随钻前视电磁波电阻率测井方法前期理论研究
随钻方位电磁波电阻率仪器性能指标检测方法

第44卷第5期2020年10月测井技术WELL LOGGING TECHNOLOGYVol.44No.5Oct22文章编号:1004-1338(2020)05-0448-05随钻方位电磁波电阻率仪器性能指标检测方法杨震,肖红兵,张智勇(中石化胜利石油工程有限公司测控技术研究院,山东东营2570640摘要:为提高油藏采收率,大斜度井、水平井被广泛采用,对井眼轨迹提出了更高要求。
地质导向技术能根据实时测调整井,多地应用于水平井钻井过程。
随钻方位率仪器作为目前地质导向的核心仪器,电阻率测量范围、精度及测距离是其最重要的指标,目前没有井验证或测试仪器性。
从电阻率测测原理出发,利用分析测率以及离指标的。
通过实验室测指定位率仪器的相位差为士0.02。
,测信号有效动态为70dB,以此代体测试试验,简仪器指标测试流程,为随钻方位率仪器行地层评价地质导向提供了保障。
关键词:测井仪器;随钻方位电磁波电阻率仪器;测量精度;探测距离;指标验证中图分类号:P631.84文献标识码:ADoi:10.16489/j.issn.1004133&2020.05.005Main Specifications Test Method of Azimuthal Electromagnetic Logging While Drilling ToolYANG Zhen,XIAO Hongbing,ZHANG Zhiyong(Measurement and Control Technology Institute,SINOPEC Shengii Oilfield Service Corporation,Dongying,Shandong257064,China) Abstract:Highly deviated and horizontal wells are wildly used to improve reservoir recovery rate,which propose higher requirements to well trajectory.Geosteering technology can adjust we l6rajec6orybyrealimemeasuremen6'soiismoreandmorecommonusedinhorizon6alwe l drilling.AZmuthal e lectromagnetic logging while drilling tool is kernel tool of geosteering.Resistivity range'accuracy and depth of detection are main specifications of azimuthal electromagnetic logging while drilling tool.But there are lack of clear test methods and test ins6rumen6s6o6hesespecificaions.Therelaionshipbe6weenmeasuredsignalsandresisiviyand dep6h of de6ec ion are analyzed by numerical simula ion based on principles of resis ivi y and boundary detection measurements.The phase shift accuracy of士0.02°and geosteering voltage dynamicrangeof70dBcanbetestedorconfirmedbylaboratorycircuitspecifications.Thereal environment test can be avoided by this method,which facilitates the test process and ensures the application of formation evaluation and geosteering.Keyw"rds:l2gginginstrument)azimuthalelectr2magneticl2gging whiledri l ingt22l)measure-mentaccuracy)depth2fdetecti2n)specificati2ntest0引言钻地层的仪器之一。
