构造函数解不等式小题
巧用“构造函数法”证明不等式

解 析 : 题 的通 常想 法 是 用 数 学 归 纳 法 , 必 须 本 但
先证 明加强 后 的不 等式 , 很难 构 造或 不 可能 构 造。
若 从n 联 ,是 数(= 在 问1] 能 l去 想它 函 _) 区 [ 2 厂 ÷ , 2 上 定 分即 } d l表 函 , ) 1 的 积 ,』 n 示 数 ( = ÷ =2 , 与 轴 成 图 的 积左 + + + 围 的 形 面 , l … 边- ) = 。看 n 矩 的 ・ 毒 成个 形 面 1 n
㈩ : 丝
: 边
>
0 ∈[, ) 恒成立 , 在 0+ 上
・
. .
( ÷( 了…1 ) 1 ) 1 ( + 1 ) +
.
函数
) x 0+ ) 在 E[ , 上单调递增 。
1 2 。
.
.
- ) 厂 ≥八0 = 。 ( ) 0
=
、
・Hale Waihona Puke . ∈(, 0 +∞) ,
:
.
・
.
n 时 ,( >0 ∈N , ) 恒成立 。
2, )则
故存 在最小 的正整 数 N=1使 得 当 n≥N 成 ,
立。
= ’
, n 一、 () /
・
2 1 n = 厂l ’ + 一 -
>
例 4 已知 0 b c , , ∈R 且 l <1 { <1 l , b 0 l ,
l , l <1求证 :6+6 +∞ >一1 c o c 。
解 析 : 据 o b c三 个 变 量 是 对 称 的 , 以 看 根 ,, 可
.
.
函数 n 单调递增 , ) 即 n ≥- 2 = ) 厂 ) (
构造函数法解不等式问题

构造函数法解不等式问题首先,我们来考虑一道简单的例题:求解不等式:x^2-4x+3>0解题思路:1.首先,我们将不等式转化成方程:x^2-4x+3=02.求出方程的根:x1=1,x2=33.通过观察,我们知道函数f(x)=x^2-4x+3在x<1和x>3时是负值,在1<x<3时是正值。
4.根据函数的性质,我们可以得出结论:不等式x^2-4x+3>0的解集为x∈(1,3)。
通过这个例题,我们可以看出,构造函数法的基本思路就是将不等式转化为方程,并找出方程的根,然后利用函数的性质来确定不等式的解集。
接下来,我们来考虑一个稍微复杂一些的例题:求解不等式:x^3-5x^2+4x+20>0解题思路:1.首先,我们将不等式转化成方程:x^3-5x^2+4x+20=02.求出方程的根:x1≈-2.77,x2≈3.39,x3≈4.393.通过观察,我们知道函数f(x)=x^3-5x^2+4x+20在x<-2.77和3.39<x<4.39时是负值,在-2.77<x<3.39时是正值。
4.根据函数的性质,我们可以得出结论:不等式x^3-5x^2+4x+20>0的解集为x∈(-2.77,3.39)∪(4.39,+∞)。
通过这个例题,我们可以看出,在求解不等式时,我们首先将不等式转化成方程,然后求出方程的根。
最后,通过观察函数的性质,确定不等式的解集。
除了上述的例题,构造函数法还可以用于求解复杂的不等式问题。
下面,我将通过一个具体的例题来进一步说明。
例题:求解不等式:2x^3-11x^2+17x-6>0解题思路:1.首先,我们将不等式转化成方程:2x^3-11x^2+17x-6=02.求出方程的根:x1=1,x2≈2.24,x3≈2.763.通过观察,我们知道函数f(x)=2x^3-11x^2+17x-6在x<1和2.24<x<2.76时是负值,在1<x<2.24和2.76<x时是正值。
构造函数 解决不等式及相关问题

例5 已知z ( 12… ) ∑ 五: , , >o , 且 ,
求∑ = 的 小 . 1 最 值
分 析 : 接 去 求该 式 的最 小 值 不 太 好 下 手 , 直 因为 三
个 数之 和虽 然 为 定值 , 去求 三 数 平 方 的倒 数 之 和 的最 但 值 , 有 现成 的公 式 或方 法 去 套. 考 虑 构 造 函 数 _ z 没 可 厂 ) (
分 析 :这样 一 类 问 题传 统 方 法 是 采 用 反 证 法 , 明 证 起 来较 为罗 唆 . 题 目 的 两 个 条 件 , 其 稍 加 变 形 变 为 由 对
0
分 析 : 是 个 不 等 式 问 题 , 是 利 用 不 等 式 知 识 这 只 直 接 去 证 不 太 好 证 . 以 考 虑 转 化 为 函 数 问题 , 这 里 可 而
“
o
变量 , 问题 便 可 转 化 为一 个 函 数 问 题 . 原 证 明 :令 f( ) ( +f 口 c 1 a 一 6 ) +b +
c 为该 方程 的两 个实 根 , 因此 △ ≥O 即 :? o≥O 所 以 , a 一一 ,
“
则 函 数 f a 是 关 于 a的一 次 函数 , 以 f a 是 单 () 所 ()
分 析 : 使 得 能 以 a, , 要 b C为 边 构 成 三 角 形 , 只需 n, 6C 意两数之和大于第三个数 , a ,任 由 +b 一 C , n 且 , b f 均 为 正 数 , 以 显 然 C最 大 , 此 只需 a+ 6 C ,, 所 因 >
凸 函 数 很 简 单 的 证 明 出来 .
面没有变量 , 因此 可 以 考虑 任 选 n,b,c之 一 作 为 一 个
构造函数法解决导数不等式问题(二)

构造函数法解决导数不等式问题(二)考点四构造F (x )=f (x )±g (x ),F (x )=f (x )g (x ),F (x )=f (x )g (x )类型的辅助函数【方法总结】(1)若F (x )=f (x )+ax n +b ,则F ′(x )=f ′(x )+nax n -1;(2)若F (x )=f (x )±g (x ),则F ′(x )=f ′(x )±g ′(x );(3)若F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )+f (x )g ′(x );(4)若F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2.由此得到结论:(1)出现f ′(x )+nax n -1形式,构造函数F (x )=f (x )+ax n +b ;(2)出现f ′(x )±g ′(x )形式,构造函数F (x )=f (x )±g (x );(3)出现f ′(x )g (x )+f (x )g ′(x )形式,构造函数F (x )=f (x )g (x );(4)出现f ′(x )g (x )-f (x )g ′(x )形式,构造函数F (x )=f (x )g (x ).【例题选讲】[例1](1)函数f (x )的定义域为R ,f (-1)=3,对任意x ∈R ,f ′(x )<3,则f (x )>3x +6的解集为()A .{x |-1<x <1}B .{x |x >-1}C .{x |x <-1}D .R答案C解析设g (x )=f (x )-(3x +6),则g ′(x )=f ′(x )-3<0,所以g (x )为减函数,又g (-1)=f (-1)-3=0,所以根据单调性可知g (x )>0的解集是{x |x <-1}.(2)定义在R 上的函数f (x )满足f (1)=1,且对∀x ∈R ,f ′(x )<12,则不等式f (log 2x )>log 2x +12的解集为________.答案(0,2)解析构造函数F (x )=f (x )-12x ,则F ′(x )=f ′(x )-12<0,∴函数F (x )在R 上是减函数.由f (1)=1,得F (1)=f (1)-12=1-12=12∴f (log 2x )>log 2x +12⇔f (log 2x )-12log 2x >12⇔F (log 2x )>F (1)⇔log 2x <1⇔0<x <2.(3)定义在R 上的可导函数f (x )满足f (1)=1,且2f ′(x )>1,当x ∈-π2,3π2时,不等式f (2cos x )>32-2sin 2x2的解集为()A B -π3,C D -π3,答案D解析令g (x )=f (x )-x 2-12,则g ′(x )=f ′(x )-12>0,∴g (x )在R 上单调递增,且g (1)=f (1)-12-12=0,∵f (2cos x )-32+2sin 2x 2=f (2cos x )-2cos x 2-12=g (2cos x ),∴f (2cos x )>32-2sin 2x2,即g (2cos x )>0,∴2cos x >1,又x ∈-π2,3π2,∴x -π3,(4)f (x )是定义在R 上的偶函数,当x ≥0时,f ′(x )>2x .若f (a -2)-f (a )≥4-4a ,则实数a 的取值范围是()A .(-∞,1]B .[1,+∞)C .(-∞,2]D .[2,+∞)答案A解析令G (x )=f (x )-x 2,则G ′(x )=f ′(x )-2x .当x ∈[0,+∞)时,G ′(x )=f ′(x )-2x >0,∴G (x )在[0,+∞)上是增函数.由f (a -2)-f (a )≥4-4a ,得f (a -2)-(a -2)2≥f (a )-a 2,即G (a -2)≥G (a ),又f (x )是定义在R 上的偶函数,知G (x )是偶函数.故|a -2|≥|a |,解得a ≤1.(5)已知f ′(x )是函数f (x )的导数,且f (-x )=f (x ),当x ≥0时,f ′(x )>3x ,则不等式f (x )-f (x -1)<3x -32的解集是()A -12,B ∞CD ∞答案D解析设g (x )=f (x )-32x 2,则g ′(x )=f ′(x )-3x .因为当x ≥0时,f ′(x )>3x ,所以当x ≥0时,g ′(x )=f ′(x )-3x >0,即g (x )在[0,+∞)上单调递增.因为f (-x )=f (x ),所以g (-x )=f (-x )-32x 2=f (x )-32x 2=g (x ),所以g (x )是偶函数.因为f (x )-f (x -1)<3x -32,所以f (x )-32x 2<f (x -1)-32(x -1)2,即g (x )<g (x -1),所以g (|x |)<g (|x -1|),则|x |<|x -1|,解得x <12.故选D .(6)设f ′(x )是奇函数f (x )(x ∈R )的导数,当x >0时,f (x )+f ′(x )·x ln x <0,则不等式(x -1)f (x )>0的解集为________.答案(0,1)解析由于函数y =f (x )为R 上的奇函数,则f (0)=0.当x >0时,f (x )+f ′(x )·x ln x <0,则f (1)<0.当x >0时,构造函数g (x )=f (x )ln x ,则g ′(x )=f ′(x )ln x +f (x )·1x =f (x )+f ′(x )·x ln xx <0,所以函数y =g (x )在区间(0,+∞)上单调递减,且g (1)=0.当0<x <1时,ln x <0,g (x )>g (1)=0,即f (x )ln x >0,此时f (x )<0;当x >1时,ln x >0,g (x )<g (1)=0,即f (x )ln x <0,此时f (x )<0.又f (1)<0,所以当x >0时,f (x )<0.由于函数y =f (x )为R 上的奇函数,当x <0时,f (x )>0.对于不等式(x -1)f (x )>0,当x <0时,x -1<0,则f (x )<0,不符合题意;当0<x <1时,x -1<0,则f (x )<0,符合题意;当x >1时,x -1>0,则f (x )>0,不符合题意.综上所述,不等式(x -1)f (x )>0的解集为(0,1).(7)(多选)定义在(0,+∞)上的函数f (x )的导函数为f ′(x ),且(x +1)f ′(x )-f (x )<x 2+2x 对任意x ∈(0,+∞)恒成立.下列结论正确的是()A.2f(2)-3f(1)>5B.若f(1)=2,x>1,则f(x)>x2+12x+12C.f(3)-2f(1)<7D.若f(1)=2,0<x<1,则f(x)>x2+12x+12解析CD答案设函数g(x)=f(x)-x2x+1,则g′(x)=(x+1)f′(x)-f(x)-(x2+2x)(x+1)2.因为(x+1)f′(x)-f(x)<x2+2x对任意x∈(0,+∞)恒成立,所以g′(x)<0,故g(x)在(0,+∞)上单调递减,从而g(1)>g(2)>g(3),整理得2f(2)-3f(1)<5,f(3)-2f(1)<7,故A错误,C正确.当0<x<1时,若f(1)=2,因为g(x)在(0,+∞)上单调递减,所以g(x)>g(1)=12,即f(x)-x2x+1>12,即f(x)>x2+12x+12,故D正确,从而B不正确.即结论正确的是CD.(8)已知函数f(x),对∀x∈R,都有f(-x)+f(x)=x2,在(0,+∞)上,f′(x)<x,若f(4-m)-f(m)≥8-4m,则实数m的取值范围为()A.[-2,2]B.[2,+∞)C.[0,+∞)D.(-∞,-2]∪[2,+∞)答案B解析因为对∀x∈R,都有f(-x)+f(x)=x2,所以f(0)=0,设g(x)=f(x)-12x2,则g(-x)=f(-x)-12x2,所以g(x)+g(-x)=f(x)-12x2+f(-x)-12x2=0,又g(0)=f(0)-0=0,所以g(x)为奇函数,且f(x)=g(x)+12x2,所以f(4-m)-f(m)=g(4-m)+12(4-m)2-g(m)+12m2=g(4-m)-g(m)+8-4m≥8-4m,则g(4-m)-g(m)≥0,即g(4-m)≥g(m).当x>0时,g′(x)=f′(x)-x<0,所以g(x)在(0,+∞)上为减函数,又g(x)为奇函数,所以4-m≤m,解得m≥2.