数学教案-子集、全集、补集

合集下载

1.子集、全集、补集-苏教版必修1教案

1.子集、全集、补集-苏教版必修1教案

1.子集、全集、补集-苏教版必修1教案教学目标1.理解子集和全集的概念2.能够画出Venn图并表示出子集、全集和补集3.能够正确地使用数学符号表示子集和补集4.掌握子集、全集和补集的性质教学重点1.子集和全集的概念2.Venn图的绘制和解析3.使用符号表示子集和补集教学难点1.补集的概念和使用方法2.子集和补集之间的关系教学方法1.课堂演示2.课堂讲解3.练习题教学内容子集和全集的概念首先,教师要向学生们介绍子集的概念。

一个集合的子集是指一个或多个元素被选取出来组成的集合。

例如,集合A={1,2,3,4,5},如果我们从中选择出{1,2}或{1,4,5},那么这些都是A的子集。

然后,我们介绍全集的概念。

全集是指特定范畴中所有可能元素的集合,通常表示为U。

例如,在一个班级中,U表示这个班级能够存在的所有学生,而A表示班级中的男生,那么A是U的一个子集。

Venn图的绘制和解析在介绍完子集和全集的概念后,教师可以向学生展示一些Venn图的例子。

这些图表现了两个或三个不同集合之间的关系。

例如,在一个Venn图中,圆内部表示一个集合,而圆外部表示不属于该集合的元素。

教师可以向学生展示如下的Venn图来解析子集和全集:在这个图中,U是所有可能元素的全集,而A是其中的一个子集,B也是另一个子集。

图中的部分表示同时属于A和B的元素,通常称为交集,记作A∩B。

接下来,我们可以继续向学生展示关于Venn图的例子,并要求他们找到交集、并集等。

使用符号表示子集和补集在学生能够正确解析Venn图之后,教师可以向他们介绍如何使用符号表示子集和补集。

通常,我们使用≤或者⊆符号表示子集。

其中A≤B表示A是B的子集,而A⊆B则表示A是B的一个真子集,即A可以等于B或者全包含于B。

然后,我们向学生介绍如何使用补集。

补集是指一个集合中不属于另一个给定集合的所有元素组成的集合。

通常,我们使用A的补集表示不属于集合A的所有元素的集合,记作A’。

子集全集补集教案

子集全集补集教案

子集和补集教案教学目标:1. 理解子集的概念,能够判断一个集合是否为另一个集合的子集。

2. 掌握补集的定义,能够求出一个集合的补集。

3. 能够运用子集和补集的概念解决实际问题。

教学内容:一、子集的概念1. 定义:如果一个集合的所有元素都是另一个集合的元素,这个集合就是另一个集合的子集。

2. 表示方法:用符号A ⊆B 表示集合A 是集合B 的子集。

二、子集的性质1. 空集是任何集合的子集。

2. 任何集合都是其本身的子集。

3. 如果A 是B 的子集,A 的任何真子集也是B 的子集。

4. 如果A 是B 的子集,B 的任何真子集都不是A 的子集。

三、补集的概念1. 定义:如果一个元素不属于某个集合,这个元素就是该集合的补集。

2. 表示方法:用符号A' 表示集合A 的补集。

四、补集的性质1. 任何集合的补集都是其本身的补集。

2. 空集的补集是任何非空集合。

3. 如果A 是B 的子集,B 的补集的补集就是A。

五、子集和补集的应用1. 判断一个集合是否为另一个集合的子集。

2. 求出一个集合的补集。

3. 运用子集和补集的概念解决实际问题,如统计问题、集合的包含关系等。

教学方法:1. 采用讲解法,讲解子集和补集的概念及性质。

2. 采用例题法,通过举例讲解如何判断子集和求补集。

3. 采用练习法,让学生通过练习题目的方式巩固所学知识。

教学评价:1. 课堂讲解:观察学生对子集和补集概念的理解程度。

2. 练习题目:检查学生运用子集和补集解决问题的能力。

3. 课后作业:布置有关子集和补集的习题,检验学生掌握程度。

六、子集和补集的运算1. 定义:如果A 和B 是两个集合,它们的交集的补集称为A 和B 的相对补集,记作A ΔB。

2. 性质:A ΔB = (A ∩B)',即A 和B 的相对补集是它们的交集的补集。

七、子集和补集的应用举例1. 统计问题:假设有一个班级有30 名学生,其中有18 名女生,求男生的人数。

全集与补集的教案

全集与补集的教案

全集与补集的教案教案标题:全集与补集的教案教学目标:1. 了解并能够正确定义全集和补集的概念。

2. 能够运用集合运算中的全集和补集进行问题解决。

3. 培养学生的逻辑思维和分析问题的能力。

教学内容:1. 全集的定义和性质。

2. 补集的定义和性质。

3. 全集和补集的运算规则。

教学步骤:引入活动:1. 创设情境,引发学生对全集和补集的思考。

例如,假设有一个班级里的学生,问学生们如何定义这个班级的全集和补集。

