随钻电磁波电阻率测井(EWR)基础知识剖析
随钻测井系统机械结构论文【论文】

随钻测井系统机械结构论文1电磁波电阻率随钻测量系统1.1系统工作原理及组成电磁波电阻率随钻测量系统主要由发射天线、接收天线、电路仓体和对接结构等几大部分组成。
天线系统采用“四发双收”的方式和结构,工具上端和下端各有2个发射天线,工具中部设有2个接收天线。
工具侧壁设有测量控制电路仓体,工具中心设有泥浆通道,两端的公扣和母扣端有数据对接系统,用来实现与上下相邻工具之间数据交换与供电的功能。
电磁波电阻率随钻测量是一种重要的电阻率测井方法,在各种不同类型的钻井液中都能够进行测量。
它的工作原理基于电磁波在穿越地层时产生的衰减和相位移。
由于穿越不同的地层会导致产生不同的衰减和相位移,通过测量电磁波的衰减和相位移就可以确定地层的介电常数和电阻率。
电磁波电阻率随钻测量系统就是利用这一原理,由发射线圈向地层发射电磁波,再由不同的接收线圈接收电磁波,根据接收到的电磁波的相位差和幅度比来确定地层的电阻率。
1.2技术难点电磁波电阻率随钻测量系统受结构尺寸的影响,设计空间小,机械结构较为复杂,强度和可靠性要求高,具有以下几个主要的设计难点:1)设计空间小,受工具直径尺寸的限制,中心预留泥浆通道后,可供使用的空间极为有限,对机械设计工作带来了很多的限制。
2)机械结构较为复杂,工具设有4个发射天线,2个接收天线,天线内设有线圈,需要与控制电路进行连接通讯,整体结构较为复杂。
3)系统处于高温高压的工作环境下,并且要传递钻压和转矩,对工具的强度和可靠性提出了很高的要求。
4)系统工作在流动的高压泥浆中,系统内部的电路控制系统和天线线圈需要进行隔离绝缘处理,对整个系统的密封性能提出了很高的要求。
1.3解决方案针对系统机械设计中遇到的技术难点,经过科学论证和反复试验,提出了4点解决方案。
1)根据随钻工具轴向尺寸大、径向空间小的特点,充分利用空间,精简结构进行设计。
2)在系统机械设计中,避免出现导致强度储备不足的薄弱环节,对强度薄弱的部位进行优化改进,以减少应力集中,增加强度储备。
随钻电磁波电阻率测井(EWR)基础知识

随钻电磁波电阻率测量技术一、引言提高服务质量,降低服务成本是工程技术服务努力追求的目标。
随钻测井相对于电缆测井具有多方面的优势:一是随钻测井资料是在泥浆滤液侵入地层之前或侵入很浅时测得的,能够更真实地反映原状地层的地质特征,提高地层评价精度;二是随钻测井在钻井的同时完成测井作业,减少了井场钻机占用时间,从钻井一测井一体化服务的整体上节省成本;三是在某些大斜度井或特殊地质环境(如膨胀粘土或高压地层)钻井时,电缆测井困难或风险大以致不能进行作业时,随钻测井是唯一可用的测井技术。
因此,随钻测井既提高了地层评价测井数据的质量,又减少了钻井时间,降低了成本。
(一)、随钻测井技术发展现代随钻测井技术大致可分为三代:90年代初以前属于第一代,提供基本的方位测量和地层评价测量,在水平井和大斜度井用作“保险”测井数据。
但其主要应用是在井眼附近进行地层和构造相关对比,以及地层评价。
随钻测井确保能采集到在确定产能和经济性、减少钻井风险时所需要的测井数据。
90年代初和中期属于第二代,方位测量、井眼成像、自动导向马达及正演模拟软件相继推出,通过地质导向精确地确定井眼轨迹。
司钻能用实时方位测量,并结合井眼成像、地层倾角和密度数据,发现目标位置。
这些进展导致了多种类型的井,尤其是大斜度井、超长井和水平井的钻井取得很高的成功率。
从90年代中期到目前属于第三代,称为钻井测井(Logging for Drilling),提供界定地质环境、钻井过程、采集实时信息时所要求的数据。