随钻电阻率测量技术研究(一).

随钻电阻率测量技术研究(一)随钻电阻率测量技术研究张振华摘要:随钻测井LWD(logging while drilling)是在钻井的过程中,同时进行的用于评价所钻穿地层的地质和岩石物理参数的测量,主要有电阻率、放射性、声波及核磁等随钻测井技术。
本文简要的介绍了贝壳NAVITRAK的结构组成;主要分析了补偿式天线和电阻率电子部分的工作原理。
关键词:LWD;电阻率(MPR);衰减;相位;SONDE;PADDLE 1 前言由于油田区块的开发己经到了中后期,为了开发薄油层以及残余油,地质导向仪器己经变得相当重要。
另外这些区块的地质构成及地层描述都已相当清楚,再利用邻井的测井资料,就可以定性和定量描述开发地层的地质构成、各层位的孔隙度、地层骨架的岩性及密度。
在这种情况下,只要使用MWD+自然伽玛+电阻率组成的LWD,就可以满足定向轨迹测量和地质导向的要求。
图1 贝壳休斯LWD井下仪器示意图 2 NAVIMPR仪器简介贝克休斯公司(Baker- Hughes)的随钻测井系统NAVIMPR的井下仪器主要由脉冲发生器(UPU)、探管(PROBE)、M30短节、MPR电阻率和井斜伽玛(SRIG)几大模块组成,探管由整流模块(SNT)、驱动模块(SDM)、存储器(MEM)、定向模块(DAS)和伸展电子连接头(EEJ)等组成,仪器总长13. 02 m。
井下仪器示意图如图1所示。
仪器中有一个涡轮发电机,钻井液冲击涡轮产生交流电,经SNT整流后,供给各个电路模块。
MPR( Multiple Propagation Resistivity )有4个发射极、2个接收极,可以发射和接收频率为2 MHz和400 kHz的两种脉冲,考虑到相位延迟和衰减,共可接收32种脉冲信号。
由4个发射极向地层分别发射2 MHz和400 kHz的电磁波,不同岩性的地层对电磁波的相位延迟或衰减不同的,从而通过泥浆脉冲经过地而传感器传到地面设备中,进行解码。
随钻电阻率测井原理浅析

随钻感应电阻率测井原理浅析1.电阻率的概念2.电阻率的测量方法3.电阻率的电极系分布4.电阻率测量的数学模型几何因子理论摘要:本文通过对Geolink公司TRIM工具测井原理的剖析,详细介绍了感应电阻率测井的原理,并将电缆测井与随钻测井进行比较主题词:MWD 电阻率感应测井原理浅析随钻测量(MWD—Measurement While Drilling),是一项在钻井过程中,实时对井底的各种参数进行测量的技术,MWD的最大优点在于它使得司钻和地质工作者实时看到井下正在发生的情况,可以极大的改善决策过程。
随钻测量技术极大的推动了钻井技术的发展,为地层评价提供了新的手段,由于可以直接观测井下工程参数,这就为钻井的进一步科学化提供了有利的条件,及时获得地层资料对于准确评价地层和进行地层对比以及油藏描述也具有重要的意义。
MWD系统测量的一个十分重要的方面就是电阻率地层评价测井。
自从八十年代中期起,就有许多种不同的MWD电阻率被测试并投入市场,包括16’’短电位电阻率,聚焦电阻率(有活动和被动聚焦能力),基于电极的装置(可利用钻头或接触按钮),目前Sperry-Sun Drilling Service服务公司的多空间1~2MHz“电磁波电阻率相位测井”是工业上唯一商业化的、真正的多探测深度的电阻率测井工具。
Geolink公司应广大用户的普遍要求,也制造生产出随钻电阻率工具,它将MWD仪器测井结果与通常使用的电缆感应(20KHZ)测井相关联,用这种方法得到的响应与电缆深感应测井的探测深度相类似,其垂直分辨率优于电缆中感应测井。
这种探测深度可以减少井眼环境及泥浆侵入地层对测量产生的影响。
因而不需要对在不同泥浆(水基、油基、气基及泡沫基钻液)中作业中所产生一系列复杂的环境影响进行校正,就能够得到Rt (地层真实电阻率值)。
电阻率的概念一种物质的导电性是指这种物质传导电流的能力,常用电阻率这一物理量来表示,导电能力差的物质电阻率高,导电能力好的物质电阻率低。
随钻电磁波传播电阻率测井