(9)已知函数y=f(x)是R上的可导函数,当x≠0时,有f′(x)+f(x)x >0,则函数F(x)=xf(x)+1x的零点个数是()A.0B.1C.2D.3答案B解析依题意,记g(x)=xf(x),则g′(x)=xf′(x)+f(x),g(0)=0,当x>0时,g′(x)=x[f′(x)+f(x)x]>0,g(x)是增函数,g(x)>0;当x<0时,g′(x)=x[f′(x)+f(x)x]<0,g(x)是减函数,g(x)>0.在同一坐标系内画出函数y=g(x)与y=-1x的大致图象,结合图象可知,它们共有1个公共点,因此函数F(x)=xf(x)+1x的零点个数是1.(10)函数f(x)满足x2f′(x)+2xf(x)=e xx,f(2)=e28,当x>0时,f(x)的极值状态是___________.答案没有极大值也没有极小值解析因为x2f′(x)+2xf(x)=e x x,关键因为等式右边函数的原函数不容易找出,因此把等式左边函数的原函数找出来,设h (x )=x 2f (x ),则h ′(x )=e x x ,且h (2)=e 22,因为x 2f ′(x )+2xf (x )=e x x ,则f ′(x )=e x -2h (x )x 3,判断f (x )的极值状态就是判断f ′(x )的正负,设g (x )=e x -2h (x ),则g ′(x )=e x -2h ′(x )=e x -2·e xx =e x ·x -2x ,这里涉及二阶导,g (x )在x =2处取得最小值0,因此g (x )≥0,则f ′(x )≥0,故f (x )没有极大值也没有极小值(有难度,但不失为好题目).【对点训练】1.已知函数f (x )的定义域为R ,f (-1)=2,且对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为()A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)1.答案B解析由f (x )>2x +4,得f (x )-2x -4>0.设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2.因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增.又F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,故选B .2.已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为.2.答案{x |x <-1或x >1}解析设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减,∴x 2>1,即不等式的解集为{x |x <-1或x >1}.3.已知定义域为R 的函数f (x )的导数为f ′(x ),且满足f ′(x )<2x ,f (2)=3,则不等式f (x )>x 2-1的解集是()A .(-∞,-1)B .(-1,+∞)C .(2,+∞)D .(-∞,2)3.答案D解析令g (x )=f (x )-x 2,则g ′(x )=f ′(x )-2x <0,即函数g (x )在R 上单调递减.又不等式f (x )>x 2-1可化为f (x )-x 2>-1,而g (2)=f (2)-22=3-4=-1,所以不等式可化为g (x )>g (2),故不等式的解集为(-∞,2).故选D .4.定义在(0,+∞)上的函数f (x )满足x 2f ′(x )+1>0,f (1)=4,则不等式f (x )>1x +3的解集为________.4.解析(1,+∞)答案由x 2f ′(x )+1>0得f ′(x )+1x 2>0,构造函数g (x )=f (x )-1x -3,则g ′(x )=f ′(x )+1x2>0,即g (x )在(0,+∞)上是增函数.又f (1)=4,则g (1)=f (1)-1-3=0,从而g (x )>0的解集为(1,+∞),即f (x )>1x+3的解集为(1,+∞).5.设f (x )为R 上的奇函数,当x ≥0时,f ′(x )-cos x <0,则不等式f (x )<sin x 的解集为.5.答案(0,+∞)解析令φ(x )=f (x )-sin x ,∴当x ≥0时,φ′(x )=f ′(x )-cos x <0,∴φ(x )在[0,+∞)上单调递减,又f (x )为R 上的奇函数,∴φ(x )为R 上的奇函数,∴φ(x )在(-∞,0]上单调递减,故φ(x )在R上单调递减且φ(0)=0,不等式f (x )<sin x 可化为f (x )-sin x <0,即φ(x )<0,即φ(x )<φ(0),故x >0,∴原不等式的解集为(0,+∞).6.设f (x )和g (x )分别是定义在R 上的奇函数和偶函数,f ′(x ),g ′(x )分别为其导数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是()A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)6.答案D解析令h (x )=f (x )g (x ),当x <0时,h ′(x )=f ′(x )g (x )+f (x )g ′(x )>0,则h (x )在(-∞,0)上单调递增,又f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以h (x )为奇函数,所以h (x )在(0,+∞)上单调递增.又由g (-3)=0,可得h (-3)=-h (3)=0,所以当x <-3或0<x <3时,h (x )<0,故选D .7.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时,有()A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )7.解析C答案令F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,所以F (x )在R 上单调递减.又a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ).又f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).8.设函数f (x )在R 上存在导数f ′(x ),对任意x ∈R ,都有f (-x )+f (x )=x 2,在(0,+∞)上f ′(x )<x ,若f (2-m )+f (-m )-m 2+2m -2≥0,则实数m 的取值范围为__________.8.答案[1,+∞)解析令g (x )=f (x )-x 22,则g (-x )+g (x )=0,g (x )是R 上的奇函数.又当x ∈(0,+∞)时,g ′(x )=f ′(x )-x <0,所以g (x )在(0,+∞)上单调递减,所以g (x )是R 上的单调减函数.原不等式等价于g (2-m )+g (-m )≥0,g (2-m )≥-g (-m )=g (m ),所以2-m ≤m ,m ≥1.9.已知f (x )是定义在R 上的减函数,其导函数f ′(x )满足f (x )f ′(x )+x <1,则下列结论正确的是()A .对于任意x ∈R ,f (x )<0B .对于任意x ∈R ,f (x )>0C .当且仅当x ∈(-∞,1),f (x )<0D .当且仅当x ∈(1,+∞),f (x )>09.答案B解析∵f (x )f ′(x )+x <1,f (x )是定义在R 上的减函数,f ′(x )<0,∴f (x )+xf ′(x )>f ′(x ),∴f (x )+(x -1)f ′(x )>0,∴[(x -1)f (x )]′>0,∴函数y =(x -1)f (x )在R 上单调递增,而x =1时,y =0,则x <1时,y <0,故f (x )>0.x >1时,x -1>0,y >0,故f (x )>0,∴f (x )>0对任意x ∈R 成立,故选B .10.已知y =f (x )为R 上的可导函数,当x ≠0时,f ′(x )+f (x )x >0,若g (x )=f (x )+1x,则函数g (x )的零点个数为()A .1B .2C .0D .0或210.答案C 解析令h (x )=xf (x ),因为当x ≠0时,xf ′(x )+f (x )x>0,所以h ′(x )x >0,因此当x >0时,h ′(x )>0,当x <0时,h ′(x )<0,又h (0)=0,易知当x ≠0时,h (x )>0,又g (x )=h (x )+1x,所以g (x )≠0,故函数g (x )的零点个数为0考点五构造具体函数关系式【方法总结】这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题.【例题选讲】[例1](1)(2020·全国Ⅰ)若2a +log 2a =4b +2log 4b ,则()A .a >2bB .a <2bC .a >b 2D .a <b 2答案B解析由指数和对数的运算性质得2a +log 2a =4b +2log 4b =22b +log 2b .令f (x )=2x +log 2x ,则f (x )在(0,+∞)上单调递增.又∵22b +log 2b <22b +log 2b +1=22b +log 2(2b ),∴2a +log 2a <22b +log 2(2b ),即f (a )<f (2b ),∴a <2b .故选B .(2)已知α,β∈-π2,π2,且αsin α-βsin β>0,则下列结论正确的是()A .α>βB .α2>β2C .α<βD .α+β>0答案B解析构造函数f (x )=x sin x ,则f ′(x )=sin x +x cos x .当x ∈0,π2时,f ′(x )≥0,f (x )是增函数,当x ∈-π2,f ′(x )<0,f (x )是减函数,又f (x )为偶函数,∴αsin α-βsin β>0⇔αsin α>βsin β⇔f (α)>f (β)⇔f (|α|)>f (|β|)⇔|α|>|β|⇔α2>β2,故选B .(3)(多选)若0<x 1<x 2<1,则()A .x 1+ln x 2>x 2+ln x 1B .x 1+ln x 2<x 2+ln x 1C .12e x x >21e x x D .12e x x <21e x x 答案AC解析令f (x )=x -ln x ,∴f ′(x )=1-1x =x -1x,当0<x <1时,f ′(x )<0,∴f (x )在(0,1)上单调递减.∵0<x 1<x 2<1,∴f (x 2)<f (x 1),即x 2-ln x 2<x 1-ln x 1,即x 1+ln x 2>x 2+ln x 1.设g (x )=e xx ,则g ′(x )=x e x -e x x 2=e x (x -1)x 2.当0<x <1时,g ′(x )<0,即g (x )在(0,1)上单调递减,∵0<x 1<x 2<1,∴g (x 2)<g (x 1),即22e x x <11e x x ,∴12e x x >21e x x ,故选AC .A .(a +1)a +2>(a +2)a+1B .log a (a +1)>log a +1(a +2)C .log a (a +1)<a +1a D .log a +1(a +2)<a +2a +1答案ABD解析若A 成立,则(a +1)a +2>(a +2)a +1,两边取自然对数,得(a +2)ln(a +1)>(a +1)ln(a+2),因为a ≥2,所以ln(a +1)a +1>ln(a +2)a +2.令f (x )=ln xx ,则x ≥3,f ′(x )=1-ln x x 2<0,故f (x )在[3,+∞)上单调递减,所以ln(a +1)a +1>ln(a +2)a +2,故A 成立;若B 成立,则log a (a +1)>log a +1(a +2),即ln(a +1)ln a >ln(a +2)ln(a +1),设g (x )=ln(x +1)ln x ,x ≥2,则g ′(x )=ln x x +1-ln(x +1)x (ln x )2=x ln x -(x +1)ln(x +1)x ·(x +1)(ln x )2,令h (x )=x ln x ,x ≥2,则h ′(x )=ln x +1>0,故h (x )在[2,+∞)上单调递增,所以x ln x -(x +1)ln(x +1)<0,所以g ′(x )<0,故g (x )在[2,+∞)上单调递减,所以ln(a +1)ln a >ln(a +2)ln(a +1),故B 成立;若C 成立,则log a (a +1)<a +1a ,即ln(a +1)a +1<ln a a ,由A 知f (x )=ln xx 在[2,e)上单调递增,在(e ,+∞)上单调递减,取a =2,故C 不成立;若D 成立,则log a +1(a +2)<a +2a +1,即ln(a +2)a +2<ln(a +1)a +1,由A 知D 成立.故选ABD .(6)(2021·全国乙)设a =2ln1.01,b =ln1.02,c =1.04-1,则()A .a <b <cB .b <c <aC .b <a <cD .c <a <b答案B 解析b -c =ln1.02- 1.04+1,设f (x )=ln(x +1)-1+2x +1,则b -c =f (0.02),f ′(x )=1x +1-221+2x=1+2x -(x +1)(x +1)1+2x,当x >0时,x +1=(x +1)2>1+2x ,故当x >0时,f ′(x )=1+2x -(x +1)(x +1)1+2x<0,所以f (x )在(0,+∞)上单调递减,所以f (0.02)<f (0)=0,即b <c .a -c =2ln 1.01- 1.04+1,设g (x )=2ln(x +1)-1+4x +1,则a -c =g (0.01),g ′(x )=2x +1-421+4x =2[1+4x -(x +1)](x +1)1+4x,当0<x <2时,4x +1=2x +2x +1>x 2+2x +1=(x +1)2=x +1,故当0<x <2时,g ′(x )>0,所以g (x )在(0,2)上单调递增,所以g (0.01)>g (0)=0,故c <a ,从而有b <c <a ,故选B .