表1 随钻测井技术发展(二)、随钻测井的一般知识1、随钻测量MWD包括井眼几何形状(井眼尺寸、井斜、方位等)的测量,与钻井工程相关的工程参数(钻压、钻具扭矩、井眼压力、转速、环空压力等钻井参数)的测量,以及对自然伽马、电阻率的测量。
主要是测量工程数据,并具有单一性。
2、随钻测井LWD在随钻测量MWD的基础上,增加了识别岩性和孔隙性、判识储层的方法如中子、密度等,能对储层做出基本的评价。
随钻电阻率测井原理浅析

随钻感应电阻率测井原理浅析1.电阻率的概念2.电阻率的测量方法3.电阻率的电极系分布4.电阻率测量的数学模型几何因子理论摘要:本文通过对Geolink 公司TRIM 工具测井原理的剖析,详细介绍了感应电阻率测井的原理,并将电缆测井与随钻测井进行比较主题词:MWD 电阻率感应测井原理浅析随钻测量(MWD —Measurement While Drilling ),是一项在钻井过程中,实时对井底的各种参数进行测量的技术,MWD 的最大优点在于它使得司钻和地质工作者实时看到井下正在发生的情况,可以极大的改善决策过程。
随钻测量技术极大的推动了钻井技术的发展,为地层评价提供了新的手段,由于可以直接观测井下工程参数,这就为钻井的进一步科学化提供了有利的条件,及时获得地层资料对于准确评价地层和进行地层对比以及油藏描述也具有重要的意义。
MWD 系统测量的一个十分重要的方面就是电阻率地层评价测井。
自从八十年代中期起,就有许多种不同的MWD 电阻率被测试并投入市场,包括16'短'电位电阻率,聚焦电阻率(有活动和被动聚焦能力),基于电极的装置(可利用钻头或接触按钮),目前Sperry-Sun Drilling Service服务公司的多空间1~2MHz “电磁波电阻率相位测井” 是工业上唯一商业化的、真正的多探测深度的电阻率测井工具。
Geolink 公司应广大用户的普遍要求,也制造生产出随钻电阻率工具,它将MWD仪器测井结果与通常使用的电缆感应(20KHZ)测井相关联,用这种方法得到的响应与电缆深感应测井的探测深度相类似,其垂直分辨率优于电缆中感应测井。
这种探测深度可以减少井眼环境及泥浆侵入地层对测量产生的影响。
因而不需要对在不同泥浆(水基、油基、气基及泡沫基钻液)中作业中所产生一系列复杂的环境影响进行校正,就能够得到 Rt (地层真实电阻率值) 电阻率的概念一种物质的导电性是指这种物质传导电流的能力,常用电阻率这一物理量来 表示,导电能力差的物质电阻率高,导电能力好的物质电阻率低。
随钻电阻率测井原理浅析

随钻感应电阻率测井原理浅析1.电阻率的概念2.电阻率的测量方法3.电阻率的电极系分布4.电阻率测量的数学模型几何因子理论摘要:本文通过对Geolink公司TRIM工具测井原理的剖析,详细介绍了感应电阻率测井的原理,并将电缆测井与随钻测井进行比较主题词:MWD 电阻率感应测井原理浅析随钻测量(MWD—Measurement While Drilling),是一项在钻井过程中,实时对井底的各种参数进行测量的技术,MWD的最大优点在于它使得司钻和地质工作者实时看到井下正在发生的情况,可以极大的改善决策过程。
随钻测量技术极大的推动了钻井技术的发展,为地层评价提供了新的手段,由于可以直接观测井下工程参数,这就为钻井的进一步科学化提供了有利的条件,及时获得地层资料对于准确评价地层和进行地层对比以及油藏描述也具有重要的意义。
MWD系统测量的一个十分重要的方面就是电阻率地层评价测井。
自从八十年代中期起,就有许多种不同的MWD电阻率被测试并投入市场,包括16’’短电位电阻率,聚焦电阻率(有活动和被动聚焦能力),基于电极的装置(可利用钻头或接触按钮),目前Sperry-Sun Drilling Service服务公司的多空间1~2MHz“电磁波电阻率相位测井”是工业上唯一商业化的、真正的多探测深度的电阻率测井工具。
