高分子科学的近期发展趋势与若干前沿
高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势1. 引言高分子材料是一类由大量重复单元组成的化合物,具有独特的物理和化学性质,广泛应用于各个领域。
本文将探讨高分子材料的发展历程以及未来的发展趋势。
2. 发展历程2.1 初始阶段高分子材料的发展可以追溯到20世纪初。
当时,人们开始研究合成具有高分子结构的化合物,并发现了一些基础的高分子材料,如橡胶和塑料。
这些材料具有良好的柔韧性和耐用性,为后续的研究奠定了基础。
2.2 高分子合成技术的突破随着科学技术的进步,人们开始发展各种高分子合成技术,如聚合反应和共聚反应。
这些技术使得高分子材料的合成更加简便和高效,为高分子材料的广泛应用打下了基础。
2.3 新型高分子材料的涌现在过去几十年里,许多新型高分子材料相继涌现。
例如,聚合物复合材料具有优异的力学性能和耐腐蚀性能,被广泛应用于航空航天和汽车工业。
另外,生物可降解高分子材料的研究也取得了重要进展,为环境友好型材料的发展提供了新的方向。
3. 当前发展趋势3.1 功能性高分子材料的研究随着科技的发展,人们对高分子材料的功能性要求越来越高。
例如,具有自修复功能的高分子材料可以在受损后自动修复,延长材料的使用寿命。
另外,具有传感功能的高分子材料可以实时监测环境变化,并做出相应的反应。
功能性高分子材料的研究将会成为未来的重要发展方向。
3.2 可持续发展的高分子材料在当前环保意识日益增强的背景下,可持续发展的高分子材料备受关注。
例如,生物可降解高分子材料可以在使用寿命结束后被自然分解,减少对环境的影响。
另外,可回收利用的高分子材料也是未来的发展方向之一,通过回收和再利用,减少对资源的消耗。
3.3 高分子材料与纳米技术的结合纳米技术的兴起为高分子材料的发展带来了新的机遇。
通过将纳米颗粒引入高分子材料中,可以改善材料的性能,并赋予其新的功能。
例如,纳米复合材料具有优异的力学性能和导电性能,被广泛应用于电子和光电领域。
4. 未来展望高分子材料作为一种重要的材料类别,将在未来继续发挥重要作用。
浅谈高分子科学的发展趋势

浅谈高分子科学的发展趋势
高分子科学是一门研究高分子材料的科学,随着科技的不断发展,高分子科学也在不断推进。
以下是高分子科学发展的一些趋势:
1. 功能化高分子材料:随着科技的进步,人们对材料性能的要求越来越高。
功能化高分子材料可以根据不同的需求进行设计和制备,具有特定的性能和功能,例如降解性能、导电性能、自修复性能等。
2. 生物医学应用:高分子材料在生物医学领域有着广泛的应用,例如生物医学材料、药物传递系统和组织工程等。
未来,高分子科学将更加注重生物相容性和生物活性,以满足医学领域的需求。
3. 绿色可持续发展:环保和可持续发展已成为社会的重要关注点。
高分子科学将重点关注可再生材料的研究和开发,如生物质材料和可降解高分子材料,以减少对环境的不良影响。
4. 纳米技术的应用:纳米技术在高分子科学中具有巨大的潜力。
纳米材料可以改变高分子材料的性能,使其具有独特的性质和应用。
未来,高分子科学将与纳米技术相结合,开创出更多的应用领域。
5. 3D打印技术:3D打印技术是一种快速制造技术,可以根据设计要求直接将材料打印成所需的形状和结构。
高分子材料在3D打印中的应用将会大大提升,
为各个领域的设计和制造带来新的可能性。
总的来说,高分子科学的发展趋势是朝着功能化、生物医学、绿色可持续发展、纳米技术和3D打印技术等方向发展。
随着科技的不断突破和创新,高分子科学将为人类社会的进步和发展做出更大的贡献。
