMS mixture,five parts by weight of PDMS and one part of crosslinking agent,was poured onto the mold and cured at80°C for10min.The PDMS chip was then peeled off from the master,trimmed to the individual chip size and cured at80°C for another8h.Finally,the PDMS chips were punched to generate inlet and outlet ports and bonded to a coverglass permanently using an air plasma.2.2Sample delivery systemA pressure-driven pump was used because it is applicable in the situation of low flow rate.26The pressure-driven sample de-livery creates stable flow rate about0.1nL·s-1in the centre in-let for many hours.The protein sample and buffer were deliv-ered into the inlets from two reservoirs which were made of 0.6mL centrifuge tubes and PDMS plugs with two punched holes for Gauge18needles.The two sample reservoirs were connected to compressed air,and the pressures were regulated by two accurate pressure regulators(8286,Porter Instruments, U.S.)and measured with two accurate digital pressure gauges (DPG4000,Omega,U.S.)respectively.Another high pressure regulator having a range of0-250kPa was built to drive the solutions into the mixer in a faster flow speed,which can also be used in rapid mixing ensemble experiments.In order to maintain the flow speed around1mm·s-1in the measurement channel for single-molecule detection,the side inlet pressure was regulated typically to6.00kPa and the cen-tre inlet pressure was7.80kPa.The resolution of the regulators was about0.01kPa with a careful tuning.The pressures would change a little for individual mixers due to small deviation in1991Acta Phys.⁃Chim.Sin.2011V ol.27the fabrication.The high pressure regulator was used to drive the solutions into the mixer at150kPa to focus the sample stream in a short time.If the solutions were pumped into the mixer by the precise but low pressure regulators,hours would be needed to obtain a stable focused sample stream.After the formation of the focused stream,the pressures of the reservoirs were switched to the precise and low pressure regulators for single-molecule experiments.2.3Single-molecule confocal microscopeSingle-molecule fluorescence measurements were per-formed on a home-built dual-channel confocal fluorescence mi-croscope27,28based on a TE2000microscope(Nikon).The la-beled protein sample was excited by a solid-state laser(MLL-III-532,CNI)at532nm with100μW for experiments on the coverglass and130μW in the mixer,focused through an oil im-mersion objective(100×,NA1.3,Nikon,Japan).The donor and acceptor fluorescences,seperated from the excitation light by a dichroic mirror(Z532,Chroma,U.S.),were collected by the same objective and spatially filtered using a30μm pinhole. The passed fluorescence was separated into donor and acceptor components with a second dichroic mirror(FF650-Di01,Sem-rock,U.S.)and two final filters(FF01-593/40and FF01-692/ 40,Semrock,U.S.)for the donor and acceptor channels,respec-tively.Each component was detected by a photon-counting Av-alanche Photodiode(SPCM-AQRH-14,PerkinElmer Optoelec-tronics,U.S.).Fluorescence intensities were recorded with a photon counters card(PMS-400A,Becker&Hickl,Germany). Autocorrelation functions were simultaneously recorded using a multiple-digital hardware correlator device(Flex02-01D, ,U.S.).The raw single-molecule fluorescence data were corrected for several factors11,29to obtain the actual FRET efficiency,in-cluding background,differences in quantum yields,different collection efficiencies of the donor and acceptor channels, cross-talk,and direct excitation of the acceptor.2.4Protein expression,purification and labeling Expression,purification,and labeling of the mutant of SNase,K28C-H124C,were carried out as described previous-ly.30Briefly,The mutant proteins were reduced with excess of Dithiothreitol(DTT,Sigma,U.S.)followed by chromatogra-phy in labeling buffer to remove the excess DTT.Site-specific labeling was achieved by reaction with thiol-reactive fluores-cence dyes Alexa Fluor555and Alexa