Geolink公司应广大用户的普遍要求,也制造生产出随钻电阻率工具,它将MWD仪器测井结果与通常使用的电缆感应(20KHZ)测井相关联,用这种方法得到的响应与电缆深感应测井的探测深度相类似,其垂直分辨率优于电缆中感应测井。
这种探测深度可以减少井眼环境及泥浆侵入地层对测量产生的影响。
因而不需要对在不同泥浆(水基、油基、气基及泡沫基钻液)中作业中所产生一系列复杂的环境影响进行校正,就能够得到Rt (地层真实电阻率值)。
电阻率的概念一种物质的导电性是指这种物质传导电流的能力,常用电阻率这一物理量来表示,导电能力差的物质电阻率高,导电能力好的物质电阻率低。
EWR-PHASE4 电阻率特点及其应用

EWR-PHASE4 电阻率特点及其应用摘要本文简要介绍了电磁波电阻率(EWR-PHASE4) 的结构特点和测量原理,分析了影响电磁波电阻率探测深度的因素,介绍了EWR PHASE 4 在江苏油田水平井井眼轨迹控制中的应用情况。
根据EWR 所测实时电阻率的特殊响应曲线,可以及时分析调整井身轨迹钻进,控制钻头沿储层最优位置穿行,从而提高油层穿透率。
关键词电磁波电阻率;地质导向;极化角现象0 引言FEWD是哈利伯顿公司生产的一种无线随钻地质评价仪器,它能在钻井的同时实时测量并上传地层的地质参数(伽马、电阻率、孔隙度等),技术人员可根据测得的各项参数对地层做出评价,根据需要及时调整井身轨迹,保持井眼始终沿储层有利的位置钻进,从而实现地质导向的目的。
EWR(Electromagnetic Wave Resistivity)是FEWD系统测量地层电阻率的仪器之一,通过分析电磁波电阻率曲线的特点,可以在导向钻进中根据实际情况采取措施,及时调整控制井眼轨迹,以提高油层穿透率,更有利于水平井施工。
1 EWR 的结构及测量原理1.1 结构EWR采用了四发双收的结构(图1),四个发射线圈和两个接收线圈分别垂直安置在无磁钻铤表面的环形沟槽内,外部采用特殊材料封固。
极浅、浅、中深度的测量采用2MHz的发射频率,而深电阻率的测量采用较低的1MHz发射频率以实现较深的探测深度。
1.2 测量原理EWR主要采用三种计算方法实现电阻率的测量:相位移测量、幅度比测量及组合电阻率测量法。
2 EWR 的特点及探测深度的影响因素2.1 EWR 的特点1)与常规的电缆测井相比,由于随钻电阻率仪器在钻井的同时测井,地层打开时间短,受钻井液的侵入影响较小,其测量结果更能反映地层的真实状态,为准确区分地层界面,实时高效的进行地层评价提供了更为可靠的依据;2)EWR采用四发双收线圈系,可以得到深、中、浅、极浅四条不同探测深度的曲线,能更有效的排除围岩电阻率对仪器的干扰,更及时的反映地层的变化。
EWR_P4型随钻电阻率传感器结构及原理研究

卜+—卜斗—卜 、 卜
P 4电 阻率仪器 测量原 理
2 2 相 移测 量 .
2 1 工 作频 率 的选 择 .
EW R
_
电磁波 的传播 速度通 常被 认为 是一个 常数 , 即光 速 (00 0 m/)但这 个 说 法 实 际 上 仅 用 于 通 过 真 空 或 300 k s ,
23 衰减 测量 .
t 电率成 正 比。衰 减 ( 称 为 振 幅 比) 由两 个 接 收极 中 也 是
电磁波随低阻层传送而衰减 。衰减速度与地层导
所检测到信号的振幅的比率计算得来的。这些信号振
21 年第 7 01 期
西部探矿工程
6 9
幅用接 收模 块 内 的专 门 的 电路 来 测 量 。这 个 电路输 出
[] 王颖. 5 随钻电磁波测井响应及解释方法的研究[ ]中国石 D.