(7)已知函数f (x )的定义域为(0,+∞),导函数为f ′(x ),若xf ′(x )-f (x )=x ln x ,且=1e ,则()A .f 0B .f (x )在x =1e 处取得极大值C .0<f (1)<1D .f (x )在(0,+∞)上单调递增答案ACD解析由题知函数f (x )的定义域为(0,+∞),导函数为f ′(x ),xf ′(x )-f (x )=x ln x ,即满足xf ′(x )-f (x )x 2=ln x x .因为f (x )x ′=xf ′(x )-f (x )x 2,所以f (x )x ′=ln x x ,所以可设f (x )x =12ln 2x +b (b 为常数),所以f (x )=12x ln 2x +bx .因为=12·1e ln 21e +b e =1e ,解得b =12,所以f (x )=12ln 2x +12x ,所以f (1)=12,满足0<f (1)<1,所以C 正确;因为f ′(x )=12ln 2x +ln x +12=12(ln x +1)2≥0,且仅有f 0,所以B 错误,A ,D 正确.故选ACD .【对点训练】1.若a =ln 22,b =ln 33,c =ln 66,则()A .a <b <cB .c <b <aC .c <a <bD .b <a <c1.答案C解析设f (x )=ln xx ,则f ′(x )=1-ln x x2,所以f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,即有f (6)<f (4)<f (3),所以ln 66<ln 44=ln 22<ln 33,故c <a <b .2.设a ,b >0,则“a >b ”是“a a >b b ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.答案D解析因为a ,b >0,由a a >b b 可得a ln a >b ln b .设函数f (x )=x ln x ,则f ′(x )=ln x +1,由f ′(x )>0可得x >1e ,所以函数f (x )=x ln x a >b 不一定有a ln a >b ln b ,即a a >b b ,所以充分性不成立;当a a >b b ,即a ln a >b ln b 时,不一定有a >b ,所以必要性不成立,所以“a >b ”是“a a >b b ”的既不充分也不必要条件,故选D .3.已知0<x 1<x 2<1,则()A .ln x 1x 2>ln x 2x 1B .ln x 1x 2<ln x 2x 1C .x 2ln x 1>x 1ln x 2D .x 2ln x 1<x 1ln x 23.答案D解析设f (x )=x ln x ,则f ′(x )=ln x +1,由f ′(x )>0,得x >1e,所以函数f (x )调递增;由f ′(x )<0,得0<x <1e f (x )f (x )在(0,1)上不单调,所以f (x 1)与f (x 2)的大小无法确定,从而排除A ,B ;设g (x )=ln xx ,则g ′(x )=1-ln x x 2,由g ′(x )>0,得0<x <e,即函数g (x )在(0,e)上单调递增,故函数g (x )在(0,1)上单调递增,所以g (x 1)<g (x 2),即ln x 1x 1<ln x 2x 2,所以x 2ln x 1<x 1ln x 2.故选D .4.已知a >b >0,a b =b a ,有如下四个结论:(1)b <e ;(2)b >e ;(3)存在a ,b 满足a ·b <e 2;(4)存在a ,b 满足a ·b >e 2,则正确结论的序号是()A .(1)(3)B .(2)(3)C .(1)(4)D .(2)(4)4.答案C解析由a b =b a 两边取对数得b ln a =a ln b ⇒ln a a =ln b b .对于y =ln xx,由图象易知当b <e<a 时,才可能满足题意.故(1)正确,(2)错误;另外,由a b =b a ,令a =4,b =2,则a >e ,b <e ,ab =8>e 2,故(4)正确,(3)错误.因此,选C .5.设x ,y ,z 为正数,且2x =3y =5z ,则()A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z5.答案D解析令2x =3y =5z =t (t >1),两边取对数得x =log 2t =ln t ln 2,y =log 3t =ln t ln 3,z =log 5t =ln tln 5,从而2x =2ln 2ln t ,3y =3ln 3ln t ,5z =5ln 5ln t .由t >1知,要比较三者大小,只需比较2ln 2,3ln 3,5ln 5的大小.又2ln 2=4ln 4,e<3<4<5,由y =ln x x 在(e ,+∞)上单调递减可知,ln 33>ln 44>ln 55,从而3ln 3<4ln 4<5ln 5,3y <2x <5z ,故选D .6.已知a <5且a e 5=5e a ,b <4且b e 4=4e b ,c <3且c e 3=3e c ,则()A .c <b <a B .b <c <a C .a <c <bD .a <b <c6.答案D解析方法一由已知e 55=e a a ,e 44=e bb,e 33=e c c ,设f (x )=e xx ,则f ′(x )=(x -1)e x x 2,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以f (3)<f (4)<f (5),f (c )<f (b )<f (a ),所以a <b <c .方法二设e x=e 55x ,①,e x =e 44x ,②,e x=e 33x ,③,a ,b ,c 依次为方程①②③的根,结合图象,方程的根可以看作两个图象的交点的横坐标,∵e 55>e 44>e 33,由图可知a <b <c.7.若0<x 1<x 2<a ,都有x 2ln x 1-x 1ln x 2≤x 1-x 2成立,则a 的最大值为()A .12B .1C .eD .2e7.答案B解析ln x 1x 1-ln x 2x 2≤1x 2-1x 1,即ln x 1x 1+1x 1≤ln x 2x 2+1x 2,令f (x )=ln x x +1x,则f (x )在(0,a )上为增函数,所以f ′(x )≥0在(0,a )上恒成立,f ′(x )=-ln xx 2,令f ′(x )=0,解得x =1,所以f (x )在(0,1)上为增函数,在(1,+∞)上为减函数,所以a ≤1,所以a 的最大值为1,选B .8.下列四个命题:①ln 5<5ln 2;②ln π>πe;③;④3eln 2>42.其中真命题的个数是()A .1B .2C .3D .48.答案B解析构造函数f (x )=ln xx ,则f ′(x )=1-ln x x 2,当x ∈(0,e)时,f ′(x )>0,f (x )单调递增;当x ∈(e ,+∞)时,f ′(x )<0,f (x )单调递减.①ln 5<5ln 2⇒2ln 5<5ln 2⇒ln 55<ln 22,又2<5<e ,故错误.②ln π>πe ⇒2ln π>πe ⇒ln ππ>12e=ln e e ,又e>π>e ,故正确.③⇒11ln 2<ln 11=2ln 11⇒ln 22=ln 44<ln 1111,又4>11>e ,故正确.④3eln 2>42⇒322eln 2>2×322⇒3232ln 22>ln e e ,显然错误.因此选B .A .0<a <b <1B .b <a <0C .1<a <bD .a =b 10.答案ABD 解析因为实数a ,b 满足2a +3a =3b +2b ,所以设f (x )=2x +3x ,g (x )=3x +2x ,在同一平面直角坐标系中作出f (x )与g (x )的图象如图所示.由图象可知:①当x <0时,f (x )<g (x ),所以当2a +3a =3b +2b 时,b <a <0,故B 正确;②当x =0或1时,f (x )=g (x ),所以当2a +3a =3b +2b 时,a =b =0或a =b =1,故D 正确;③当0<x <1时,f (x )>g (x ),所以当2a +3a =3b +2b 时,0<a <b <1,故A 正确;④当x >1时,f (x )<g (x ),所以当2a +3a =3b +2b 时,1<b <a ,故C 错误.故选ABD .11.已知函数f (x )=e x x -ax ,x ∈(0,+∞),当x 2>x 1时,不等式f (x 1)x 2<f (x 2)x 1恒成立,则实数a 的取值范围为()A .(-∞,e]B .(-∞,e)C ∞D ∞,e 211.答案D 解析因为x ∈(0,+∞),所以x 1f (x 1)<x 2f (x 2),即函数g (x )=xf (x )=e x -ax 2在x ∈(0,+∞)上是单调增函数,则g ′(x )=e x -2ax ≥0在x ∈(0,+∞)上恒成立,所以2a ≤e x x在x ∈(0,+∞)上恒成立.令m (x )=e x x ,则m ′(x )=(x -1)e x x 2,当x ∈(0,1)时,m ′(x )<0,m (x )单调递减,当x ∈(1,+∞)时,m ′(x )>0,m (x )单调递增,所以2a ≤m (x )min =m (1)=e ,所以a ≤e 2.故选D .12.设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (e)=1e,则下列结论正确的是()A .f (x )在(0,+∞)单调递增B .f (x )在(0,+∞)单调递减C .f (x )在(0,+∞)上有极大值D .f (x )在(0,+∞)上有极小值12.答案B 解析由x 2f ′(x )+xf (x )=ln x ,得xf ′(x )+f (x )=ln x x ,构造F ′(x )=xf ′(x )+f (x )=ln x x ,F (x )=xf (x )=ln 2x 2+m ,当x =e 时,xf (x )=ln 2x 2+m ,又e f (e)=ln 2e 2+m ,所以m =12,所以f (x )=ln 2x +12x,所以f ′(x )=-(ln x -1)22x 2≤0,f (x )在(0,+∞)单调递减,选B .13.(多选)下列不等式中恒成立的有()A .ln(x +1)≥x x +1,x >-1B .ln x x >0C .e x ≥x +1D .cos x ≥1-12x 213.答案ACD 解析A 选项,因为x >-1,令t =x +1>0,f (t )=ln t +1t -1,则f ′(t )=1t -1t 2=t -1t2,所以当0<t <1时,f ′(t )=t -1t 2<0,即f (t )单调递减;当t >1时,f ′(t )=t -1t 2>0,即f (t )单调递增,所以f (t )min =f (1)=0,即f (t )=ln t +1t -1≥0,即ln t ≥t -1t,即ln(x +1)≥x x +1,x >-1恒成立,故A 正确;B 选项,令f (x )=ln x x >0,则f ′(x )=1x -=2x -x 2-12x 2=-(x -1)22x 2≤0显然恒成立,所以f (x )=ln x x >0上单调递减,又f (1)=0,所以当x ∈(0,1)时,f (x )>f (1)=0,即ln x B 错;C 选项,令f (x )=e x -x -1,则f ′(x )=e x -1,当x >0时,f ′(x )=e x -1>0,所以f (x )单调递增;当x <0时,f ′(x )=e x -1<0,所以f (x )单调递减,则f (x )≥f (0)=0,即e x ≥x +1恒成立,故C 正确;D 选项,令f (x )=cos x -1+12x 2,则f ′(x )=-sin x +x ,令h (x )=f ′(x )=-sin x +x ,则h ′(x )=-cos x +1≥0恒成立,即函数f ′(x )=-sin x +x 单调递增,又f ′(0)=0,所以当x >0时,f ′(x )>0,即f (x )=cos x -1+12x 2单调递增;当x <0时,f ′(x )<0,即f (x )=cos x -1+122单调递减,所以f (x )min =f (0)=0,因此cos x ≥1-12x 2恒成立,故D 正确.。
用构造函数的方法解决有关不等式问题

江苏省泗 洪 中学 张飞 飞
在中学数 学教 材中, 对 于不 等式 的证 明, 一般 只介绍两 种方 法. 一种是作差法, 一种是求 商法。但是有些不等式 的证 明却不 能用这些方法解决威 者说用这些方法解决起来难度大。 我们可 以尝试用构造函数 的方法 ,通过求导证 明不等式。下面我结合 具体的实例来 阐述这种数学方法。
成立 的函数 g ) 有无穷多个 。 解: ( 1 ) 令p ) ) ) =a 一
成立 ,
一 2 a x + l n x < 0 , 对 ∈ ( 1 , + o o ) 恒
因 为 p ’ )= ( 2 。一 1 江- 2 n+ ( x - 1 ) l ( 2 a - 1 ) x - 1 ] 一
为增函数 , 所 以 ) ) 1 ) ( 1 ) = 1.