Fluor647(Invitrogen, U.S.).Free dyes were removed through a PD-10Desalting Col-umn(GE Healthcare,U.S.)and the labeled protein solution was stored at-80°C with10%glycerol.Labeled SNase of50-100pmol∙L-1was diluted in1μmol∙L-1unlabeled SNase in Tris-HCl buffer(pH7.8,50mmol∙L-1 Tris-HCl with100mmol∙L-1NaCl)at appropriate GdmCl concentration.The dwell time bin was1ms10and a threshold was set at50counts in the sum of photon counts from the two channels.3Results and discussion3.1Controbility of the mixerThe microfluidic mixer shown in Fig.1was designed with a resistance model using Ohmʹs law.19The relationship of flow rate,pressure difference,and flow impedance in a rectangular pipe can be described with the following equation:31Q=(-d pd l)⋅hw312η⋅[1-192wπ5h⋅∑k=1,3,5⋯∞tanh(kπh2w)k5](1) where Q is the flow rate,d p/d l is the pressure gradient,w is the channel width,h is the channel height,andηis the solution vis-cosity.The two side channels of an actual microfluidic mixer were connected to the same entry,reducing a set of pressure regulator system.The channel dimensions and the flow imped-ances are shown in Table1.The impedance of the mixing neck is less than1%of the other channels which can be ignored in the calculation.When the change of inlets pressure is0.05kPa, the maximum pressure fluctuation of the system,the changeinFig.1(A)Scheme of the microfluidic mixer,(B)a white lightmicroscopy image of the microfluidic mixing region,(C)theimpedance model for the designed mixerThe height of the channels in figure B is20μm.In figure C:Z c and Z m are the impedances of the centre and measurement channels,respectively;Z s is the impedance equivalent to the side flow impedance of a mixer with two parallelside channels.Table1Channel dimensions and impedancesparallel lines.1992ZHI Ze-Yong et al .:A Microfluidic Mixer for Single-Molecule Kinetics ExperimentsNo.8flow ratio is about 2%,so that the mixer can maintain a stable flow rate for smFRET measurement.The robustness of the flow velocity was examined by fluo-rescence images over several hours.The pressure was set to maintain appropriate hydrodynamic focusing and a flow rate in the detection channel around 1mm ·s -1.A 0.1μmol ∙L -1AF532solution with 0.01%Tween 20(Pierce)to prevent dye adhesion was delivered into the centre inlet and water was in-jected into the side inlets.The focused dye solution stream was excited by mercury lamp and recorded by a CCD camera through an emission filter (Fig.2).The high stability of the flow rate guaranteed the fidelity of single-molecule measure-ments over a long time for a good signal-to-noise ratio.When a denatrued potein sample with 2mol ·L -1GdmCl was fed into the centre inlet,simulation reslults showed that the concentra-tion deviation of the denatrurant was less than 0.05mol ·L -1.As a consequence,the protein concentration and conformation were stable at the focus of the optics.3.2Flow velocity profileIn order to convert the focus position into the corresponding time,the flow velocity in the channels was measured by FCS.32,33Advantage of this approach is the large measurable velocity range,from 0.1mm ·s -1to 10m ·s -1,and the simultaneous mea-surement of the flow rate with the collection of smFRETevents.FCS measured the fluorescent molecule number fluctu-ations in a small focal volume 15about 1fL.In the mixing ex-periments,FCS curves (Fig.3A)were fit using a model of con-sidering diffusion,flow,and singlet-triplet transition of the flu-orescent molecule,27,33G (τ)=1N ⋅(1+ττdiff )-1⋅exp(-(ττflow )2⋅(1+ττdiff )-1)⋅(1-K +K ⋅exp(-ττT))(2)where N is the average number of molecules in the focus vol-ume,τdiff is the characteristic diffusion time,τ/τflow is the charac-teristic flow time,K is the fraction of the triplet state,and τT is the characteristic triplet state time.