一
C A( o ie h s n teut n 电阻率解 释 , P C mbndp aea datn ai ) o 把 4对这 种组 合 曲线 分 别 作 为极 浅 、 、 浅 中深 和 深探 测 曲 线来 进行 解 释 , 可在 p 102 的地 层 中应用 。 它 < 01 m
3 结语
R st i ) ei i t 测井仪器采用 四发双收结构。仪器 由四个 sv y 发射极和两个接收极组成 , 通过测量每一组发射极 和接 收极 之 间的相 位差 和振 幅衰减 , 以组合 成 四条 不 同探 可 测深度( 极浅、 中深、 的电阻率曲线和组合电阻率 浅、 深) 曲线 。结构 如 图 1 示 。 所 这 种天 线 结构形 式也 具有 较 高灵敏 度 和精确 度 : 测 量 范 围 为 0 20  ̄ ・m, 统 测 量 误 差 ± 1 @ ~ 00 系 1Q・ 垂直分辨率 13 0 m, 5mm, 探测深度在 0 2 m最 . Q・ 深 可测 达 5 寸 , 21 m 最 深可 达 15英 寸 。 O英 在 0 2・ 4 1. EW R P 2 4电阻率工 作原 理 E R P 电阻率是由一个接收插件和一个发射插 W 4
电磁波电阻率(EWR PHASE4)测井仪20110507

EWR-PHASE4仪器部分随钻电磁波电阻率(EWR-PHASE4)测井仪是利用电磁波在地层中传播时,通过测量电磁波幅度衰减和相位滞后来求出地层电阻率。
仪器传感器采用六天线系统,双频率(1MHZ、2MHZ)四发射双接收。
可以实现四种不同探测深度,地层钻开第一时间真实地层电阻率。
这是电磁波电阻率(EWR PHASE4)测井仪器和地层刻度器工作的原理框图,设计地层刻度器,首先必须了解电磁波电阻率(EWR PHASE4)测井仪的工作原理。
EWR-PHASE4测井仪根据电磁波(在地层)传播原理,采用双频(1&2MHZ)四相位技术,通过测量两个接收电极之间接收到的信号幅度比见公式6,相位差见公式5.再通过解释软件,得到探测深度不同的四条幅度电阻率曲线和四条相位电阻率曲线。
由于发射频率小于10MHZ时,仪器测量结果(幅度衰减和相位差)与介电常数ε和介质磁导率μ关系很小,通常把这两个参数设为常数,那么从上述的公式中可以看出,测量结果就主要与地层电导率σ有关。
这样,测量的四条幅度衰减结果换算出四条幅度电阻率曲线和通过测量的四条相位差结果换算出四条相位电阻率曲线。
与实际地层真电阻率会有一定的误差,该误差最好通过标准刻度器进行校正。
电磁波电阻率(EWR PHASE4)测井仪在均匀介质中发射的电磁场呈柱状对称,电磁场中Z点的相位和幅度应为:公式中的系数a和b为:其中,系数a和b都包括地层介电系数ε和地层磁导率μ,当频率小于10MHZ时,它们可以看成常数。
EWR-PHASE4仪器的两只接收探头,与发射探头的距离为Z1和Z2该两点之间接收信号的幅度差和相位差为:测量过程如下:电极1到电极4按时序循环交替向周围介质发射1MHZ和2MHZ的正弦波。
接收电极5和电极6分别接收到电磁波经过地层传播后,经过幅度衰减和相位滞后的波形(如下图)。
EWR-PHASE4仪器工作波形时序如上图,电极5为近接收,电极6为远接收。
当仪器工作时,电极5接收的信号为一列串行波,顺序为:深探测、中探测、浅探测和超浅探测。
随钻电磁波传播电阻率测井

4地层倾角对随钻电阻率测井的影响范宜仁等2013年发表文章“倾斜各向异性地层随钻电磁波响应模拟”,文中通过坐标变换的方法,基于柱坐标系时域有限差分(FDTD)模拟和分析了倾斜各向异性地层随钻电磁波响应。