所以 土 <
< 1 ,
设 ) ) + } , ( 0 < < 1 ) , 则 ) ) ) ,
所 以在 区间( 1 , + 。 。 ) 上, 满足 ) < g ) ) 恒成立 的函数 g )
.
一( 2 a - 1 ) x  ̄ - 2 a x + 1 一=
f ( t ) = I n t + ÷一 1 ,
, ( £ ) = } 专= .
( i ) 当0 ≥6时, t ≥1 ( £ ) ≥0 , 即 £ ) 单调递增 。当 拄1 时, J ( t ) m  ̄ = l n l + l 一 1 = 0 . 所 以f it ) i0 > . ( i i ) 当a < b , £ < 1 时 ( ) < 0 , 即 ) 单调递减 。当 t = l时 一=
例 1 若Ⅱ 。 b > O , 求证 l n a 一 1 n 6 ≥1 -b. 证 明: 令 = , 则 = 一 1 因为 a > O , b > O , 所 以, 构 造 函数
【2021高考数学压轴题】构造函数证明不等式

2021高考数学压轴题命题区间探究与突破专题第一篇函数与导数专题04巧妙构造函数,应用导数证明不等式问题一.方法综述利用导数证明不等式是近几年高考命题的一种热点题型.利用导数证明不等式,关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里给出几种常用的构造技巧.二.解题策略类型一“比较法”构造差函数证明不等式【例1】【2020·湖南长沙一中月考】已知函数()ln f x ax x =-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若21,a e ⎛⎤∈-∞- ⎥⎝⎦,求证:()12ax f x ax xe -≥-.【解析】(Ⅰ)由题意得()11'ax f x a x x-=-=,①当0a ≤时,则()'0f x <在()0,+∞上恒成立,∴()f x 在()0,+∞上单调递减.②当0a >时,则当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()()'0f x f x >,单调递增,当10x a ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '<,单调递减.综上:当0a ≤时,()f x 在()0,+∞上单调递减;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.(Ⅱ)令()()12ax g x f x ax xe-=-+1ln ax xe ax x -=--,则()111'ax ax g x eaxea x--=+--()()()111111ax ax ax xe ax e x x--+-⎛⎫=+-=⎪⎝⎭,设()11ax r x xe-=-,则()()1'1ax r x ax e -=+,∵10ax e ->,∴当10,x a⎛⎫∈- ⎪⎝⎭时,()()'0r x r x >,单调递增;当1,x a⎛⎫∈-+∞ ⎪⎝⎭时,()()0r x r x '<,单调递减.∴()2max 1110r x r a ae ⎛⎫⎛⎫=-=-+≤ ⎪ ⎪⎝⎭⎝⎭(因为21a e ≤-),∴110ax e x--≤.∴()g x 在10,a ⎛⎫- ⎪⎝⎭上单调递减,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递增,∴()min1g x g a ⎛⎫=- ⎪⎝⎭,设(210,t e a⎤=-∈⎦,则()221ln 1(0)t g h t t t e a e ⎛⎫-==-+<≤ ⎪⎝⎭,()211'0h t e t=-≤,()h t 在(20,e ⎤⎦上递减,∴()()20h t h e ≥=;∴()0g x ≥,故()12ax f x ax xe-≥-.说明:判断11ax e x--的符号时,还可以用以下方法判断:由110ax e x --=得到1ln x a x -=,设()1ln x p x x -=,则()2ln 2'x p x x -=,当2x e >时,()'0p x >;当20x e <<时,()'0p x <.从而()p x 在()20,e 上递减,在()2,e +∞上递增.∴()()22min 1p x p e e ==-.当21a e ≤-时,1ln x a x -≤,即110ax e x--≤.【指点迷津】当题目中给出简单的基本初等函数,例如()()3 f x x g x ln x =,=,进而证明在某个取值范围内不等式()()f x g x ≥成立时,可以类比作差法,构造函数()()()()()()h x f x g x x g x f x ϕ=-或=-,进而证明()()00min max h x x ϕ≥≤或即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明()()()00g x f x >>的前提下,也可以类比作商法,构造函数()()()()()f x f x h x xg x g x ϕ=(()=),进而证明()()()11min max h x x ϕ≥≤.【举一反三】【2020·河北衡水中学月考】已知函数1()ln (1),f x x a a R x=+-∈.(Ⅰ)若()0f x ≥,求实数a 取值的集合;(Ⅱ)证明:212ln (2)x e x x e x x+≥-++-.【解析】(Ⅰ)由已知,有221()(0)a x af x x x x x-'=-=>当0a ≤时,1(ln 202f a =-+<,与条件()0f x ≥矛盾,当0a >时,若(0,)x a ∈,则()0f x '<,()f x 单调递减,若(,)x a ∈+∞,则()0f x '>,则()f x 单调递增.所以()f x 在(0,)+∞上有最小值1()ln (1)ln 1f a a a a a a=+-=+-,由题意()0f x ≥,所以ln 10a a +-≥.令()ln 1g x x x =-+,所以11()1x g x x x-'=-=,当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,)x ∈+∞时,()0g x '<,()g x 单调递减,所以()g x 在(0,)+∞上有最大值(1)0g =,所以()ln 10g x x x =-+≤,ln 10a a -+≤,ln 10a a -+=,1a =,综上,当()0f x ≥时,实数a 取值的集合为{}1;(Ⅱ)证明:由(Ⅰ)可知:1a =时,()0f x ≥,即1ln 1x x ≥-在0x >时恒成立.要证212ln (2)x e x x e x x+≥-++-,只需证当0x >时,2(2)10x e x e x ----≥令2()(2)1(0)x h x e x e x x =---->()2(2)x h x e x e '=---,令()2(2)x u x e x e =---,则()2x u x e '=-,令()20x u x e '=-=,解得ln 2x =,所以,函数()u x 在(0,ln 2)内单调递减,在(ln 2,)+∞上单调递增.即函数()h x '在(0,ln 2)内单调递减,在(ln 2,)+∞上单调递增.而(0)1(2)30h e e '=--=->.(ln 2)(1)0h h '<'=∴存在0(0,ln 2)x ∈,使得0()0h x '=当0(0,)x x ∈时,()0,()h x h x '>单调递增;当0(,1)x x ∈时,()0,()h x h x '<单调递减.当(1,)x ∈+∞时,()0,()h x h x '>单调递增,又(0)110,(1)11(2)0h h e e =-==----=,∴对0,()0x h x ∀>≥恒成立,即2(2)10x e x e x ----≥,综上可得:212ln (2)x e x x e x x+≥-++-成立.类型二“拆分法”构造两函数证明不等式【例2】【2020·安徽阜阳统测】设函数()1f x x x=-,()ln g x t x =,其中()0,1x ∈,t 为正实数.(1)若()f x 的图象总在函数()g x 的图象的下方,求实数t 的取值范围;(2)设()()()221ln 1e 11x H x x x x x ⎛⎫=-++-- ⎪⎝⎭,证明:对任意()0,1x ∈,都有()0H x >.【解析】(1)因为函数()f x 的图象恒在()g x 的图象的下方,所以()()1ln 0f x g x x t x x-=--<在区间()0,1上恒成立.设()1ln F x x t x x =--,其中()0,1x ∈,所以()222111t x tx F x x x x-+'=+-=,其中24t ∆=-,0t >.①当240t - ,即02t < 时,()0F x ' ,所以函数()F x 在()0,1上单调递增,()()10F x F <=,故()()0f x g x -<成立,满足题意.②当240t ->,即2t >时,设()()2101x x tx x θ=-+<<,则()x θ图象的对称轴12tx =>,()01θ=,()120t θ=-<,所以()x θ在()0,1上存在唯一实根,设为1x ,则()1,1x x ∈,()0x θ<,()0F x '<,所以()F x 在()1,1x 上单调递减,此时()()10F x F >=,不合题意.综上可得,实数t 的取值范围是(]0,2.(2)证明:由题意得()()21e ln 1e 1xx H x x x x ⎛⎫=---+ ⎪⎝⎭()()21e 1e ln xx x x x x x--+=-,因为当()0,1x ∈时,e 10x x x -+>,ln 0x <,所以()()()21e 10e ln x xx x x H x x x--+>⇔>2e 1e 1ln x x x x x x x-⇔<-+.令()()e 101x h x x x =--<<,则()e 10xh x '=->,所以()h x 在()0,1上单调递增,()()00h x h >=,即e 1x x >+,所以()2e 1111xx x x x x x -+>+-+=+,从而2e e e 11x xx x x x <-++.由(1)知当2t =时,12ln 0x x x --<在()0,1x ∈上恒成立,整理得212ln x x x ->.令()()2e 011xm x x x =<<+,则要证()0H x >,只需证()2m x <.因为()()()222e 101x x m x x-'=>+,所以()m x 在()0,1上单调递增,所以()()e122m x m <=<,即()2m x <在()0,1上恒成立.综上可得,对任意()0,1x ∈,都有()0H x >成立.【指点迷津】当所要证明的不等式由几个基本初等函数通过相乘以及相加的形式组成时,如果对其直接求导,得到的导函数往往给人一种“扑朔迷离”“不知所措”的感觉.这时可以将原不等式合理拆分为()()f x g x ≤的形式,进而证明()()max min f x g x ≤即可,此时注意配合使用导数工具.在拆分的过程中,一定要注意合理性的把握,一般以能利用导数进行最值分析为拆分标准.【举一反三】【2020届福建厦门双十中学月考】已知函数22()1ln ()f x x a x ax a R =-+-∈.(1)讨论()f x 的单调区间;(2)当0a =且(0,1)x ∈,求证:()11x f x x e x+-<.【解析】(1)函数()f x 定义域为(0,)+∞,21()2f x a x a x '=-+-2221(21)(1)a x ax ax ax x x--+-==.①若0a =时,则()0f x <,()f x 在(0,)+∞上单调递减;②若0a >时,1102a a >>-,令1()02f x x a >⇒<-或1x a>.又0x >,()f x ∴在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增;③若0a <时,1102a a ->>,令1()0f x x a>⇒<或12x a >-.又0x >,()f x ∴在10,2a ⎛⎫- ⎪⎝⎭上单调递减,在1,2a ⎛⎫-+∞ ⎪⎝⎭上单调递增;(2)要证()11x f x x e x +-<,只需证1ln 11x x x e x-+-<,(0,1)x ∈ ,只需证()2(1ln )1x x x x x e -<+-,设()(1ln )g x x x =-,()2()1xh x x x e =+-,()ln 0g x x '=->在(0,1)x ∈上恒成立,所以()g x 在(0,1)上单调递增.所以()(1)1g x g <=,()2()2(2)(1)0x x h x x x e x x e '=--+=-+->,所以()h x 在(0,1)上单调递增,所以()(0)1h x h >=,所以当(0,1)x ∈时,()()g x h x <,即原不等式成立.类型三“换元法”构造函数证明不等式【例3】【2020湖北宜昌一中期中】已知函数()()1xf x e a x =--有两个零点.(1)求实数a 的取值范围;(2)设1x 、2x 是()f x 的两个零点,证明:1212x x x x <+⋅.