4地层倾角对随钻电阻率测井的影响范宜仁等2013年发表文章“倾斜各向异性地层随钻电磁波响应模拟”,文中通过坐标变换的方法,基于柱坐标系时域有限差分(FDTD)模拟和分析了倾斜各向异性地层随钻电磁波响应。
为了研究各向异性系数对相位(幅度)电阻率的影响,模拟了不同各向异性系数条件下倾斜地层随钻电磁波测井响应,模拟结果表明:当地层倾角小于30°时,不同水平电阻率条件下,各向异性系数对视电阻率影响较小,随钻电磁波视电阻率主要反映地层水平电阻率;随地层倾角增大,视电阻率受各向异性的影响增大,且地层水平电阻率越低,随钻电磁波测井响应受地层各向异性影响越大,相位电阻率比幅度电阻率更加敏感;当地层倾角较大时,随着各向异性系数增大,视电阻率甚至会超过垂直电阻率。
为了研究不同发射频率对各向异性系数的敏感性,模拟了地层各向异性系数为√10,水平电阻率为0.5Ω·m时不同地层倾角条件下随钻电磁波响应,模拟结果显示:随发射频率增大,视电阻率受各向异性影响增强,当地层倾角较大时,随钻电磁波视电阻率甚至会远远超过垂直电阻率。
夏宏泉等2008年发表文章“随钻电阻率测井的环境影响校正主次因素分析”,文中分析了随钻电阻率测井中地层倾角(或井斜角)等环境因素对测井结果的影响及其校正方法。
在大斜度井和水平井测井中,大部分仪器的测量值要受到井斜角或地层倾角的影响,实测曲线出现“异常”和“变形”。
在直井中,如果地层是水平的,则仪器测量的是水平电阻率。
但如果仪器在钻开同样地层的水平井时,则测量电流会流过地层的水平面和垂直面,视电阻率测量值R a是水平电阻率R h和垂直电阻率R v合成的[3-6]。
假设在水平井中地层存在各向异性,垂直层界面方向的电阻率为R v,平行层界面方向的电阻率为R h,径向上(与地层平行的方向)为宏观各向同性,可推导出地层视电阻率R a、R h、R v的关系为⁄R a=Rℎ√cos2θ+sin2θλ⁄式中,λ为地层电阻率的各向异性系数,λ=(R v/R h)0.5;θ为相对倾角,即井轴与地层面法线的相对夹角,可由井斜角和地层倾角求得。
随钻电磁波电阻率测井采集系统研究

维普资讯
2 6
西 南 石 油 大 学学 报
20 0 7伍
换模块 组成 ( 1 。由接 收 线 圈接 收 到 4 0k z 图 ) 0 H 和
D 17 W 芯 片 。D 17 W 芯 片 的工 作 电压 为 3 3 S20 S20 . V, 以该芯 片可 与 D P直 接相 连接 , D P芯 片和 所 S 在 S 程序 、 数据存 储 电路 之 间无须 加一 个 电平 转换 电路 ,
能满 足测井 技 术 的 需 要 ¨ 。 而 随 钻 测 井 ( WD) L 是
1 随钻 测 井 技术
随钻测 井 技术发 展 的核心 是将 测井 电缆 测量 方
近几年 来 国 内迅 速 崛 起 的先 进 测 井 技 术 , 将 测 井 是
仪器安 装在 靠 近钻 头 的部 位 , 地层 刚钻 开 后 就 测 式 中成熟 的技 术 改进 成 随钻 方 式测 量 , 在 使其 适 应 于
20D H7
文章 编 号 :10 2 3 (0 7 0 0 2 0 00— 6 4 20 )5— 0 5— 5
随 钻 电磁 波 电阻 率测 井 采 集 系统 研 究
刘 升 虎 , 亚敏 邢
( 西安石油大学陕西省光 电传感及测井重点实验 室, 陕西 西安 70 6 ) 10 5
摘要 : 随钻测 井(WD 以地层分辨率 高、 L ) 节省 时间和成本等优 势而有 别于 电缆 测井 , 情况 复杂、 在 电缆 测 井难度 大、
圈 圈
同
图 1 系统组成框 图
1 1 系统组成 .
整 个系统 主要 由 D P模块 、 P A模 块 、 / S FG A D转
} 收 稿 日期 : 0 7— 3—2 20 0 5
随钻电磁波电阻率测井(EWR)基础知识

随钻电磁波电阻率测量技术一、引言提高服务质量,降低服务成本是工程技术服务努力追求的目标。
随钻测井相对于电缆测井具有多方面的优势:一是随钻测井资料是在泥浆滤液侵入地层之前或侵入很浅时测得的,能够更真实地反映原状地层的地质特征,提高地层评价精度;二是随钻测井在钻井的同时完成测井作业,减少了井场钻机占用时间,从钻井一测井一体化服务的整体上节省成本;三是在某些大斜度井或特殊地质环境(如膨胀粘土或高压地层)钻井时,电缆测井困难或风险大以致不能进行作业时,随钻测井是唯一可用的测井技术。