探究活动:2. 介绍全集的概念和定义。

通过示意图或实际例子,让学生理解全集是指讨论的范围内的所有元素的集合。

3. 引导学生思考补集的概念和定义。

解释补集是指在全集中不属于某个子集的元素的集合。

4. 给出具体的例子,让学生通过思考找出全集和补集。

例如,全集可以是一个班级的所有学生,补集可以是男生或女生的集合。

拓展活动:5. 引导学生思考全集和补集的运算规则。

例如,全集的补集就是空集,补集的补集是原来的集合。

6. 给出一些练习题,让学生运用全集和补集的运算规则解决问题。

例如,给出一个集合A和全集U,让学生求A的补集。

总结活动:7. 总结全集和补集的概念、定义和运算规则。

强调全集和补集在数学中的重要性和应用。

评估活动:8. 给学生一些评估题目,测试他们对全集和补集的理解和应用能力。

例如,给出一些集合运算的问题,让学生判断正确的答案。

拓展活动:9. 鼓励学生运用全集和补集的概念解决实际问题。

例如,让学生分析一个班级的学生喜欢的体育项目,通过求补集找出不喜欢的体育项目。

教学资源:1. 教材或课本中关于全集和补集的相关内容。

2. 示意图或实际例子的图片或幻灯片。

3. 练习题和评估题目。

教学延伸:1. 鼓励学生自主学习更多集合运算的内容,如交集、并集等。

2. 引导学生运用集合运算解决更复杂的问题,如概率问题等。

注:以上教案仅供参考,具体教学内容和步骤可根据教学实际情况进行调整和修改。

集合-子集、全集、补集(精)

集合-子集、全集、补集(精)

子集、全集、补集教案教学目标1.在进一步理解子集,真子集概念的基础上,理解补集的概念.2.结合补集的概念,了解全集的意义。

3.熟记、掌握补集的求法,并能用文图表示.教学重点补集的概念教学难点补集的求法教学过程一.新课引入1.复习子集的概念.说出A B和A=B的意义.2.用适当的符号填空:(1)Ф_{0}(2)0_N(3)Ф__{Ф}(4){1,2}__{(x,y|y=x+1}3.说出集合{1,2,3}的子集和真子集.4.看一个例子,设集合S是全班同学的集合,集合A是班上所有参加校运动会的同学的集合,而集合B是班上所有没有参加校运动会的同学的集合,那么这三个集合之间有什么关系呢?集合B就是集合S中除去集合A之后留下来的集合.SC sAA二.新课1. 补集(余集)一般地,设S是一个集合,A是S的一个子集(即A S),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作CsA,即CsA={x|x∈S,但x A}.可在上图中用文图表示.实例S={1,2,3,4,5,6},A={1,3,5}, C sA={2,4,6}.2.全集如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作是一个全集,全集通常用U表示.在研究数集时,一般定义全集为R,在研究图形集合时,以所有图形构成的集合为全集.如果我们把实数集R看作全集U,那么,有理数Q的补集CUQ是全体无理数的集合.到底以什么为全集,是可以根据情况任意确定的,但要含有我们所要研究的所有元素.3.性质(1 CU( CUA =A,(2 CUU =Φ,(3 CUΦ=U.4.补充例题例1.设U={梯形},A={等腰梯形},求CUA.解:CUA={不等腰梯形}.例2.已知U=R,A={x|x2+3x+2<0}, 求CUA.解:CUA={x|x≤-2,或x≥-1}.例3.集合U={(x,y)|x∈{1,2},y∈{1,2}} , A={(x,y)|x∈N*,y∈N*,x+y=3},求CUA.解:C UA={(1,1),(2,2)}.例4. (选择题)设全集U(UΦ),已知集合M,N,P,且M=C UN,N=C UP,则M与P的关系是()(A)M=C UP,(B)M=P,(C)M P,(D)M P.解:选B.例5.设全集U={2,3,},A={b,2},={b,2},求实数a和b的值.(a=2、-4,b=3例6.某班举行数理化竞赛,每人至少参加一科,已知参加数学竞赛的有27人,参加物理竞赛的有25人,参加化学竞赛的有27人,其中参加数学、物理两科的有10人,参加物理、化学两科的有7人,参加数学、化学两科的有11人,而参加数、理、化三科的有4人,画出集合关系图,并求出全班人数.(55人三.课内练习课本P10 练习(1四.小结1.正确理解全集、补集的定义,C UA={x|x∈U,但x A}.2.注意:C UA中,A U,否则C UA就没有意义;没有U谈C A便失去意义,但在U明确的情况下,C UA可以写成C A..3.利用文图掌握补集的性质.五.作业课本P10习题1.2 (4,5。