高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一种由大量重复单元组成的聚合物材料,具有轻质、高强度、耐腐蚀等优点,广泛应用于塑料、橡胶、纤维等领域。
本文将从高分子材料的发展历程和未来发展趋势两个方面进行探讨。
一、发展历程1.1 早期发展阶段在20世纪初,高分子材料的概念开始逐渐形成,人们开始研究合成聚合物材料的方法,如合成橡胶。
1.2 工业化生产20世纪中叶,高分子材料进入了工业化生产阶段,塑料、橡胶等产品开始大规模应用于工业生产和生活中。
1.3 高分子材料的应用拓展近年来,高分子材料的应用领域不断拓展,如高性能聚合物材料、生物可降解材料等新型材料的研究逐渐成为热点。
二、未来发展趋势2.1 绿色环保未来高分子材料的发展将更加注重环保和可持续性,研究生物可降解材料、再生塑料等绿色材料将成为发展趋势。
2.2 高性能材料随着科技的不断进步,高分子材料的性能将不断提升,如高强度、高耐磨、高耐高温等性能的材料将得到更广泛的应用。
2.3 智能材料未来高分子材料将向智能化方向发展,研究开发具有自修复、自感应等功能的智能材料,应用于航空航天、医疗器械等领域。
三、材料设计与制备技术3.1 分子设计未来高分子材料的研究将更加注重分子设计,通过精确设计分子结构,实现材料性能的精准调控。
3.2 先进制备技术随着纳米技术、3D打印技术等的发展,高分子材料的制备技术将更加先进,实现复杂结构的制备和加工。
3.3 多功能材料未来高分子材料将向多功能化发展,研究开发具有多种功能的材料,如导电、光学、传感等功能集于一体的材料。
四、产业应用4.1 化工行业高分子材料在化工行业中的应用将继续扩大,如塑料、橡胶、纤维等产品将得到更广泛的应用。
4.2 医疗领域高分子材料在医疗器械、生物医药等领域的应用将不断增加,如生物可降解材料、人工器官材料等将成为研究热点。
4.3 新兴产业随着新兴产业的发展,高分子材料在新能源、新材料、智能制造等领域的应用将不断拓展,为产业升级注入新动力。
对高分子材料前沿领域的了解及发展趋势

对高分子材料前沿领域的了解及发展趋势高分子材料,这听起来就像是某种超级科技的名字,其实它和我们生活中的许多东西息息相关。
说到高分子,大家肯定会想到塑料,那些看似无处不在的家伙,从我们每天用的水瓶到手机壳,简直就是生活中的小英雄。
但你知道吗,近年来高分子材料的发展真是飞速,搞得我们都跟不上了。
那些科学家和工程师们就像是高分子界的魔术师,天天在实验室里捣鼓,创造出各种新奇的材料,令人瞠目结舌。
听说现在的高分子材料可不止是用来做塑料那么简单。
比如,智能高分子材料就像是给这些材料加了“脑子”,它们可以根据环境的变化自行调节,像个听话的孩子。
要是温度升高,它们可能会变得软软的,低温时又坚硬得像个石头。
这种聪明的特性在医疗领域简直是个大福音,想想看,以后植入体内的材料可以根据身体状况自动调节,真的是“为人民服务”的好材料。
再说说生物可降解材料,想想那些曾经对环境造成困扰的塑料袋,真是让人头疼。
这种新材料能在土壤中自然降解,几乎不留下任何垃圾。
这就像是给地球妈妈减轻了负担,环保意识的觉醒让这些材料成了新宠。
如今,越来越多的企业开始关注这方面的研发,未来的生活肯定会更加绿色。
高分子材料在航空航天领域也有大展拳脚的机会,听说现在很多飞机的机身都是用高分子复合材料制成的。
这些材料不仅轻便,还非常耐用,能承受极端的环境。
这就像是给飞机穿上了“轻装甲”,提高了飞行效率,也让我们的空中旅行变得更加安全。
想象一下,飞在天上的飞机身上都是高分子的身影,真是未来科技的缩影啊。
我们不能忽视高分子材料在电子产品中的应用。
现在的手机、电脑,甚至家里的电器,都是高分子材料的“亲密伙伴”。