【解析】(1)函数()()1x f x e a x =--,所以()xf x e a '=-,当0a ≤时,()0f x '>在R 上恒成立,所以()f x 在R 上单调递增,()f x 至多只有一个零点,不符合题意,当0a >时,由()0f x '=得ln x a =,所以(),ln x a ∈-∞时,()0f x '<,()f x 单调递减,()ln ,x a ∈+∞时,()0f x '>,()f x 单调递增,所以ln x a =时()f x 取得极小值,也是最小值,()f x 要有两个零点,则()ln 0f a <,即()2ln 0a a -<,解得2a e >,所以ln 2a >,当1ln x a =<时,得()10f e =>,当2ln ln x a a =>时,()()22ln 2ln 2ln 1f a a a a a a a a =-+=-+,设()2ln 1a a a ϕ=-+,则()2210a a a aϕ-'=-=>所以()a ϕ单调递增,则()()22140a e e ϕϕ>=+->,所以()()2ln 2ln 10f a a a a =-+>,所以()f x 在区间()1,ln a 上有且只有一个零点,在()ln ,2ln a a 上有且只有一个零点,所以满足()f x 有两个零点的a 的取值范围为2()e +∞.(2)1x 、2x 是()f x 的两个零点,则()()120f x f x ==,要证1212x x x x <+⋅,即证()()12111x x --<,根据()()120f x f x ==,可知()111x e a x =-,()221xe a x =-,即证()()12122111x x e x x a+--=<,即证122x x e a +<,即证122ln x x a +<,即证212ln x a x <-,设1ln x a <,2ln x a >,由(1)知()f x 在()ln ,a +∞上单调递增,故只需证明()()212ln f x f a x <-,而()()21f x f x =,所以只需证()()112ln f x f a x <-令()()()2ln g x f a x f x =--,且ln x a<所以()222ln x x a g x e ax a a e =-+-,ln x a <,()22222x x xx x a a e ae g x e a e e +-'=--+=-()2xxe a e -=-<所以()g x 在(),ln a -∞上单调递减,所以()()()()ln 2ln ln ln 0g x g a f a a f a >=--=,所以()()2ln f a x f x ->在(),ln a -∞上恒成立,所以()()112ln f a x f x ->,故原命题得证.【指点迷津】若两个变元x 1,x 2之间联系“亲密”,我们可以通过计算、化简,将所证明的不等式整体转化为关于m(x 1,x 2)的表达式(其中m(x 1,x 2)为x 1,x 2组合成的表达式),进而使用换元令m(x 1,x 2)=t ,使所要证明的不等式转化为关于t 的表达式,进而用导数法进行证明,因此,换元的本质是消元.【举一反三】【2020山西太原五中期中】已知函数2()2ln f x x x x =++.(1)求曲线()y f x =在点(1,(1))f 处的切线方程.(2)若正实数12,x x 满足12()()4f x f x +=,求证:122x x +≥.【解析】(1)2(1)2ln111=2f =++,切点为(1,2).2()21f x x x'=++,(1)5k f '==.切线为:25(1)y x -=-,即530x y --=.(2)2212111222()()2ln 2ln 4f x f x x x x x x x +=+++++=221112222ln 2ln 4x x x x x x +++++=.212121212()()42(ln )x x x x x x x x +++=+-令12x x t =,()ln g t t t =-,0t >,11()1t g t t t-'=-=,(0,1)t ∈,()0g t '<,()g t 为减函数,(1,)t ∈+∞,()0g t '>,()g t 为增函数,min ()(1)1g t g ==,所以()1g t ≥.即21212()()426x x x x +++≥+=.得:1212(3)(2)0x x x x +++-≥,得到1220x x +-≥,即:122x x +≥.类型四“转化法”构造函数证明不等式【例4】【2020·天津南开中学月考】已知函数1()ln f x x a x x=-+.(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【解析】(1)()f x 的定义域为()0,+∞,()222111a x ax f x x x x -+=--+-'=.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在()0,+∞单调递减.(ii )若2a >,令()0f x '=得,42a x =或42a x =.当0,,22a a x ⎛⎛⎫+∈⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当,22a a x ⎛+∈ ⎪⎝⎭时,()0f x '>.所以()f x在0,,,22a a ⎛⎛⎫++∞ ⎪ ⎪ ⎪⎝⎭⎝⎭单调递减,在,22a a ⎛-+ ⎪⎝⎭单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于()()12121221212121222ln ln ln ln 2ln 11221f x f x x x x x x a a ax x x x x x x x x x ----=--+=-+=-+----,所以()()12122f x f x a x x -<--等价于22212ln 0x x x -+<.设函数()12ln g x x x x=-+,由(1)知,()g x 在()0,+∞单调递减,又()10g =,从而当()1,x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即()()12122f x f x a x x -<--.【指点迷津】在关于x 1,x 2的双变元问题中,若无法将所要证明的不等式整体转化为关于m(x 1,x 2)的表达式,则考虑将不等式转化为函数的单调性问题进行处理,进而实现消元的目的.【举一反三】【2020·吉林省实验期末】已知函数()2ln 2f x x x ax x =-+,a ∈R .(Ⅰ)若()f x 在()0,∞+内单调递减,求实数a 的取值范围;(Ⅱ)若函数()f x 有两个极值点分别为1x ,2x ,证明:1212x x a+>.【解析】(I )()ln 24f x x ax +'=-.∴()f x 在()0,∞+内单调递减,∴()ln 240f x x ax =+-≤在()0,∞+内恒成立,即ln 24x a x x ≥+在()0,∞+内恒成立.令()ln 2x g x x x =+,则()21ln xg x x --'=,∴当10e x <<时,()0g x '>,即()g x 在10,e ⎛⎫ ⎪⎝⎭内为增函数;当1x e >时,()0g x '<,即()g x 在1,e ⎛⎫+∞ ⎪⎝⎭内为减函数.∴()g x 的最大值为1g e e ⎛⎫= ⎪⎝⎭,∴e ,4a ⎡⎫∈+∞⎪⎢⎣⎭(Ⅱ)若函数()f x 有两个极值点分别为1x ,2x ,则()ln 240f x x ax =+-='在()0,∞+内有两根1x ,2x ,由(I ),知e 04a <<.由1122ln 240ln 240x ax x ax +-=⎧⎨+-=⎩,两式相减,得()1212ln ln 4x x a x x -=-.不妨设120x x <<,∴要证明1212x x a +>,只需证明()()121212142ln ln x x a x x a x x +<--.即证明()1212122ln ln x x x x x x ->-+,亦即证明12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+.令函数.∴22(1)'()0(1)x h x x x --=≤+,即函数()h x 在(]0,1内单调递减.∴()0,1x ∈时,有()()10h x h >=,∴2(1)ln 1x x x ->+.即不等式12112221ln 1x x xx x x ⎛⎫- ⎪⎝⎭>+成立.综上,得1212x x a+>.三.强化训练1.【2020·辽宁本溪一高期末】已知a R ∈,函数2()x f x e ax =+.(1)()f x '是函数数()f x 的导函数,记()()g x f x '=,若()g x 在区间(,1]-∞上为单调函数,求实数a 的取值范围;(2)设实数0a >,求证:对任意实数12,x x ()12x x ≠,总有()()121222f x f x x x f ++⎛⎫<⎪⎝⎭成立.附:简单复合函数求导法则为[()]()f ax b af ax b ''+=+.【解析】(1)由已知得()2x f x e ax '=+,记()2x g x e ax =+,则()2xg x e a '=+.①若0a ≥,()0g x '>,()g x 在定义域上单调递增,符合题意;②若0a <,令()0g x '=解得()ln 2x a =-,()g x '自身单调递增,要使导函数()g x 在区间(],1-∞上为单调函数,则需()ln 21a -≥,解得2ea ≤-,此时导函数()g x 在区间(],1-∞上为单调递减函数.综合①②得使导函数()f x '在区间(],1-∞上为单调函数的a 的取值范围是[),0,2e ⎛⎤-∞-+∞ ⎥⎝⎦.(2)因为12x x ≠,不妨设12x x <,取1x 为自变量构造函数,()()()1212122f x f x x x F x f ++⎛⎫=-⎪⎝⎭,则其导数为()()11211222f x x x F x f '+⎛⎫''=- ⎪⎝⎭()121122x x f f x ⎡+⎤⎛⎫''=- ⎪⎢⎥⎝⎭⎣⎦0a > ()2xf x e ax ∴'=+在R 上单调递增而且12211022x x x x x +--=>,所以()1212x x f f x +⎛⎫''> ⎪⎝⎭,即()10F x '>.故关于1x 的函数()1F x 单调递增,()()120F x F x <=即()()121222f x f x x x f ++⎛⎫<⎪⎝⎭证得.2.【2020·湖北随州一中期末】高三月考(理))已知函数()ln f x ax x =-.(Ⅰ)求()f x 的极值;(Ⅱ)若1a =-,1b ≥,()()xg x f x be =+,求证:()0g x >.【解析】(Ⅰ)()()10f x a x x'=->,当0a ≤时,()0f x '<恒成立,则()f x 在()0,∞+上单调递减,()f x 无极值;当0a >时,令()0f x '>,得1x a >;令()0f x '<,得10x a<<,则()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,()f x 有极小值为1ln a +,无极大值;(Ⅱ)当1a =-,1b =时,()()ln 0xg x e x x x =-->,()11x g x e x'=--,令()()h x g x '=,则()210x h x e x =+>',所以()h x 在()0,∞+上单调递增.又1302h ⎛⎫=< ⎪⎝⎭,()120h e =->,所以01,12x ⎛⎫∃∈ ⎪⎝⎭,使得()000110x h x e x =--=,即0011x e x =+,所以函数()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以函数()g x 的最小值为()00000001ln 1ln xg x e x x x x x =--=+--,又函数11ln y x x x=+--在1,12⎛⎫⎪⎝⎭上是单调减函数,所以()011ln1110g x >+--=>,又1b ≥,()()x xf x be f x e +≥+,故()0g x >.3.【2020·湖北黄石一高月考】已知函数2()1f x e x e =+--.(1)若()f x ax e ≥-对x ∈R 恒成立,求实数a 的值;(2)若存在不相等的实数1x ,2x ,满足12()()0f x f x +=,证明:122x x +<.【解析】(1)令()()()(1)1x g x f x ax e e a x =--=+--,则()1x g x e a '=+-,由题意,知()0g x ≥对x ∈R 恒成立,等价min ()0g x ≥.当1a ≤时,由()0g x '≥知()(1)1x g x e a x =+--在R 上单调递增.因为1(1)(1)10g a e-=---<,所以1a ≤不合题意;当1a >时,若(,ln(1))x a ∈-∞-,则()0g x '<,若(ln(1),)x a ∈-+∞,则()0g x '>,所以,()g x 在(,ln(1))a -∞-单调递减,在(ln(1),)a -+∞上单调递增.所以min ()(ln(1))2(1)ln(1)0g x g a a a a =-=-+--≥记()2(1)ln(1)(1)h a a a a a =-+-->,则()ln(1)h a a '=--.易知()h a 在(1,2)单调递增,在(2,)+∞单调递减,所以max ()(2)0h a h ==,即2(1)ln(1)0a a a -+--≤.