高中数学第一章集合1.2子集全集补集互动课堂学案

高中数学第一章集合1.2子集全集补集互动课堂学案

1.2 子集、全集、补集互动课堂疏导引导1.对于两个集合A、B,如果集合A的任意一个元素都是集合B的元素,则称集合A是集合B的子集.记为A ⊆B或B ⊇A.疑难疏引对于两个集合A、B,如果A ⊆B且A≠B,则称集合A是集合B的真子集.记为A⊆B或B ⊇A;如果集合A的任意一个元素都是集合B的元素,同时集合B的任意一个元素都是集合A的元素,则称集合A和集合B相等,记作A=B.2.(1)A=B ⇔A⊆ B且B ⊆A.(2)A⊆B,B ⊆C ⇔A ⊆C, A B,B ⊆C ⇒A C, A ⊆B,B C ⇒A C.(3)若集合A有n个元素,则A的子集个数为2n,真子集个数为2n-1,非空真子集的个数为2n-2.●案例1【探究】设集合A={0,1},B={x|x⊆A},则集合A、B之间的关系如何?要确定A、B的关系,就必须弄清集合B的元素是什么,集合B的元素x⊆A,所以集合B={∅,{0},{1},{0,1}}.虽然“∈”表示元素与集合的关系,但是集合A作为B的一个元素出现,故A 与B之间用的是符号“∈”.【溯源】要认真分析所研究的对象是元素与集合之间的关系还是集合之间的关系.如果是元素和集合,那么只能用“∈”和“∉”,如果是两集合之间的关系,那么应该在“⊆”、“⊇”和“=”中选择合适的符号表示.●案例2写出集合{a,b,c}的所有子集.【探究】本题考查子集的概念,注意不要遗漏,可按元素个数的多少这一顺序书写,养成好的习惯.{a,b,c},{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}.【溯源】空集是任何集合的子集,是任何非空集合的真子集;任何集合都是本身的子集,但不是本身的真子集.●案例3写出满足{1,3}⊆M ⊆{1,3,5,7}的所有集合M.【探究】根据题目条件可以知道集合M中至少含有元素1和3,最多只能有4个元素1、3、5、,7,所以相当在求集合{5,7}的所有子集,然后在这些子集中都加上元素1和3即可.所以所求集合M为{1,3}、{1,3,5},{1,3,7},{1,3,5,7}.【溯源】 1.若条件改为{1,3}M ⊆{1,3,5,7},则符合条件的M应将上述四个集合中的{1,3}去掉.2.若仅需求M的个数则只需用公式24-2=4即可.3.解题时应注意空集的独特性.可采用分类讨论、数形结合、等价转化思想解决集合与二次方程的综合应用题.●案例4已知集合A={1,2},B={1,2,3,4,5},且A M ⊆B,写出满足上述条件的集合M.【探究】集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.疑难疏引利用分类讨论的思想,考虑到集合B的所有可能的情况.这是处理集合与其子集之间关系的常用方法.另外,此题也可以利用韦达定理结合根的判别式求解.此题容易发生的错误是:没有注意题中的已知条件,又多加上B=∅的情形,从而造成画蛇添足!●案例5已知集合A={x|x2-2x-3=0},集合B={x|ax-1=0}.若B是A的真子集,则a【探究】 本题可先从化简集合A 入手.因为 B A ,所以可写出B 的所有结果,再分别代入求值.∵A ={-1,3}, B A,∴B =∅,{1},{3}.若B =∅,则a =0;若B ={-1},则a =-1;若B ={3},则a =31. 综上,a 的值为-1,0,31. ●案例6已知A ={-3,4},B ={x |x 2-2px +q =0},B ≠∅,且B ⊆A ,求实数p 、,q 的值.【探究】 本题可以先求出集合B 的三种情况,再由方程的根来求出字母的值.由B ⊆A 知,B ={-3}或{4}或{-3,4}.