柔性显示屏的出现简直让人眼前一亮,这种技术让我们的屏幕不仅可以弯曲,还能减轻重量,提升使用体验。
谁不想要一部轻巧又好用的手机呢?说到这里,我都忍不住想要换新机了。
此外,高分子材料在汽车行业的运用也让人兴奋不已。
随着电动车的普及,车身材料的轻量化显得尤为重要。
高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一种具有广泛应用前景的材料,它的发展历程经历了多个阶段,从最初的合成到如今的广泛应用。
本文将介绍高分子材料的发展历程,并展望未来的发展趋势。
一、合成方法的改进1.1 高分子合成方法的起源最早的高分子合成方法可以追溯到19世纪末的酚醛树脂合成,这是高分子材料合成的开端。
1.2 高分子合成方法的改进随着科学技术的进步,高分子合成方法得到了极大的改进。
例如,聚合反应的引入使得高分子合成过程更加高效、可控。
1.3 新型高分子合成方法的出现如今,研究人员正在开发新型高分子合成方法,例如原子转移自由基聚合、可控自由基聚合等,这些方法能够合成出具有更好性能的高分子材料。
二、高分子材料的应用领域2.1 塑料行业高分子材料在塑料行业中有着广泛的应用,如聚乙烯、聚丙烯等,这些塑料制品在包装、建筑、汽车等领域发挥着重要作用。
2.2 纤维行业高分子材料在纤维行业中也有着重要的应用,如聚酯纤维、尼龙纤维等,这些纤维材料在纺织、服装等领域得到了广泛应用。
2.3 电子行业高分子材料在电子行业中的应用也越来越广泛,如聚苯胺、聚合物电解质等,这些材料在电池、光电子器件等领域发挥着重要作用。
三、高分子材料的性能改进3.1 材料强度的提升研究人员通过改变高分子材料的结构和合成方法,提高了材料的强度,使其在应力环境下具有更好的耐久性。
3.2 材料的导电性改进高分子材料的导电性一直是一个研究热点,通过控制材料的结构和添加导电性填料,可以使高分子材料具有优异的导电性能。
3.3 材料的热稳定性改进高分子材料在高温环境下容易分解,研究人员通过添加稳定剂等方法,提高了高分子材料的热稳定性,使其能够在高温环境下长时间稳定运行。
四、高分子材料的环保性能4.1 可降解高分子材料的研究随着环保意识的提高,研究人员开始开发可降解的高分子材料,以减少对环境的污染。
4.2 循环利用高分子材料的研究研究人员致力于开发可循环利用的高分子材料,通过回收和再利用,减少了对资源的浪费。
高分子科学的近期发展趋势与若干前沿

然而,高分子科学的发展也面临着一些挑战。首先,高分子材料的可持续性 和环保性成为日益的问题。其次,高分子材料的性能和功能仍然存在许多亟待解 决的问题,如提高材料的机械强度、耐热性、稳定性等。最后,高分子材料的加 工和生产过程中也存在许多技术瓶颈需要突破。
3、未来发展趋势
未来,高分子科学的发展将更加注重跨学科的交叉融合,例如与生物学、医 学、物理学等领域的结合。同时,高分子科学将更加绿色、可持续和功能化高分 子材料的研究,为人类社会的可持续发展提供支持。
感谢观看
3、水资源技术进步研究:随着科技的不断发展,水资源技术也在不断进步。 当前,水资源技术进步研究的前沿领域包括水资源信息化技术、水资源高效利用 技术、水资源生态修复技术以及水资源智能化管理等方面。
水环境监测研究前沿
水环境监测是通过对水体中的各种要素进行监测和分析,了解水体的状况和 变化趋势,为环境保护提供科学依据。当前,水环境监测的前沿领域包括以下几 个方面:
1、水资源可持续性研究:随着全球人口的增长和经济社会的快速发展,水 资源的需求和压力也在不断增加。因此,研究如何实现水资源的可持续性利用, 包括优化水资源配置、提高水资源利用效率、加强水资源保护等方面,成为当前 水资源管理研究的重点。