而min ()2(1)ln(1)0g x a a a =-+--≥,所以2(1)ln(1)0a a a -+--=,解得2a =.(2)因为()()120f x f x +=,所以12122(1)x x e e x x e +++=+.因为12122122,x x x x e e ex x ++≥≠,所以121222x x x x e e e++>令12x x t +=,则22220t e t e +--<.记2()2220tm t e t e =+--<,则2()10t m t e '=+>,所以()m t 在R 上单调递增.又(2)0m =,由22220te t e +--<,得()(2)m t m <,所以2t <,即122x x +<.4.【2020·浙江高温州三中期末】已知函数()11114x x e e ax a f x ++⎛⎫=-+- ⎪⎝⎭,其中2.718e =⋅⋅⋅是自然对数的底数,()()'g x f x =是函数()f x 的导数.(1)若()g x 是R 上的单调函数,求a 的值;(2)当78a =时,求证:若12x x ≠,且122x x +=-,则()()122f x f x +>.【解析】(1)()()1112'1x x e e ax g x f x ++⎛⎫=-- ⎝=⎪⎭,()()11'1x x e e x g x a a ++=---,由题意()110x e ax a G x +=---≥恒成立,由于()10G -=,所以()'10G -=,解得1a =.方法一:消元求导死算(2)()11171488x x e x e f x ++⎛⎫=-- ⎪⎝⎭()111731484x x e e x ++⎛⎫=-++ ⎪⎝⎭,令1x t +=,120t t +=,不妨设210t x =+>,()173484t th e e t t ⎛⎫=-+⎪⎝⎭,令()()()H t h t h t =+-173173484484t tt t e e t e e --⎛⎫⎛⎫=-++++⎪ ⎪⎝⎭⎝⎭,原题即证明当0t >时,()2H t >,()171171288288't tt t e e t e e H t t --⎛⎫⎛⎫=---+-⎪ ⎪⎝⎭⎝⎭()()()()171288t t t t t t t te e e e t e e e e ----=+--+--()()()()711208216t t t t t t t t e e e e t e e e e ----⎡⎤⎡⎤=+--+-+-≥⎢⎥⎣⎦⎣⎦,其中()()11'1022t t t t e e t e e --⎡⎤--=+-≥⎢⎥⎣⎦,因为()02H =,所以当0t >时,()2H t >,得证.5.【2020·安徽黄山期末】已知函数()()2e 12e x x f x a a x =+--.(1)当0a <时,讨论()f x 的单调性;(2)若()f x 有两个不同零点1x ,2x ,证明:1a >且120x x +<.【解析】(1)()()()()22e 12e 1e 12e 1x x x x f x a a a '=+--=-+.因为0a <,由()0f x '=得,0x =或1ln 2x a ⎛⎫=- ⎪⎝⎭.i )1ln 02a ⎛⎫-< ⎪⎝⎭即12a <-时,()f x 在1,ln 2a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭单调递减,在1ln ,02a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭单调递增,在()0,∞+单调递减;ii )1ln 02a ⎛⎫-=⎪⎝⎭即12a =-时,()f x 在(),-∞+∞单调递减;iii )1ln 02a ⎛⎫->⎪⎝⎭即102a -<<时,()f x 在(),0-∞单调递减,在10,ln 2a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭单调递增,在1ln ,2a ⎛⎫⎛⎫-+∞ ⎪⎪⎝⎭⎝⎭单调递减.(2)由(1)知,12a <-时,()f x 的极小值为111ln 1ln 10242f a a a ⎛⎫⎛⎫⎛⎫-=--->> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,102a -<<时,()f x 的极小值为()0110f a =->>,12a =-时,()f x 在(),-∞+∞单调,故0a <时,()f x 至多有一个零点.当0a ≥时,易知()f x 在(),0-∞单调递减,在()0,∞+单调递增.要使()f x 有两个零点,则()00f <,即120a a +-<,得1a >.令()()()F x f x f x =--,(0x >),则()()()F x f x f x '''=+-()()22e 12e 1x x a a =+--()()22e 12e 1x x a a --++--()()()2e e 1e e 2e e 20x x x x x x a ---=+++-++-≥,所以()F x 在0x >时单调递增,()()00F x F >=,()()f x f x >-.不妨设12x x <,则10x <,20x >,20x -<,()()()122f x f x f x =>-.由()f x 在(),0-∞单调递减得,12x x <-,即120x x +<.6.【2020·山东东营期末】已知函数()()sin ,ln f x x a x g x x m x =-=+.(1)求证:当1a ≤时,对任意()()0,,0x f x ∈+∞>恒成立;(2)求函数()g x 的极值;(3)当12a =时,若存在()12,0,x x ∈+∞且12x x ≠,满足()()()()1122f x g x f x g x +=+,求证:12249x x m <.【解析】(1)()()sin 1cos f x x a x f x a x '=-∴=-,1cos 1x -≤≤ ,()11cos 0a f x a x '∴≤=-≥,,()sin f x x a x =-在()0+∞,上为增函数,所以当()0,x ∈+∞时,恒有()()00f x f >=成立;(2)由()()()ln ,10m x mg x x m x g x x x x+'=+∴=+=>当()00m g x '≥>,()g x 在()0+∞,上为增函数,无极值当()()0,00;0m x m g x x m g x ''<<<-<>->,,()g x 在()0m -,上为减函数,在(),m -+∞上为增函数,()x m x ∴=-,g 有极小值()ln m m m -+-,无极大值,综上知:当()0m g x ≥,无极值,当()0m g x <,有极小值()ln m m m -+-,无极大值.(3)当()11sin 22a f x x x ==-,在()0+∞,上为增函数,由(2)知,当0m ≥,()g x 在()0+∞,上为增函数,这时,()()f x g x +在()0+∞,上为增函数,所以不可能存在()12,0,x x ∈+∞,满足()()()()1122f x g x f x g x +=+且12x x ≠所以有0m <现不防设()()()()1211220x x f x g x f x g x <<+=+,得:111222112sin ln 2sin ln 22x x m x x x m x -+=-+()()()2121211ln ln 2sin sin 2m x x x x x x --=---①1122sin sin x x x x -<-()()212111sin sin 22x x x x -->--②由①②式可得:()()()2121211ln ln 22m x x x x x x -->---即()()21213ln ln 02m x x x x -->->又1221ln ln ,ln ln 0x x x x <->2121302ln ln x x m x x -∴->⨯>-③又要证12249x x m <,即证21294m x x >120,0m x x <<<即证m ->……④所以由③式知,只需证明:2121ln ln x x x x ->-2121ln 1x x x x ->设211x t x =>,只需证1ln t t ->即证()ln 01t t ->>令()()ln 1h t t t =>由()()()2101h t t h t -'=>>,在()1+∞,上为增函数,()()10h t h∴>=2121ln ln x x x x -∴>-成立,所以由③知,0m ->>成立,所以1224 9x xm 成立.7.【2020届四川省成都一诊】已知函数.(1)求曲线在点处的切线方程;(2)设,证明:.【解析】(1)由题意,又,所以,因此在点处的切线方程为,即(2)证明:因为,所以由于,等价于,令,设函数当时,,所以,所以在上是单调递增函数,又,所以,所以,即等价于,令,设函数当时,,所以,所以在上是单调递减函数,又,所以所以,即综上①②可得:.8.【2020·天津南开期末】已知2()46ln f x x x x =--,(1)求()f x 在(1,(1))f 处的切线方程以及()f x 的单调性;(2)对(1,)x ∀∈+∞,有21()()6112xf x f x x k x ⎛⎫'->+-- ⎪⎝⎭恒成立,求k 的最大整数解;(3)令()()4(6)ln g x f x x a x =+--,若()g x 有两个零点分别为1x ,2x ()12x x <且0x 为()g x 的唯一的极值点,求证:12034x x x +>.【解析】(1)2()46ln f x x x x=-- 所以定义域为()0,+¥6()24f x x x'∴=--;(1)8f '=-;(1)3f =-所以切线方程为85y x =-+;2()(1)(3)f x x x x'=+-,令()0f x '>解得3x >令()0f x '<解得03x <<所以()f x 的单调递减区间为()0,3,单调递增区间为(3,)+∞.(2)21()()6112xf x f x x k x ⎛⎫'->+-- ⎪⎝⎭等价于min ln ()1x x x k h x x +<=-;22ln ()(1)x x h x x --'∴=-,记()2ln m x x x =--,1()10m x x'=->,所以()m x 为(1,)+∞上的递增函数,且(3)1ln 30m =-<,(4)2ln 40m =->,所以0(3,4)x ∃∈,使得()00m x =即002ln 0x x --=,所以()h x 在()01,x 上递减,在()0,x +∞上递增,且()000min 000ln ()(3,4)1x x x h x h x x x +===∈-;所以k 的最大整数解为3.(3)2()ln g x x a x =-,()20ag x x x x -'=-==得0x =,当x ⎛∈ ⎝,()0g x '<,x ⎫∈+∞⎪⎪⎭,()0g x '>;所以()g x在⎛ ⎝上单调递减,⎫+∞⎪⎪⎭上单调递增,而要使()g x 有两个零点,要满足()00g x <,即2ln 02g a a e =-<⇒>;因为10x <<2x >,令21x t x =(1)t >,由()()12f x f x =,221122ln ln x a x x a x ∴-=-,即:2221111ln ln x a x t x a tx -=-,212ln 1a tx t ∴=-而要证12034x x x +>,只需证1(31)t x +>即证:221(31)8t x a+>即:22ln (31)81a t t a t +>-由0a >,1t >只需证:22(31)ln 880t t t +-+>,令22()(31)ln 88h t t t t =+-+,则1()(186)ln 76h t t t t t'=+-++令1()(186)ln 76n t t t t t =+-++,则261()18ln 110t n t t t -'=++>(1)t >故()n t 在(1,)+∞上递增,()(1)0n t n >=;故()h t 在(1,)+∞上递增,()(1)0h t h >=;12034x x x ∴+>.9.【2020·湖南洪湖期末】已知函数()1,f x xlnx ax a R=++∈(1)当0x >时,若关于x 的不等式()0f x ≥恒成立,求a 的取值范围;(2)当*n N ∈时,证明:2223122421n n n ln ln ln n n n +<+++<++ .【解析】(1)由()0f x ≥,得ln 10x x ax ++≥(0)x >.整理,得1ln a x x -≤+恒成立,即min 1ln a x x ⎛⎫-≤+ ⎪⎝⎭.令()1ln F x x x =+.则()22111'x F x x x x-=-=.∴函数()F x 在()0,1上单调递减,在()1,+∞上单调递增.∴函数()1ln F x x x=+的最小值为()11F =.∴1a -≤,即1a ≥-.∴a 的取值范围是[)1,-+∞.(2)∵24n n +为数列()()112n n ⎧⎫⎪⎪⎨⎬++⎪⎪⎩⎭的前n 项和,1n n +为数列()11n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和.∴只需证明()()211ln 12n n n n +<++()11n n <+即可.由(1),当1a =-时,有ln 10x x x -+≥,即1ln x x x ≥-.