为了研究各向异性系数对相位(幅度)电阻率的影响,模拟了不同各向异性系数条件下倾斜地层随钻电磁波测井响应,模拟结果表明:当地层倾角小于30°时,不同水平电阻率条件下,各向异性系数对视电阻率影响较小,随钻电磁波视电阻率主要反映地层水平电阻率;随地层倾角增大,视电阻率受各向异性的影响增大,且地层水平电阻率越低,随钻电磁波测井响应受地层各向异性影响越大,相位电阻率比幅度电阻率更加敏感;当地层倾角较大时,随着各向异性系数增大,视电阻率甚至会超过垂直电阻率。
为了研究不同发射频率对各向异性系数的敏感性,模拟了地层各向异性系数为√10,水平电阻率为0.5Ω·m时不同地层倾角条件下随钻电磁波响应,模拟结果显示:随发射频率增大,视电阻率受各向异性影响增强,当地层倾角较大时,随钻电磁波视电阻率甚至会远远超过垂直电阻率。
夏宏泉等2008年发表文章“随钻电阻率测井的环境影响校正主次因素分析”,文中分析了随钻电阻率测井中地层倾角(或井斜角)等环境因素对测井结果的影响及其校正方法。
在大斜度井和水平井测井中,大部分仪器的测量值要受到井斜角或地层倾角的影响,实测曲线出现“异常”和“变形”。
在直井中,如果地层是水平的,则仪器测量的是水平电阻率。
但如果仪器在钻开同样地层的水平井时,则测量电流会流过地层的水平面和垂直面,视电阻率测量值R a是水平电阻率R h和垂直电阻率R v合成的[3-6]。
假设在水平井中地层存在各向异性,垂直层界面方向的电阻率为R v,平行层界面方向的电阻率为R h,径向上(与地层平行的方向)为宏观各向同性,可推导出地层视电阻率R a、R h、R v的关系为⁄R a=Rℎ√cos2θ+sin2θλ⁄式中,λ为地层电阻率的各向异性系数,λ=(R v/R h)0.5;θ为相对倾角,即井轴与地层面法线的相对夹角,可由井斜角和地层倾角求得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1987
随钻密度测井
(二)、随钻测井的一般知识
1、随钻测量MWD
包括井眼几何形状(井眼尺寸、井斜、方位等)的测量,与钻井工程相关的工程参数(钻压、钻具扭矩、井眼压力、转速、环空压力等钻井参数)的测量,以及对自然伽马、电阻率的测量。主要是测量工程数据,并具有单一性。
2、随钻测井LWD
在随钻测量MWD的基础上,增加了识别岩性和孔隙性、判识储层的方法如中子、密度等,能对储层做出基本的评价。其测量数据具有综合性。
随钻电磁波电阻率测量技术
一、引言
提高服务质量,降低服务成本是工程技术服务努力追求的目标。随钻测井相对于电缆测井具有多方面的优势:一是随钻测井资料是在泥浆滤液侵入地层之前或侵入很浅时测得的,能够更真实地反映原状地层的地质特征,提高地层评价精度;二是随钻测井在钻井的同时完成测井作业,减少了井场钻机占用时间,从钻井一测井一体化服务的整体上节省成本;三是在某些大斜度井或特殊地质环境(如膨胀粘土或高压地层)钻井时,电缆测井困难或风险大以致不能进行作业时,随钻测井是唯一可用的测井技术。因此,随钻测井既提高了地层评价测井数据的质量,又减少了钻井时间,降低了成本。
而导向钻井技术在水平井施工中是一项常用的关键技术。在轨迹控制中,根据实际情况和地层剖面要求,可采用定向造斜和转盘钻交替进行调整井身轨迹,以对井身轨迹进行有效控制,使得实钻轨迹沿设计和预测趋势发展,以达目标点,而且使井眼光滑畅通,有利于携砂、清除岩屑、保证钻进安全。