2、水资源与经济发展关系研究:水资源是人类经济社会发展的重要基础资 源之一,与经济发展密切相关。当前,水资源与经济发展关系研究的前沿领域包 括水资源对经济发展的支撑作用、水资源与产业结构的互动关系以及水资源与经 济发展的协调共生等方面。
1、水质监测技术:水质监测是水环境监测的核心内容之一。当前,水质监 测技术的前沿领域包括生物监测技术、遥感监测技术、自动化监测技术和生物毒 性监测技术等。这些技术的应用,提高了水质监测的准确性和效率。
高分子材料现状及未来发展展望

高分子材料发展前景及展望摘要高分子材料是一门内容广阔、与其他许多学科交叉渗透,相互关联的综合型学科。
目前高分子材料的发展十分迅猛,例如高强度,高韧性、耐高温以及极端条件的高性能高分子材料发展很快,与电子、机械、航天航空联系紧密。
高分子材料正在向功能化,智能化,精细化方向发展。
高分子材料也由传统的结构材料转向光、电、声、磁等功能化材料发展,导电材料、储能材料、智能材料、纳米材料、光导材料、生物活性材料、电子信息材料等方面的研究日趋活跃,成果颇丰。
学科交叉以及先进表征加工技术给高分子材料一个崭新的发展机遇,高分子材料正在百花齐放的科学界蓬勃发展。
关键词高分子材料通用高分子材料功能高分子材料改性一、高分子材料的发展史材料是人类用来制造各种产品的物质,是人类生活和生产的物质基础,它先于人类存在,人类社会一开始就与材料结下不解之缘,材料的进步和发展直接影响人来生活质量的改善和科学技术的进步。
目前,材料已和能源,信息并列成为现代科学技术进步的三大支柱。
其中材料是工业发展的基础,一个国家的材料品种和总产量是直接衡量其科学技术、经济发展和人民生活水平的重要标志,也是一个时代的标志。
高分子材料相对于传统材料如玻璃,陶瓷,水泥,金属而言是后起的材料,但其发展速度以及应用的广泛性却大大超过了传统材料,它已成为工业农业、国防和科技等领域的重要材料。
高分子材料既可用于结构材料,又可用于功能材料。
高分子材料已广泛渗透与人类生活的各个方面,早人们生活中起到了至关重要的作用,通俗的说就是衣食住行,锅碗瓢盆,现代生活中几乎所有事物都直接或间接与高分子材料联系起来。
高分子材料可分为天然高分子材料和合成高分子材料两大类。
人类远古时期就开始使用皮毛、棉花、天然橡胶、纤维素、虫胶、蚕丝、甲壳苏、木料等一系列天然高分子材料。
随着社会的发展,也相应开发出了天然高分子材料的改性和加工工艺。
例如19世纪中叶,德国人用硝酸溶解纤维素,然后纺成丝或制成膜,并利用其易燃的性能制成炸药。
高分子材料发展趋势

高分子材料发展趋势
高分子材料是一类具有巨大分子量的聚合物材料,它们在现代工业和生活中扮演着重要的角色。
随着科技的不断进步和社会的不断发展,高分子材料的应用领域也在不断拓展,其发展趋势也日益明显。
首先,高分子材料在材料科学领域的应用将更加广泛。
随着人们对材料性能要求的不断提高,高分子材料将在诸如航空航天、新能源、环保材料等领域得到更广泛的应用。
例如,高性能聚合物材料在航空航天领域的应用将更加突出,其轻质、高强度、高耐热性能将成为未来发展的重点。
其次,高分子材料的绿色环保特性将更受重视。
随着人们对环保意识的增强,绿色环保材料的需求也在不断增加。
高分子材料作为一种可再生资源,其在环保材料领域的应用前景将更加广阔。
例如,生物降解塑料、可降解高分子材料等将成为未来的发展方向。
此外,高分子材料的功能性将得到进一步提升。
随着科技的不断进步,人们对材料功能性的需求也在不断增加。
高分子材料的功能性将得到进一步提升,例如,智能高分子材料、多功能复合材料等将成为未来的研究热点,为人们的生活和生产提供更多便利。