因此,随钻测井既提高了地层评价测井数据的质量,又减少了钻井时间,降低了成本。
(一)、随钻测井技术发展现代随钻测井技术大致可分为三代:90年代初以前属于第一代,提供基本的方位测量和地层评价测量,在水平井和大斜度井用作“保险”测井数据。
但其主要应用是在井眼附近进行地层和构造相关对比,以及地层评价。
随钻测井确保能采集到在确定产能和经济性、减少钻井风险时所需要的测井数据。
90年代初和中期属于第二代,方位测量、井眼成像、自动导向马达及正演模拟软件相继推出,通过地质导向精确地确定井眼轨迹。
司钻能用实时方位测量,并结合井眼成像、地层倾角和密度数据,发现目标位置。
这些进展导致了多种类型的井,尤其是大斜度井、超长井和水平井的钻井取得很高的成功率。
从90年代中期到目前属于第三代,称为钻井测井(Logging for Drilling),提供界定地质环境、钻井过程、采集实时信息时所要求的数据。
表1 随钻测井技术发展(二)、随钻测井的一般知识1、随钻测量MWD包括井眼几何形状(井眼尺寸、井斜、方位等)的测量,与钻井工程相关的工程参数(钻压、钻具扭矩、井眼压力、转速、环空压力等钻井参数)的测量,以及对自然伽马、电阻率的测量。
主要是测量工程数据,并具有单一性。
2、随钻测井LWD在随钻测量MWD的基础上,增加了识别岩性和孔隙性、判识储层的方法如中子、密度等,能对储层做出基本的评价。
随钻电磁波传播电阻率测井

������ℎ ������������ (3)
。
从各项异性和相对倾角对相移电阻率和衰减电阻率影响关系图版(图 3)中可以看出: 1 当增大时,视电阻率 Ra 增大。对于不同源距的 Ra,随着的增大,地层各向异性的影 响也会增大。 2 当<40 度时,地层各向异性的影响较小。 3 当>40 度时,地层各向异性的影响较大。对于不同源距的仪器,各校正曲线不重合, 且相移电阻率的分离程度大于衰减电阻率的分离程度。 随钻测井过程中,地层各向异性是最主要的影响因素,必须对其进行校正。在相对倾角 较小时,影响较小,且随着 H 的增大,地层各向异性的影响也会增大,当视电阻率 Ra 增大 时,地层各向异性对深探测的影响大于对浅探测的影响。
朱頔等 2008 年发表文章 “水平井随钻测井曲线的对比分析与校正” , 文中将随钻电阻率 测井曲线与电缆测井曲线进行对比, 对比结果显示经校正后的随钻测井响应更能反映地层真 电阻率。 在水平井或大角度斜井中, 绝大多数仪器会受到井斜或地层倾角的影响, 使所得曲线 “变 形” , 不能真实反映地层电阻率。 如果钻开水平井, 测量电流会流过地层的水平面和垂直面, 视电阻率 Ra 由 Rh 和 Rv 共同组成。 设泥-砂-泥 3 层从上到下的厚度在整个模型中所占的比例依次为 a、b、c,它们满足的 关系式为 a+b+c=1。上围岩、砂岩、下围岩电阻率值依次为 R1、R2、R3。用水平层状的 3 层 介质模型模拟水平井中各向异性地层的平面模型(图 2) 。
夏宏泉等 2007 年发表文章 “随钻电阻率测井的各向异性影响及校正方法研究” , 文章分 析了随钻电阻率测井与各向异性和相对倾角的关系, 对校正图版曲线采用最优拟合得到校正 公式,来实现随钻电阻率测井的各向异性的自动校正。 1 地层电性各向异性和相对倾角对随钻电阻率的影响研究 在大斜度井和水平井测井中, 大部分仪器的测量会受到井斜或地层倾角的影响, 使所测 量的测井曲线“异常”和“变形” 。在垂直井中,如果地层是水平的,则仪器测量的是水平 电阻率。 但如果仪器在钻开同样地层的水平井中, 则测量电流会流过地层的水平面和垂直面, 视电阻率测量值 Ra 是水平电阻率 Rh 和垂直电阻率 Rv 的合成。假设在水平井中地层各向异 性,垂直层界面方向的电阻率为 Rv,平行层界面方向的电阻率 Rh,径向上(与地层平行的 方向)为各向同性,可以推到出地层视电阻率 Ra 与 Rh、Rv 的关系为: ������������ = ������ℎ ������������������ 2 ������ + ������������������2 ������ ������2 (1)
近钻头随钻电阻率测井技术的现状及发展趋势(第一部分)

二、近钻头随钻电阻率测井技术的现状
3、近钻头短节——电阻率(电磁波电阻率)+伽玛+井斜…(CHANG CHENG…)
4、近钻头短节——伽玛+井斜 (LIU HE….)