令11n x n +=>,即得1ln 11n n n n +>-+11n =+.∴2211ln 1n n n +⎛⎫> ⎪+⎝⎭()()112n n >++1112n n =-++.现证明()211ln 1n n n n +<+,即<==()*现证明12ln (1)x x x x <->.构造函数()12ln G x x x x=--()1x ≥,则()212'1G x x x =+-22210x x x-+=≥.∴函数()G x 在[)1,-+∞上是增函数,即()()10G x G ≥=.∴当1x >时,有()0G x >,即12ln x x x <-成立.令x =,则()*式成立.综上,得()()211ln 12n n n n +<++()11n n <+.对数列()()112n n ⎧⎫⎪⎪⎨⎬++⎪⎪⎩⎭,21ln n n +⎧⎫⎨⎬⎩⎭,()11n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭分别求前n 项和,得223ln 2ln 242n n <++21ln 1n n n n ++⋅⋅⋅+<+.10.【2020·全国高三专题】已知函数()ln a f x x x=+,其中a R ∈.(1)试讨论函数()f x 的单调性;(2)若1a =,试证明:()e cos x x f x x +<.【解析】(1)由221()a x a f x x x x -'=-=(0)x >知:(i )若0a ≤,2()0(0)x a f x x x -'=>>,∴()f x 在区间()0,∞+上为增函数.(ii )若0a >,∴当x ∈()0,a 时,有()0f x '<,∴()f x 在区间()0,a 上为减函数.当x ∈(),a +∞时,有()0f x '>,∴()f x 在区间(),a +∞上为增函数.综上:当0a ≤时,()f x 在区间()0,∞+上为增函数;当0a >时,()f x 在区间()0,a 上为减函数;()f x 在区间(),a +∞上为增函数.(2)若1a =,则1()ln (0)f x x x x =+>要证e cos ()x x f x x +<,只需证ln 1e cos x x x x +<+,即证:ln e cos 1x x x x <+-.(i )当01x <≤时,ln 0x x ≤,而e cos 11cos11cos10x x +->+-=>∴此时ln <e cos 1x x x x +-成立.(ii )当1x >时,令()e cos ln 1x g x x x x =+--,()0,x ∈+∞,∵()e sin ln 1x g x x x '=---,设()()e sin ln 1x h x g x x x '==---,则1()e cos x h x x x'=-- 1x >,∴1()e cos e 110x h x x x '=-->-->∴当1x >时,()h x 单调递增,∴()(1)e sin110h x h >=-->,即()0g x '>∴()g x 在()1,+∞单调递增,∴()(1)e cos110g x g >=+->即()e cos ln 10x g x x x x =+-->,即ln <e cos 1x x x x +-,∴e cos ()<x x f x x+综上:当0x >时,有e cos ()<x x f x x +成立.。
高考数学构造函数试题(含答案)

构造函数一、考点一f(x)与f′(x)共存的不等式问题例题1.(1)定义在R上的函数f(x),满足f(1)=1,且对任意x∈R都有f′(x)<12,则不等式f xlg>lg x+12的解集为(0,10).(2)设f(x),g(x)分别是定义在R上的奇函数和偶函数,若当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3) =0,则不等式f(x)g(x)<0的解集为(-∞,-3)∪(0,3).【解析】(1)由题意构造函数g(x)=f(x)-12x,则g′(x)=f′(x)-12<0,所以g(x)在定义域内是减函数.因为f(1)=1,所以g(1)=f(1)-12=12,由f(lg x)>lg x+12,得f(lg x)-12lg x>12.即g(lg x)=f(lg x)-12lg x>12=g(1),所以lg x<1,解得0<x<10.所以原不等式的解集为(0,10).(2)借助导数的运算法则,f′(x)g(x)+f(x)g′(x)>0⇔[f(x)g(x)]′>0,所以函数y=f(x)g(x)在(-∞,0)上单调递增.又由题意知函数y=f(x)g(x)为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).数形结合可求得不等式f(x)g(x)<0的解集为(-∞,-3)∪(0,3).【答案】(1)(0,10);(2)(-∞,-3)∪(0,3)[解题技法](1)对于不等式f′(x)+g′(x)>0(或<0),构造函数F(x)=f(x)+g(x).(2)对于不等式f′(x)-g′(x)>0(或<0),构造函数F(x)=f(x)-g(x).特别地,对于不等式f′(x)>k(或<k)(k≠0),构造函数F(x)=f(x)-kx.(3)对于不等式f′(x)g(x)+f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x).(4)对于不等式f′(x)g(x)-f(x)g′(x)>0(或<0),构造函数F(x)=f xg x(g(x)≠0).例题2.(1)设f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x) >0成立的x的取值范围是(A)A.-∞,-1∪(0,1) B.(-1,0)∪1,+∞C.-∞,-1∪(-1,0) D.(0,1)∪1,+∞(2)设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,则下列不等式在R上恒成立的是(A)A.f(x)>0B.f(x)<0C.f(x)>xD.f(x)<x【解析】(1)令g(x)=f xx,则g′(x)=xf′x -f xx2.由题意知,当x>0时,g′(x)<0,∴g(x)在(0,+∞)上是减函数.∵f(x)是奇函数,f(-1)=0,∴f(1)=-f(-1)=0,∴g(1)=f(1)=0,∴当x∈(0,1)时,g(x)>0,从而f(x)>0;当x ∈(1,+∞)时,g (x )<0,从而f (x )<0.又∵f (x )是奇函数,∴当x ∈(-∞,-1)时,f (x )>0;当x ∈(-1,0)时,f (x )<0.综上,所求x 的取值范围是(-∞,-1)∪(0,1).(2)令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2].g 0 =0.当x >0时,g ′(x )>0,∴g (x )>g (0),即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0),即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0.综上可知,f (x )>0.【答案】(1)A ;(2)A[解题技法](1)对于xf ′(x )+nf (x )>0型,构造F (x )=x n f (x ),则F ′(x )=x n -1[xf ′(x )+nf (x )](注意对x n -1的符号进行讨论),特别地,当n =1时,xf ′(x )+f (x )>0,构造F (x )=xf (x ),则F ′(x )=xf ′(x )+f (x )>0.(2)对于xf ′(x )-nf (x )>0(x ≠0)型,构造F (x )=f x x n ,则F ′(x )=xf ′x -nf xx n +1(注意对x n +1的符号进行讨论),特别地,当n =1时,xf ′(x )-f (x )>0,构造F (x )=f x x ,则F ′(x )=xf ′x -f xx 2>0例题3.(1)已知f (x )为R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则有(D )A.e 2019f (-2019)<f (0),f (2019)>e 2019f (0)B.e 2019f (-2019)<f (0),f (2019)<e 2019f (0)C.e 2019f (-2019)>f (0),f (2019)>e 2019f (0)D.e 2019f (-2019)>f (0),f (2019)<e 2019f (0)(2)已知定义在R 上的函数f (x )满足f (x )+2f ′(x )>0恒成立,且f (2)=1e(e 为自然对数的底数),则不等式e x f (x )-e x2>0的解集为(2,+∞).【解析】(1)构造函数h (x )=f x e x ,则h ′(x )=f ′x -f xe x<0,即h (x )在R 上单调递减,故h (-2019)>h (0),即f -2019 e -2019>f 0e⇒e 2019f (-2019)>f (0);同理,h (2019)<h (0),即f (2019)<e 2019f (0),故选D .(2)由f (x )+2f ′(x )>0得212f x +f ′x>0,可构造函数h (x )=e x2f (x ),则h ′(x )=12e x2[f (x )+2f ′(x )]>0,所以函数h (x )=e x2f (x )在R 上单调递增,且h (2)=ef (2)=1.不等式e x f (x )-e x2>0等价于e x2f (x )>1,即h (x )>h (2)⇒x >2,所以不等式e xf (x )-e x2>0的解集为(2,+∞).【答案】(1)D ;(2)(2,+∞)[解题技法](1)对于不等式f 'x +f x >0(或<0),构造函数F (x )=e x f (x )(2)对于不等式f 'x -f x >0(或<0),构造函数F (x )=f (x )e x(3)对于不等式nf 'x +f x >0(或<0),构造函数F (x )=e xn f (x )(4)对于不等式nf'x -f x >0(或<0),构造函数F(x)=f x e x n(5)对于不等式f'x +nf x >0(或<0),构造函数F(x)=e nx f(x)(6)对于不等式f'x -nf x >0(或<0),构造函数F(x)=f x e nx1.已知函数f(x)是定义在R上的偶函数,设函数f(x)的导函数为f′(x),若对任意的x>0都有2f(x)+xf′(x)>0成立,则(A) A.4f(-2)<9f(3) B.4f(-2)>9f(3) C.2f(3)>3f(-2) D.3f(-3)<2f(-2)【答案】A【解析】根据题意,令g(x)=x2f(x),其导函数g′(x)=2xf(x)+x2f′(x),又对任意的x>0都有2f(x)+ xf′(x)>0成立,则当x>0时,有g′(x)=x[2f(x)+xf′(x)]>0恒成立,即函数g(x)在(0,+∞)上为增函数,又由函数f(x)是定义在R上的偶函数,则f(-x)=f(x),则有g(-x)=(-x)2f(-x)=x2f(x)=g (x),即函数g(x)也为偶函数,则有g(-2)=g(2),且g(2)<g(3),则有g(-2)<g(3),即有4f(-2)<9f(3).2.f(x)在0,+∞上的导函数为f′(x),xf′(x)>2f(x),则下列不等式成立的是(A) A.20182f(2019)>20192f(2018) B.20182f(2019)<20192f(2018)C.2018f(2019)>2019f(2018)D.2018f(2019)<2019f(2018)【答案】A【解析】令g(x)=f xx2,x∈(0,+∞),则g′(x)=x2f′x -2xf xx4=xf′x -2f xx3>0,则g(x)在(0,+∞)上为增函数,即f201920192>f201820182,∴20182f(2019)>20192f(2018)。
专题06 构造函数法解决导数不等式问题(一)(原卷版)