总的来说,高分子材料在未来的发展趋势将更加多样化、个性化和专业化。
随着科技的不断进步和社会的不断发展,高分子材料的应用领域将更加广泛,其绿色环保特性将更受重视,功能性将得到进一步提升。
我们有理由相信,高分子材料在未来将发挥更加重要的作用,为人类社会的发展做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高分子科学的近期发展趋势与若干前沿董建华(国家自然科学基金委员会化学科学部,北京100085)摘要:分别按高分子合成化学、高分子科学与生命科学的交叉研究、光电磁活性功能高分子、超分子组装与高级有序结构构筑、高分子物理与高分子物理化学、高分子加工新原理、新方法等,对高分子科学近期主要发展趋势和若干前沿方向做一综述。
关键词:高分子科学; 主要发展趋势; 前沿进展近年世界高分子科学在诸多领域取得重要进展,主要是控制聚合、超分子聚合物、聚合物纳米微结构、高通量筛选高分子合成技术、超支化高分子、光电活性高分子等方面。
1 高分子合成化学高分子科学的诞生源于高分子合成化学。
世界上目前每年生产的2 万多亿吨高分子都是以高分子合成化学为基础而实现的。
因此,高分子合成化学作为高分子科学重要的基础和支撑分支学科,其发展对高分子科学与工程发展起着十分重要的推动作用。
高分子合成化学研究从单体合成开始,研究高分子合成化学中最基本问题,探索新的催化剂体系、精确控制聚合方法、反应机理以及反应历程对产物聚集态的影响规律等,高分子合成化学基础研究具有双重作用,一是运用已有合成方法研究聚合物结构调控;二是设计新的合成方法,获得新颖聚合物。
20 世纪90 年代以来在高分子合成化学领域中,前沿领域是可控聚合反应,包括立构控制,相对分子质量分布控制,构筑控制、序列分布控制等。
其中,活性自由基聚合和迭代合成化学研究最为活跃。
活性自由基聚合取得了许多重要的成果,但还存在一些问题。
活性自由基的发展前景,特别是工业应用前景以及未来研究工作趋势是令人关心的问题。
对于活性自由基聚合反应机理的深入研究、在较低的温度下能快速进行聚合的研究是目前受到关注的研究方向。
迭代合成化学是唯一可用来制备多肽、核酸、聚多糖等生物高分子和具有精确序列、单分散非生物活性高分子齐聚物的方法。
树枝状超支化高分子的合成就是此合成策略的成功应用例证之一,是过去10 年高分子合成中最具影响力的发展方向。
树枝状超支化聚合物由于其独特球形分子形状,分子尺寸,支化图形和表面功能性赋予它不同于线型聚合物的化学和物理性质。
高分子合成化学发展需注意以下几点:(1) 与无机化学、配位化学、有机化学等的融合与渗透,吸取这些学科领域的研究成果开发新的引发/催化体系,这是合成化学的核心,是高分子合成化学与聚合方法原始创新发展的关键。
对于传统的工业化单体,需要利用新型引发P催化体系和相应聚合方法,研究开发合成新的微观结构的聚合物新材料。
(2) 与有机合成化学和高分子化学紧密结合,将有机合成化学的先进技术“嫁接”到高分子合成化学中,研发高分子合成的新方法,实现高分子合成的可设计化、定向化和控制化,这里包括通过非共价键的分子间作用力结合来“合成”超分子体系。
(3) 在大分子工程方面,不仅要达到控制聚合物的分子量与分子量分布,而且要开发设计合成多种拓扑结构的聚合物链(如超支化聚合物、星型多臂嵌段共聚物、树枝状聚合物、浓密刷型聚合物等) 的新合成技术。
国家自然科学基金鼓励并支持从事高分子合成化学基础研究的课题,将注意各分支学科的平衡协调发展,对暂时冷门的研究方向,将予以持续资助。
目前,我国在负离子聚合、正离子聚合和偶联聚合等方面的研究需要吸引中青年研究人员加入。