τflow is obtained from the fit-ting for each FCS curve,which is related to the flow speed byv =r 0flow(3)where r 0is the radius of the focus volume,which is determined using Rhodamine 6G 34to be (270±7)nm.We measured the velocities along the central axis of the channels.In an smFRET experiment each fluorescent burst needs at least dozens of effective photons 35and requires the flow rate to be about 1mm ·s -1so that each molecule can spend about 1ms at the focus.Fig.3B shows the velocitydistri-2Flow stability in the microfluidic mixer(A)fluorescence images of focused dye solution stream over hours;The intensity profiles of the cross line (the white line)for all images are extracted.(B)The peak intensities of the cross lines are plotted as time,which is 11270±280,indicating that the flow rate fluctuation was about2%.Fig.3(A)Autocorrelation curves at different positions in the device,(B)the velocity profile in the mixerIn figure A:the beginning point of the measurement channel is 0m m (Fig.1B).-165m m is located in the centre channel with the minimum flow rate,-50m m is in the mixing neck with the maximum flow rate to achieve rapid mixing,and 500m m is in the measurement channel with a flow rate of about1mm ·s -1,suitable for smFRET experiments.1993Acta Phys.⁃Chim.Sin .2011V ol.27bution along the central axis adjusted at such a condition.3.3Single-molecule detectionTo test the fluorescence collection efficiency and the back-ground level in the mixer channel,the single-molecule fluores-cence trace of a 10pmol ∙L -1dye solution of Alexa Fluor (AF)546in water was collected both on a coverglass and in the mixer channel in static experiments (Fig.4A).The dye solu-tion was excited by a 532nm laser at a power of 100μW,and the collected raw data were binned into 1ms dwell time.The background was fitted by a Poisson distribution,and the aver-age photon counting rates are 0.32m ·s -1on a coverglass and 0.81m ·s -1in the mixer channel.We also tested the data quality for a protein sample labeled with a dye pair in the mixer channel.A 100pmol ·L -1AF555and AF647(Invitrogen)dual labeled SNase 30mixed with 1μmol ·L -1wild-type SNase to prevent labeled protein adhesion was delivered into the microfluidic device.The sample was ex-cited with a 130μW laser beam to generate FRET events (Fig.4B).The background levels for the donor channel and ac-ceptor channel were 1.5and 1.2m ·s -1,respectively,which were higher than the pure dye solution due to impurities and higher concentration,but the signal levels were higher as well,resulting in even better signal-to-noise ratio of nearly 100for the protein sample.3.4Mixing time characterized using collapse ofdenatured SNaseWhen unfolded protein is transferred from high denaturant concentration to low concentration,the size of the protein mol-ecule will collapse which leads to higher intramolecular smFRET efficiency and the protein collapse time is about sev-eral hundred nanoseconds,36much faster than the mixing time.This property was used to measure the mixing time precisely.Fig.5A shows the smFRET histograms taken at different posi-tions in the channels,fitted by lognormal and Gaussian distri-butions to obtain the apparent FRET efficiency of the unfolded state.The rectangular box in Fig.5B indicates the onset and completion of the mixing.The initial position was set to E app =0.42,5%larger than the E app =0.40before mixing,and the end point was set to the first accessible position for single-mole-cule detection.So doing,we found that the mixing time was 150ms.The simplest way to enhance the mixing process is to minimize the width of mixing regions with better manufacture.Because the adequate dwell time for single-molecule detection is about 1ms for fluorescent molecules flowing in the focus volume,the ultrafast mixing can be realized by a design of flow velocity deceleration.22The mixer combiningwithFig.4Single-molecule fluorescence traces(A)single-molecule signal of a dye solution of 10pmol ·L -1AF546on a coverglass and in the mixer,(B)raw smFRET data of 100pmol ·L -1AF555andAF647dual labeled SNase in the mixer channel,excited by a 532nmlaserFig.5Mixing process elucidated by