5、国外发展现状——美国 “三大”技术服务公司
近钻头测量体现了现代钻井技术与测井、地质工程技术的结合。
公司名称 Schlumberger Baker -Hughes Halliburton 地质导向系统 IDEA地质导向系统 Navigator-TM 系统 Geo-Pilot系统XXXX 特点
• 钻头电阻率测量范围、分辨率和探测深度:0.2~2000-m、1.8m和0.45m • 方位电阻率测量范围、分辨率和探测深度:0.2~200 -m、0.1m和0.3m
• 自然伽马测量范围、分层能力:0~250API、20cm
• 钻头电阻率、方位电阻率、方位伽马、井斜/工具面测点到钻头地面的距离分别为:0.75m、1.7m、1.88m、2.0m • 造斜能力:达到长中半径要求
随钻核磁共振
随钻声波 随钻地层压力 近钻头测量工具:PZIG (近钻头井斜和伽马测量)
Schlumberger的MCR仪器随钻测井
随钻测井地质导向——在钻井过程中,利用随钻测井仪器,实时测量井眼穿过地层的各ห้องสมุดไป่ตู้岩石物理参数,结合 井眼几何参数,识别所钻遇的地层,从而引导钻头进入油层并保持井眼轨迹在油层中穿行,保证含油砂岩钻遇率。 旋转导向地质导向系统——集钻具与测量一体化,实时采集并向地面传输地质、几何参数,为导向人员进行工 程和地质分析提供实时、可靠的依据。
可调弯角 0.75 8-1/2井眼 3.74.6 9-5/8井眼 3.64.5
1.0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
cup.edu.cn
第 42卷 第 1期
高杰 ,等 :随钻前视 电磁 波电阻率 测井方法前期理论研究
·21·
1 随 钻 前 视 测 井基 本 原 理 及 响应 特 征
1.1 基本 原理 以单发 单 收线 圈系 为基 本结 构 ,其 中 ,发射 线 圈
与 仪器 轴垂 直 ,接 收线 圈 的磁 偶 极 矩 方 向 与仪 器 轴 向之 间的夹 角为 (见 图 1)。
Prophase Theoretical Study Oil Look-ahead Electrom agnetic W ave Resistivity LW D
GAO Jie, LOU Yan, LI Kesai, ZHAO Xiang China University of Petroleum,Beijing,102249,China)
inf11】 nee factors
0 引 言
随钻前 视 电阻率 测井 可 分为 近钻 头 电阻率 测井 (侧向类)和随钻电磁波传播测井 。目前 ,近钻头仪器 和常规 的随钻 电磁波 电阻率测井 仪器探 测深 度较 浅 , 且 方位 探 测 能 力 不 足 ,不 能 实 现 精 确及 时 的前 视探 测 。随钻方位 电磁 波 电 阻率测 井 是定 向测井 的关 键 技术 ,能准确及时地预测和判断界面走 向方位 ,可极 大提 高随钻 电磁波传播 测井技术 的定 向探 测能力 、方
位灵敏性和信息量 ,能够有效保证钻头在 目标层 中钻 进 ,优化井 眼轨迹 ,提 高复 杂储 层 的采 收率 。
目前 ,国外各 大测 井公 司都设 计 、推 出 了随钻 方 位 电磁 波 电阻率 测井 仪器 和 随钻远 探 测 电阻率 测井 仪器 。本 文 基 于 随 钻 方 位 电磁 波 电 阻 率 测 井 仪
第 42卷 第 1期 2018年 2月
文 章 编 号 :1004—1338(2018)01—0020—05
测 井 技 术
W ELL LoGG1NG TECH N0L0GY
Vo1.42 No.1 Feb 2018
随钻 前 视 电磁 波 电 阻 率 测 井 方 法 前 期 理 论 研 究
接 收天 线处 的感 应 电动 势可 简化 表示 为 V=a。 +口1cosfic 。
Abstract: W ith the im provement of oil field exploration and developm ent, the heterogeneous com plex reservoirs have accounted for a large proportion in the oilfield and consequently the geosteering technology needs further developm ent. Look—ahead electromagnetic wave resistivity LW D ,which is able to provide the form ation interface inform ation and interface distance in front of the bit, is a key technology to achieve the geosteering and im prove the recovery ratio of com plex reservoir. Through the forward modelling of look—ahead electromagnetic wave resistivity LW D,the effects of the instrum ent parameters and environm ental factors on its log response are analyzed based on the num erical sim ulation。which lays the theoretical foundation for the design of look—ahead electromagnetic wave resistivity 1ogging instruments。geosteering and the real—tim e geological evaluation. Keywords: look—ahead electrom agnetic wave resistivity LW D ; geosteering; forward m odelling;
高杰 ,娄研 ,李 可赛 ,赵 翔
(中 国石 油 大 学 (北 京 ),北 京 102249)
摘要 :随钻前视电磁波电阻率测井能及 时提供前 方较远 地层界 面信息 和界 面距 离 ,是 实现地质 导 向,提 高复杂 油
藏采 收率 的关键技术 。通过对随钻前视 电磁 波电阻率 测井响应 的正演数值模拟 ,分析仪 器参数 和环境 因素对测井
响应 的影 响规律 ,为 随钻 前视电磁波电阻率仪器 的设计 、地质导 向和实时地质 评价奠定 了理论基础 。
关键 词 :随钻前视 电磁波电阻率测井 ;地质导 向 ;正演模 拟 ;影响因素
中 图 分 类 号 :P631.84
文 献标 识 码 :A
Doi: 10.16489/j.issrL 1004—1338.2018.01.004