同时在高分子合成化学领域近期应关注以下几个方向: (1) 新的聚合反应和新的聚合方法特别是酶催化聚合和微生物聚合等; (2) 功能性高分子合成; (3) 高分子链结构的设计和控制合成;新型超支化聚合物的合成;新型树形大分子的合成;树枝化聚合物的合成;聚合物分子刷的合成;新型多肽的化学合成等; (4) 借助分子间弱相互作用及特殊识别作用组装—1—合成新型聚合物; (5) 聚合反应机理方面的研究; (6) 通过量子化学计算和计算机模拟准确预测聚合物结构与性能之间关系,指导分子设计和高分子合成。
国际上重要的高分子合成进展有:可控自由基聚合和活性配位聚合又有许多新进展。
Fujita 等[4 ] 报道了配位聚合方法乙烯的活性聚合。
聚合温度25~50 ℃,分子量分布很窄(1. 05~1. 19) ,分子量可高达40 万,催化活性很高(20000 min - 1 atm- 1 ) 。
Marks[5 ] 以有机钛化合物催化苯乙烯和甲基丙烯酸甲酯共聚,获得双全同无规共聚物,在此催化剂作用下,苯乙烯和甲基丙烯酸甲酯的均聚反应生成间规均聚物。
将组合化学研究方法发展运用到高分子合成的催化体系高通量筛选方法研究只有三、四年的时间,但发展很快。
许多学术研究小组、研究中心和工业界实验室都开始进行研究。
几乎每个月都有相关的学术会议。
“Macromol Rapid Commun”已分别于2003 年第1 期和2004 年第1 期出版了两期专集,前者只有15 篇论文,后者升至45 篇,有望改变传统研究方式和速度。
我国高分子学术界和工业界尚未对此领域给予充分重视。
高度支化的聚合物是具有前沿性并具有潜力的研究方向。
2003 年含超支化聚合物一词的论文有302 篇, 2004 年含树枝状聚合物一词的论文有450 篇,呈现出非常活跃的景象。
Percec[6 ] 提出了一种合成新概念TERMINI-Terminator Multifunctinal Initiator ,即被保护的多功能团化合物,它能够定量和不可逆的中断活性聚合或链式有机反应,去除保护基团后,其活性官能团能100 %再引发活性聚合,再引发过程中,TERMINI 重复单元新产生一个支化点。
利用这种方法与活性自由基聚合相结合发展了一种全新的收敛法合成超支化聚合物的方法。
Britz 等[7 ] 利用碳纳米管作为受限反应器,将环氧化富勒烯灌装到单臂碳纳米管中,然后引发环氧化富勒烯开环聚合形成线形聚合物,获得了用其他方法难以制备的聚合物,为在受限空间进行可控高分子合成开辟了新途径。
2 高分子科学与生命科学的交叉研究国际发展态势表明:众多高分子背景学者的研究方向开始集中在与生命科学相关的高分子研究方面,对生物高分子、医用高分子、生物大分子体系理论计算模拟、高分子科学中的生物技术和大分子化学生物学等相关研究前沿的科学问题是近期需给予重点关注的方向,从美国化学会年会的论文就可反映这一点。
高分子科学是研究分子量在数千至数百万甚至数千万大分子合成、结构与性能的学科,而生命科学中的核心物质DNA、多肽、蛋白质,聚多糖等都是分子量很高的大分子,属于高分子科学研究的对象,而由这些生物大分子构成的细胞又构成了生命。
因此,高分子科学与生命科学存在着不可分割的联系和许多有待进行学科交叉研究的前沿问题。
主要有以下3 个层面的交叉点: (1) 在DNA、蛋白、多糖、高分子药物及诊断试剂等研究方面存在着分子水平层面的交叉点; (2) 高分子科学在小尺寸药物传输系统、单层、双层和多层高分子膜和生物传感的研究方面存在着细胞层面上的交叉; (3) 高分子科学在软组织或骨组织工程在人体组织和生命层面上有着很好的交叉点。
过去高分子科学向生命科学和现代医学领域的渗透给给现代生物医学带来的巨大变化。