如何进行水平井的井眼轨迹控制,是水平井施工技术的核心,并贯穿于钻井的全过程。其井眼控制工艺技术主要包括:钻具组合选用、测量技术、井底预测技术、影响轨迹控制因素分析和实时综合分析技术等几个方面。井眼轨迹控制技术,随着水平井在不同区块施工、不同区块每口井的地质情况变化、在控制过程中遇到的问题不同等,其表现有以下几个方面:一是实钻地质情况复杂多变,油层埋深与设计深度差异大,井眼轨迹需要随地质情况变化及时进行调整;二是水平段油层埋深在横向上变化不一,有从低部位到高部位的,也有从高部位到低部位的,还有先从低部位到高部位然后再下降的;三是不同区块工具造斜能力和地层对井眼轨迹的影响不同;四是测量数据的相对滞后,对地质导向和井眼轨迹的预测和调整带来的困难;五是老平台钻井的防碰问题,在水平井钻井中更为突出,在水平井的直井段、造斜段及水平段,都存在防碰问题,要特别小心。
3、随钻地质导向测井
具有了相对完善的随钻测井系列,其数据采集和数据分析具有实时性。
地质导向是上世纪90年代发展起来的前沿钻井技术。所谓地质导向,就是使用随钻测量数据和随钻地层评价测井数据,以人机对话方式来控制井眼轨迹的技术。由美国Spsrrysun公司生产的FEWD地质参数无线随钻测量仪,是近年来在不断改进MWD和LWD工具的结构、性能和可靠性基础上发展起来的一种新型无线随钻测量仪,与LWD随钻测井仪相比,FEWD具有测点靠近钻头、探测深度大、垂直分辨率高的优点。它将地质参数测量传感器与工程参数传感器组合在一起,根据设置内容顺序采集最新的工程、地质数据,统一编码后,由脉冲信号发生器以正脉冲的方式,通过钻柱内的钻井液传至地面。地面设备对钻井液脉冲进行检波、编码、处理后,形成数据和测井曲线。FEWD除进行轨迹几何导向(三维导向)外,主要用于地质导向和随钻地层评价。
硬地层随钻声波测井
1969
第一代泥浆脉冲遥测系统
1995
随钻电阻率、密度成像测井
1970
第二代泥浆脉冲遥测系统
1998
软地层随钻声波测井
1978
泥浆遥测系统Teleco商业化
2001
随钻核磁共振成像测井
1984
随钻电磁波电阻率测井
2003
随钻地层压力测试
1986
随钻中子孔隙度测井
2005
新一代随钻测井系统Scope
地质导向钻井技术的关键,是把以前的几何导向变为地质导向。以前打井,只要钻遇事先确定的几何目标,即使没有发现油层,钻井工作也算大功告成。而随着勘探开发一体化(称为滚动勘探开发)的发展,钻井不再是单纯为了打井,“打井为了出油”的认识被更多人所重视。地质导向钻井让目标不再固定不变,而是根据油层的位置随时调整,并根据预测确定的固定“几何靶”变成了追踪目的层的实际的不确定“移动靶”;同时,部分测井项目,也由原来的完井后进行,变为随钻随测,在钻进中进行,既缩短了钻井周期,又减少了部分测井费用。
(一)、随钻测井技术发展
现代随钻测井技术大致可分为三代:
90年代初以前属于第一代,提供基本的方位测量和地层评价测量,在水平井和大斜度井用作“保险”测井数据。但其主要应用是在井眼附近进行地层和构造相关对比,以及地层评价。随钻测井确保能采集到在确定产能和经济性、减少钻井风险时所需要的测井数据。
90年代初和中期属于第二代,方位测量、井眼成像、自动导向马达及正演模拟软件相继推出,通过地质导向精确地确定井眼轨迹。司钻能用实时方位测量,并结合井眼成像、地层倾角和密度数据,发现目标位置。这些进展导致了多种类型的井,尤其是大斜度井、超长井和水平井的钻井取得很高的成功率。
从90年代中期到目前属于第三代,称为钻井测井(Logging for Drilling),提供界定地质环境、钻井过程、采集实时信息时所要求的数据。
表1 随钻测井技术发展
年份
里程碑技术
年份利
1993
电阻率、密度、中子三组合随钻测井
1930
电缆传输的随钻电阻率测井
1994