当B ={-3}时,方程x 2-2px +q =0有两个相等的根-3∴⎩⎨⎧=-=∆=++.044,0692q p q p 解得⎩⎨⎧=-=;9,3q p ; 当B ={4}时,方程x 2-2px +q =0有两个相等的根4∴⎩⎨⎧=-=∆=+-.044,08162q p q p 解得⎩⎨⎧==;16,4q p p =4,q =16; 当B ={-3,4}时,方程x 2-2px +q =0的根是-3,4,∴⎩⎨⎧=+-=++.0816,069q p qp 解得⎪⎩⎪⎨⎧-==.12,21qp【溯源】 本题应从集合B 的三种情况考虑,而不应该盲目地把-3,4带入方程. 活学巧用 1.(1){1,2,3}______{3,2,1}(2)∅________{0};(3){3}_________{x |2<x <4};(4){x |x =2n +1,n ∈Z }_________{x |x =4n +1,n ∈Z}.【思路解析】 本题考查几个符号的正确应用情况.【答案】=2.设集合M ={x |x ≤0}( )A.0 ⊆MB .{0}∈MC .{0}⊆MD .∅∈M【思路解析】 本题考查几个符号的正确应用.【答案】 C3.集合A ={x |x =2n +1,n ∈Z },B ={y |y =4k ±1,k ∈Z },则A 与B 的关系为( )A.A BB.A BC.A =BD.A ≠B【思路解析】 易知集合A 就是奇数集,集合B 通过给k 赋值,也可以取到所有的奇数.【答案】 C4.已知A ={x |x <5},B ={x |x <a },若A ⊆B ,求实数a 的取值范围.【思路解析】 A ⊆B 说明A 的范围比B 的范围小.【解】 a ≥5.5.写出集合{1,2,3}的所有子集并求所有子集中元素之和.【思路解析】 按子集元素个数的多少分别写出它的子集,才能避免不重不漏,同时还应注.(1)由本题知,由3个元素组成的集合子集有8个.那么由2个元素组成的集合子集有几个?由4个元素呢?由5个元素呢?推而广之n 个元素组成的集合子集有多少个?(2n(2)A 中每个元素出现在子集中4次,是在写出所有子集后,再观察得出的结果,能否不写出A 的子集也得出同样结论?完全可行.注意到A 中的元素1,出现在A 的子集({1},{1,2},{1,3},{1,2,3}),如果从这些集合中去掉元素12},{3},{2,3},即为集合{2,3}的全部子集.一般而言,A 中n 个元素,而每一元素出现于集合中的次数为2n -1.故所有子集元素之和S =(a 1+a 2+…+a n )2n -1.【解】∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.注意到A 中每个元素均出现了4次.故所有子集元素的和为(1+2+3)×4=24.6.己知{1,2}⊆A ⊆{1,2,3,4},求满足条件的集合A .【思路解析】 首先弄清应有怎样的元素组成集合A .【解】 ∵{1,2}⊆A ,∴A 中要有元素1和2.然后将A(1)A 中仅有元素1和2时,A ={1,2}.(2)A 在1、2的基础上增加1个,于是有A ={1,2,3}或A ={1,2,4}.(3)A 在1、2的基础上增加2个,于是有A ={1,2,3,4}.这样符合条件的集合A 共有4{1,2},{1,2,3},{1,2,4},{1,2,3,4}.7.设集合A ={2,3,a 2+2a -3},B ={2,5,b },并且A =B ,求实数a 、b 的值.【思路解析】 本题考查集合相等的含义,易知{2,5,b }={2,3,a 2+2a -3},解方程组即可.【解】 由已知,{2,5,b }={2,3,a 2+2a -3},∴⎩⎨⎧=-+=.532,32a a b b =3,a 2+2a -3=5. 解得⎩⎨⎧-==4,3a b 或⎩⎨⎧==.2,3a b【思路解析】构成集合的元素可以是世界万物,当然可以是集合,集合B中的元素就是集合.【解】B={∅},{0},{1},{0,1},C={1},所以A∈B,C∈B,C⊆A.。