就高分子科学与生命科学交叉的研究领域而言,以前的研究主要集中在用传统高分子材料制备生物医用材料,如组织工程的支架、人造器官、药物传输载体等高分子。
在药物学领域,高分子药物控释技术几乎从根本上改变了传统的给药概念和模式,成为药物治疗科学中的一个里程碑。
在医用高分子方面,由于植入体内高分子的应用,对提高医疗水平,改善人类生活质量、减轻疾病对人们健康的影响,均起了重要作用。
用于医疗中诊断、治疗、修复或替换人体组织或器官的生物医用高分子材料要求高分子在具有特殊功能与性能的同时还具有对人体组织、血液不产生不良作用的性质。
生物医用高分子的研究与开发对提高人民健康水平、—2—国防和国家经济发展都具有重要意义。
由于生物医用高分子产品的附加值非常高, 而其质量直接与使用者生命安全相关,发达国家多年来已将生物医用高分子的研究作为优先发展的重点领域。
近年来,国际上此领域的研究蓬勃发展,出现了许多新的研究热点并孕育着新的突破。
在用于药物控制释放高分子研究领域,高分子2药物、高分子2蛋白质结合体、高分子2基因聚络物和高分子微胶束等涉及生物高分子药物的研究方向已成为高分子科学研究者进入现代生物医学领域的切入点。
体现了生物大分子与合成高分子相互融合,传统高分子科学与现代生命科学相互融合。
总之,从高分子分子设计、高分子结构,到高分子凝聚态、高分子组装;从分子运动到生物屏障的跨越;从分子间相互作用到载药系统与生命系统间的相互作用等方面的研究,高分子科学都发挥出越来越重要的作用。
高分子科学工作者应抓住际遇,与生命科学与技术、纳米科学与技术和生物纳米技术相结合,为高分子学科的发展,为国家社会与经济的发展做出贡献。
高分子科学研究者除了继续重视生物医用高分子研究之外,还须通过运用高分子科学研究特长和知识,从分子水平研究生物大分子结构、相互作用等,为研究生物大分子在生命体系中生命过程做出应有的贡献。
通过研究高分子组装和高级有序结构构筑、手性高分子、配位高分子以及受生物启发或模拟生物体系高分子的研究,在高分子科学与生命科学之间架起跨接的桥梁。
今后在高分子科学与生命科学交叉研究中应重视下列领域的研究: (1) 组织工程研究中支架高分子的仿生微观结构和高分子的生物降解性,特别是可诱导细胞与组织生长、降解速度可控的高分子;(2) 利用生物学原理将蛋白质、细胞生长因子、酶及多肽等生物活性物质固定在生物医用高分子等医用材料的表面,通过表面修饰构建第三代的生物活性医用植入或介入诊疗高分子等;研究具有优异抗凝血性、生物相容性及抗菌性的高分子;(3) 用于基因治疗的高分子药物控释体系,特别需重视非病毒高分子基因载体,大分子蛋白类药物释放载体以及靶向性和释放速度可控性;(4) 运用生物技术发展高分子合成方法也是国际上非常重视的研究方向;开展酶催化聚合、微生物法合成聚羟基烷酸酯等生物医学高分子;(5) 大分子化学生物学:运用高分子科学的原理与方法以研究和揭示与生物大分子相关的生命运动的化学本质,研究生物大分子的结构与其生物活性的关系;研究生物体内的蛋白质-蛋白质、多(寡) 糖2蛋白质等相互作用、研究分子识别;(6) 非生物活性与生物功能大分子的自组装过程与超分子结构的深入研究对加深蛋白质等重要生物大分子的结构与功能的关系的理解,以天然蛋白如胶原蛋白、弹性蛋白、蚕丝蛋白、蜘蛛蛋白等为例,揭示生物大分子自组装原理、结构及其生物学效应;推动大分子分子(簇) 器件与高性能仿生高分子材料的发展;(7) 合成可实现溶液中精巧高级结构的聚合物的研究:非天然齐聚物或高聚物的分子内弱相互作用控制其二级结构(折叠与螺旋等精致结构) ,模拟或复制生物大分子结构与功能,理解折叠与螺旋构象、结构与性能。