smFRET experiments(A)smFRET histograms along the central axis of the channels,(B)the fitted FRET efficiencies of the denatured SNase;The rectangular box indicates the mixing region with a mixing time t mix of 150ms.1994ZHI Ze-Yong et al.:A Microfluidic Mixer for Single-Molecule Kinetics Experiments No.8smFRET for kinetics study has been applied to the measure-ment of the folding rate of denatured SNase.We will report our results in a future publication.4ConclusionsA microfluidic mixing system was constructed especially for single-molecule kinetic measurement,which has the advantag-es of high signal-to-noise ratio,stable flow rate over hours,ac-curate time determination by employing FCS,and easy fabrica-tion.This technique has the capacity to study a wide variety of biological reactions requiring the combination of fast mixing, single-molecule detection,and small sample consumption.The construction of the mixer makes it possible for us to study the kinetics of various biochemical processes at a single-molecule level.References(1)Wolynes,P.G.;Onuchic,J.N.;Thirumalai,D.Science1995,267,1619.(2)Oliveberg,M.;Wolynes,P.G.Q.Rev.Biophys.2005,38,245.(3)Ferreon,A.C.M.;Deniz,A.A.BBA-Proteins Proteomics2011,in press.(4)Haas,E.ChemPhysChem2005,6,858.(5)Bilsel,O.;Matthews,C.R.Curr.Opin.Struct.Biol.2006,16,86.(6)Ha,T.;Enderle,T.;Ogletree,D.F.;Chemla,D.S.;Selvin,P.R.;Weiss,S.Proc.Natl.Acad.Sci.U.S.A.1996,93,6264.(7)Weiss,S.Science1999,283,1676.(8)Deniz,A.A.;Mukhopadhyay,S.;Lemke,E.A.J.R.Soc.Interface2008,5,15.(9)Deniz,A.A.;Laurence,T.A.;Beligere,G.S.;Dahan,M.;Martin,A.B.;Chemla,D.S.;Dawson,P.E.;Schultz,P.G.;Weiss,S.Proc.Natl.Acad.Sci.U.S.A.2000,97,5179.(10)Schuler,B.;Lipman,E.A.;Eaton,W.A.Nature2002,419,743.(11)Hoffmann,A.;Kane,A.;Nettels,D.;Hertzog,D.E.;Baumgartel,P.;Lengefeld,J.;Reichardt,G.;Horsley,D.A.;Seckler,R.;Bakajin,O.;Schuler,B.Proc.Natl.Acad.Sci.U.S.A.2007,104,105.(12)Muller-Spath,S.;Soranno,A.;Hirschfeld,V.;Hofmann,H.;Ruegger,S.;Reymond,L.;Nettels,D.;Schuler,B.Proc.Natl.Acad.Sci.U.S.A.2010,107,14609.(13)Hertzog,D.E.;Michalet,X.;Jager,M.;Kong,X.X.;Santiago,J.G.;Weiss,S.;Bakajin,O.Anal.Chem.2004,76,7169. (14)Hertzog,D.E.;Ivorra,B.;Mohammadi,B.;Bakajin,O.;Santiago,J.G.Anal.Chem.2006,78,4299.(15)Park,H.Y.;Qiu,X.Y.;Rhoades,E.;Korlach,J.;Kwok,L.W.;Zipfel,W.R.;Webb,W.W.;Pollack,L.Anal.Chem.2006,78,4465.(16)Lapidus,L.J.;Yao,S.H.;McGarrity,K.S.;Hertzog,D.E.;Tubman,E.;Bakajin,O.Biophys.J.2007,93,218.(17)Park,H.Y.;Kim,S.A.;Korlach,J.;Rhoades,E.;Kwok,L.W.;Zipfell,W.R.;Waxham,M.N.;Webb,W.W.;Pollack,L.Proc.Natl.Acad.Sci.U.S.A.2008,105,542.(18)Guo,S.;Xue,M.Q.;Qian,M.X.;Cao,T.B.;Zhao,X.S.ActaPhys.-Chim.Sin.2007,23,1827.[郭素,薛面起,钱民协,曹廷炳,赵新生.物理化学学报,2007,23,1827.](19)Knight,J.B.;Vishwanath,A.;Brody,J.P.;Austin,R.H.Phys.Rev.Lett.1998,80,3863.(20)Hamadani,K.M.;Weiss,S.Biophys.J.2008,95,352.(21)Pfeil,S.H.;Wickersham,C.E.;Hoffmann,A.;Lipman,E.A.Rev.Sci.Instrum.2009,80,055105.(22)Gambin,Y.;VanDelinder,V.;Ferreon,A.C.M.;Lemke,E.A.;Groisman,A.;Deniz,A.A.Nat.Methods2011,8,239.(23)Maki,K.;Cheng,H.;Dolgikh,D.A.;Roder,H.J.Mol.Biol.2007,368,244.(24)Lipman,E.A.;Schuler,B.;Bakajin,O.;Eaton,W.A.Science2003,301,1233.(25)Ye,K.Q.;Wang,J.F.J.Mol.Biol.2001,307,309.(26)Kim,S.J.;Blainey,P.C.;Schroeder,C.M.;Xie,X.S.Nat.Methods2007,4,397.(27)Krichevsky,O.;Bonnet,G.Rep.Prog.Phys.2002,65,251.(28)Chen,X.D.;Zhou,Y.;Qu,P.;Zhao,X.S.J.Am.Chem.Soc.2008,130,16947.(29)Sherman,E.;Haran,G.Proc.Natl.Acad.Sci.U.S.A.2006,103,11539.(30)Liu,P.C.;Meng,X.L.;Qu,P.;Zhao,X.S.;Wang,C.C.J.Phys.Chem.B2009,113,12030.(31)White,F.Viscous Fluid Flow,2nd ed.;McGraw Hill:Boston,Massachusetts,1991.(32)Gosch,M.;Blom,H.;Holm,J.;Heino,T.;Rigler,R.Anal.Chem.2000,72,3260.(33)Kuricheti,K.K.;Buschmann,V.;Weston,K.D.Appl.Spectrosc.2004,58,1180.(34)Nie,S.M.;Chiu,D.T.;Zare,R.N.Anal.Chem.1995,67,2849.(35)Gell,C.;Brockwell,D.;Smith,A.Handbook of Single MoleculeFluorescence Spectroscopy;Oxford University:Oxford,2006. (36)Nettels,D.;Gopich,I.V.;Hoffmann,A.;Schuler,B.Proc.Natl.Acad.Sci.U.S.A.2007,104,2655.1995。