高中高一数学教案子集、全集、补集

高中高一数学教案子集、全集、补集

高中高一数学教案子集、全集、补集在数学中,一个全集是一组所有可能出现的元素的集合。

而子集则是这个全集的一个部分,它只包含来自原集合的一部分元素。

补集是指全集中不属于该集合的元素的集合。

在教学中,教师往往需要设计一些教案,以便对学生进行更有效的教学。

在高中一年级的数学中,教师们需要用到许多基本概念,其中包括子集、全集和补集。

什么是子集?在数学中,子集是指集合的一个部分,指的是此集合中的一些元素。

如果一个集合A的每一个元素都是B的元素,那么A是B的子集。

例如,当A为{1, 3}时,{1, 2, 3}是A的父集,{1, 3}是A的子集。

在高中数学中,教师可以利用现实中的例子来解释子集的概念。

例如,在一个班级里,学生的集合可以表示为全集,而一个小组则可以是班级的子集。

在教学中,教师可以使用练习题供学生进行练习。

例如,给出一个集合 S,要求学生列出它的所有子集。

这样可以帮助学生更好地理解子集的概念。

什么是全集?在数学中,全集是指一个集合包含了所有元素的集合。

通常,全集被指定为一个U。

例如,对于一个集合A,它的全集就是包含了所有A元素的集合。

在高中数学中,教师可以使用全集来表达一些重要的概念。

例如,在逻辑论证中,全集用于表示一个真值集合或一个所有命题的集合。

当教师在教学中想要将学生的注意力集中在全集的重要性上时,可以通过给出生活中的例子来解释全集。

例如,在一个学校里,学生的总人数可以表示为全集。

这样,学生便可以更加清晰地认识到全集的重要性。

什么是补集?在数学中,补集是指全集中不属于该集合的元素的集合。

通常,补集可以用一个小于号作为符号表示。

例如,对于一个集合A,它的补集表示为A’,包含了所有不属于A的元素。

在高中数学中,教师可以用类似于全集的例子来解释补集。

例如,在一个班级里,不属于小组的所有学生可以视为小组的补集。

在教学中,教师可以将补集的概念与其他数学概念,如交集和并集联系起来。

例如,当教师要求学生计算一个集合与其补集的交集时,学生必须确定集合中的元素与补集中的元素是否存在重叠的部分。

子集全集补集课题引入(精)

子集全集补集课题引入(精)

子集全集补集课题引入
方案1.为了便于管理,常常把一个数学班又分成若干个小组.如果把全班作为集合A,班上的某个小组作为集合B,那么集合A与B之间是一种什么关系呢?
方案2.集合A={绝对值小于5的整数},B={x|x2+3x=0},
(1) 分别用列举法表示出集合A、B.
(2) 观察集合A、B之间存在一种什么关系?
说明:方案1采用学生所熟悉的生活中的例子,引出集合间的一种特殊关系——包含关系,从而进一步定义子集.
方案2的数学味更浓些,它既复习了前面所学过的集合的有关知识,又引出了子集的概念.
值得注意的是,这两种引入方案还不能把子集的概念确切地定义下来,还必须补充两个集合相等时,它们互为子集的例子,否则学生容易产生子集是由某集合中部分元素组成的错误印象.。

苏教版高中同步学案数学必修第一册精品课件 第1章 集合 子集、全集、补集-第1课时 子集

苏教版高中同步学案数学必修第一册精品课件 第1章 集合 子集、全集、补集-第1课时 子集
7
[解析]因为,所以可以为,,,,,,,共计7个,故答案为7.
规律方法1.假设集合中含有个元素,则:(1)的子集有个;(2)的非空子集有个;(3)的真子集有个;(4)的非空真子集有个.2.求给定集合的子集的两个注意点:(1)按子集中元素个数的多少,以一定的顺序来写;(2)在写子集时要注意不要忘记空集和集合本身.
【题型一】集合关系的判断
例1(人A教材题)判断下列各题中集合是否为集合的子集,并说明理由.
(1),是8的因数};
解因为3不是8的因数,所以集合不是集合的子集.
(2)是长方形,是两条对角线相等的平行四边形}.
解因为若是长方形,则一定是两条对角线相等的平行四边形,所以集合是集合的子集.
规律方法判断集合间的关系的方法1.观察法:一一列举观察.2.元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.3.数形结合法:利用数轴或图.
如果,并且,那么集合称为集合的真子集
记法


读法
集合包含于集合或集合包含集合
真包含于或真包含
图示
_
_
知识点
子集
真子集
性质
(1)任何一个集合是它本身的子集,即;(2)对于集合,,,若且,则;(3)若且,则;(4)规定
(1)对于集合,,,若且,则;(2)对于集合,,若且,则;(3)若,则续表02题型分析·能力素养提升
跟踪训练2已知集合,,,试写出的所有子集.
解因为,,,所以,,.所以的子集有,,,,,,,,,,,,.
【题型三】由集合间的关系求参数
例3(多选题)已知集合,4,,,,若,则满足条件的实数可以是()
ABD
A.B.0C.1D.2
[解析]由得,满足互异性;由得或1,而时,集合中元素不满足互异性,所以舍去.综上,满足的条件的值有,0,2.故选.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学教案-子集、全集、补集
教学目标:
(1)理解子集、真子集、补集、两个集合相等概念;
(2)了解全集、空集的意义,
(3)掌握有关子集、全集、补集的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;
(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;
(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;
(6)培养学生用集合的观点分析问题、解决问题的能力.
教学重点:子集、补集的概念
教学难点:弄清元素与子集、属于与包含之间的区别
教学用具:幻灯机
教学过程()设计
(一)导入新课
上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.
【提出问题】(投影打出)
已知,问:
1.哪些集合表示方法是列举法.
2.哪些集合表示方法是描述法.
3.将集M、集从集P用图示法表示.
4.分别说出各集合中的元素.
5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.
6.集M中元素与集N有何关系.集M中元素与集P有何关系.【找学生回答】
1.集合M和集合N;(口答)
2.集合P;(口答)
3.(笔练结合板演)
4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)
5.,,,,,,,(笔练结合板演)
6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)
【引入】在上面见到的.集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.
(二)新授知识
1.子集
(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

记作:读作:A包含于B或B包含A
当集合A不包含于集合B,或集合B不包含集合A时,则记作:AB或BA.性质:①(任何一个集合是它本身的子集)
②(空集是任何集合的子集)
【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?
【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的.
(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。

例:,可见,集合,是指A、B的所有元素完全相同.
(3)真子集:对于两个集合A与B,如果,并且,我们就说集合A是集合B 的真子集,记作:(或),读作A真包含于B或B真包含A。

【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”
集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.
【提问】
(1)写出数集N,Z,Q,R的包含关系,并用文氏图表示。

(2)判断下列写法是否正确
①A②A③④AA
性质:
(1)空集是任何非空集合的真子集。

若A,且A≠,则A;
(2)如果,,则.
例1写出集合的所有子集,并指出其中哪些是它的真子集.
解:集合的所有的子集是其中是的真子集.
【注意】(1)子集与真子集符号的方向。

(2)易混符号
①“”与“”:元素与集合之间是属于关系;集合与集合之间是包含关系。

如R,{1}{1,2,3}
②{0}与:{0}是含有一个元素0的集合,是不含任何元素的集合。

如:{0}。

不能写成={0},∈{0}
例2见教材P8(解略)
例3判断下列说法是否正确,如果不正确,请加以改正.
(4)A,B,C均表示所有奇数组成的集合,∴A=B=C.
【练习】教材P9
解:(1);(2);(3);(4);(5)=;(6);(7);(8).
提问:见教材P9例子
(二)全集与补集
1.补集:一般地,设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作,即.
A在S中的补集可用右图中阴影部分表示.
性质:S(SA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},则SA={2,4,6};
(2)若A={0},则NA=N*;
(3)RQ是无理数集。

2.全集:
如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示.
(三)小结:本节课学习了以下内容:
1.五个概念(子集、集合相等、真子集、补集、全集,其中子集、补集为重点)
2.五条性质
(1)空集是任何集合的子集。

ΦA
(2)空集是任何非空集合的真子集。

ΦA(A≠Φ)
(3)任何一个集合是它本身的子集。

(4)如果,,则.
(5)S(SA)=A
3.两组易混符号:(1)“”与“”:(2){0}与
(四)课后作业:见教材P10习题1.2
(五)板书设计:
课题
一、知识点
(一)
(二)
例题:。

相关文档
最新文档