专题06 构造函数法解决导数不等式问题(一)以抽象函数为背景、题设条件或所求结论中具有“f (x )±g (x ),f (x )g (x ),f (x )g (x )”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题小题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个f ′(x ),则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是f (x )本身的单调性,而是包含f (x )的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是f ′(x )的形式,则我们要构造的则是一个包含f (x )的新函数,因为只有这个新函数求导之后才会出现f ′(x ),因此解决导数抽象函数不等式的重中之重是构造函数.构造函数是数学的一种重要思想方法,它体现了数学的发现、类比、化归、猜想、实验和归纳等思想.分析近些年的高考,发现构造函数的思想越来越重要,而且很多都用在压轴题(无论是主观题还是客观题)的解答上.构造函数的主要步骤:(1)分析:分析已知条件,联想函数模型;(2)构造:构造辅助函数,转化问题本质;(3)回归:解析所构函数,回归所求问题.考点一 构造F (x )=x n f (x )(n ∈Z ,且n ≠0)类型的辅助函数【方法总结】(1)若F (x )=x n f (x ),则F ′(x )=nx n -1f (x )+x n f ′(x )=x n -1[nf (x )+xf ′(x )];(2)若F (x )=f (x )x n ,则F ′(x )=f ′(x )x n -nx n -1f (x )x 2n =xf ′(x )-nf (x )x n +1. 由此得到结论:(1)出现nf (x )+xf ′(x )形式,构造函数F (x )=x n f (x );(2)出现xf ′(x )-nf (x )形式,构造函数F (x )=f (x )xn . 【例题选讲】[例1](1)已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)f (x 2-1)的解集是( )A .(0,1)B .(1,+∞)C .(1,2)D .(2,+∞)(2)已知函数f (x )是定义在区间(0,+∞)上的可导函数,其导函数为f ′(x ),且满足xf ′(x )+2f (x )>0,则不等式(x +2 021)f (x +2 021)5<5f (5)x +2 021的解集为( ) A .{x |x >-2 016} B .{x |x <-2 016} C .{x |-2 016<x <0} D .{x |-2 021<x <-2 016}(3)(2015·全国Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)(4)设f (x )是定义在R 上的偶函数,当x <0时,f (x )+xf ′(x )<0,且f (-4)=0,则不等式xf (x )>0的解集为________.(5)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( )A .4f (1)<f (2)B .4f (1)>f (2)C .f (1)<4f (2)D .f (1)>4f ′(2)(6)已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x >0时,xf ′(x )-f (x )<0,若a =f (e )e ,b =f (ln 2)ln 2,c =f (-3)-3,则a ,b ,c 的大小关系正确的是( ) A .a <b <c B .b <c <a C .a <c <b D .c <a <b【对点训练】1.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则不等式(x +2 021)2f (x+2 021)-4f (-2)>0的解集为( )A .(-∞,-2 021)B .(-∞,-2 023)C .(-2 023,0)D .(-2 021,0)2.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x的取值范围是________.3.已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (-1)=0,当x >0时,2f (x )>xf ′(x ),则使得f (x )>0成立的x 的取值范围是________.4.设f (x )是定义在R 上的偶函数,且f (1)=0,当x <0时,有xf ′(x )-f (x )>0恒成立,则不等式f (x )>0的解集为________.5.设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集 是________________.6.设f (x )是定义在R 上的奇函数,且f (2)=0,当x >0时,xf ′(x )-f (x )x 2<0恒成立,则不等式f (x )x>0的解集 为( )A .(-2,0)∪(2,+∞)B .(-2,0)∪(0,2)C .(-∞,-2)∪(0,2)D .(-∞,-2)∪(2,+∞)7.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )-f (x )<0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )<bf (a )B .bf (a )<af (b )C .af (a )<bf (b )D .bf (b )<af (a )8.设函数f (x )的导函数为f ′(x ),对任意x ∈R ,都有xf ′(x )<f (x )成立,则( )A .3f (2)>2f (3)B .3f (2)=2f (3)C .3f (2)<2f (3)D .3f (2)与2f (3)大小不确定9.定义在区间(0,+∞)上的函数y =f (x )使不等式2f (x )<xf ′(x )<3f (x )恒成立,其中y =f ′(x )为y =f (x )的导函数,则( )A .8<f (2)f (1)<16B .4<f (2)f (1)<8C .3<f (2)f (1)<4D .2<f (2)f (1)<3 考点二 构造F (x )=e nx f (x )(n ∈Z ,且n ≠0)类型的辅助函数【方法总结】(1)若F (x )=e nx f (x ),则F ′(x )=n ·e nx f (x )+e nx f ′(x )=e nx [f ′(x )+nf (x )];(2)若F (x )=f (x )e nx ,则F ′(x )=f ′(x )e nx -n e nx f (x )e 2nx =f ′(x )-nf (x )e nx. 由此得到结论:(1)出现f ′(x )+nf (x )形式,构造函数F (x )=e nx f (x );(2)出现f ′(x )-nf (x )形式,构造函数F (x )=f (x )enx . 【例题选讲】[例1](1)若定义在R 上的函数f (x )满足f ′(x )+2f (x )>0,且f (0)=1,则不等式f (x )>1e 2x的解集为 . (2)定义域为R 的可导函数y =f (x )的导函数为f ′(x ),满足f (x )>f ′(x ),且f (0)=1,则不等式f (x )ex <1的解集为________.(3)若定义在R 上的函数f (x )满足f ′(x )-2f (x )>0,f (0)=1,则不等式f (x )>e 2x 的解集为________.(4)设定义域为R 的函数f (x )满足f ′(x )>f (x ),则不等式e x -1f (x )<f (2x -1)的解集为________.(5)定义在R 上的函数f (x )满足:f (x )>1-f ′(x ),f (0)=0,f ′(x )是f (x )的导函数,则不等式e x f (x )>e x -1(其中e 为自然对数的底数)的解集为( )A .(0,+∞)B .(-∞,-1)∪(0,+∞)C .(-∞,0)∪(1,+∞)D .(-1,+∞)(6)定义在R 上的函数f (x )的导函数为f ′(x ),若对任意x ,有f (x )>f ′(x ),且f (x )+2 021为奇函数,则不等式f (x )+2 021e x <0的解集是( )A .(-∞,0)B .(0,+∞)C .⎝⎛⎭⎫-∞,1eD .⎝⎛⎭⎫1e ,+∞ (7)已知定义在R 上的偶函数f (x )(函数f (x )的导函数为f ′(x ))满足f ⎝⎛⎭⎫x -12+f (x +1)=0,e 3f (2 021)=1,若f (x )>f ′(-x ),则关于x 的不等式f (x +2)>1ex 的解集为( ) A .(-∞,3) B .(3,+∞) C .(-∞,0) D .(0,+∞)(8)已知函数f (x )是定义在R 上的可导函数,f ′(x )为其导函数,若对于任意实数x ,有f (x )-f ′(x )>0,则( )A .e f (2 021)>f (2 022)B .e f (2 021)<f (2 022)C .e f (2 021)=f (2 022)D .e f (2 021)与f (2 022)大小不能确定(9)已知f (x )是定义在(-∞,+∞)上的函数,导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 021)>e 2 021f (0)B .f (2)<e 2f (0),f (2 021)>e 2 021f (0)C .f (2)>e 2f (0),f (2 021)<e 2 021f (0)D .f (2)<e 2f (0),f (2 021)<e 2 021f (0)(10)已知函数f (x )在R 上可导,其导函数为f ′(x ),若f (x )满足:(x -1)[f ′(x )-f (x )]>0,f (2-x )=f (x )·e 2-2x ,则下列判断一定正确的是( )A .f (1)<f (0)B .f (2)>e 2f (0)C .f (3)>e 3f (0)D .f (4)<e 4f (0)【对点训练】1.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (0)=12,则不等式f (x )-12e x <0的 解集为( )A .⎝⎛⎭⎫-∞,12B .(0,+∞)C .⎝⎛⎭⎫12,+∞ D .(-∞,0) 2.已知函数f ′(x )是函数f (x )的导函数,f (1)=1e,对任意实数x ,都有f (x )-f ′(x )>0,则不等式f (x )<e x -2的 解集为( )A .(-∞,e)B .(1,+∞)C .(1,e)D .(e ,+∞)3.已知f ′(x )是定义在R 上的连续函数f (x )的导函数,若f ′(x )-2f (x )<0,且f (-1)=0,则f (x )>0的解集为( )A .(-∞,-1)B .(-1,1)C .(-∞,0)D .(-1,+∞)4.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )>f (x ),且f (x +3)为偶函数,f (6)=1,则不等式f (x )>e x 的解集为( )A .(-2,+∞)B .(0,+∞)C .(1,+∞)D .(4,+∞)5.已知函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是( )A .{x |x >0}B .{x |x <0}C .|x |x <-1,或x >1|D .{x |x <-1,或0<x <1}6.已知函数f (x )的定义域为R ,且f (x )+1<f ′(x ),f (0)=2,则不等式f (x )+1>3e x 的解集为( )A .(1,+∞)B .(-∞,1)C .(0,+∞)D .(-∞,0)7.定义在R 上的可导函数f (x )满足f (x )+f ′(x )<0,则下列各式一定成立的是( )A .e 2f (2021)<f (2019)B .e 2f (2021)>f (2019)C .f (2021)<f (2019)D .f (2021)>f (2019)8.定义在R 上的函数f (x )满足f ′(x )>f (x )恒成立,若x 1<x 2,则1e x f (x 2)与2e xf (x 1)的大小关系为( )A .1e x f (x 2)>2e x f (x 1)B .1e x f (x 2)<2e x f (x 1)C .1e x f (x 2)=2e x f (x 1)D .1e x f (x 2)与2e x f (x 1)的大小关系不确定9.设函数f (x )的导函数为f ′(x ),对任意x ∈R 都有f (x )>f ′(x )成立,则( )A .3f (ln2)<2f (ln3)B .3f (ln2)=2f (ln3)C .3f (ln2)>2f (ln3)D .3f (ln2)与2f (ln3)的大小不确定10.已知函数f (x )是定义在R 上的可导函数,且对于∀x ∈R ,均有f (x )>f ′(x ),则有( )A .e 2022f (-2022)<f (0),f (2022)>e 2022f (0)B .e 2022f (-2022)<f (0),f (2022)<e 2022f (0)C .e 2022f (-2022)>f (0),f (2022)>e 2022f (0)D .e 2022f (-2022)>f (0),f (2022)<e 2022f (0)考点三 构造F (x )=f (x )sin x ,F (x )=f (x )sin x ,F (x )=f (x ) cos x ,F (x )=f (x )cos x类型的辅助函数 【方法总结】(1)若F (x )=f (x )sin x ,则F ′(x )=f ′(x )sin x +f (x )cos x ;(2)若F (x )=f (x )sin x ,则F ′(x )=f ′(x )sin x -f (x )cos x sin 2x; (3)若F (x )=f (x )cos x ,则F ′(x )=f ′(x )cos x -f (x )sin x ;(4)若F (x )=f (x )cos x ,则F ′(x )=f ′(x )cos x +f (x )sin x cos 2x. 由此得到结论:(1)出现f ′(x )sin x +f (x )cos x 形式,构造函数F (x )=f (x )sin x ;(2)出现f ′(x )sin x -f (x )cos x sin 2x 形式,构造函数F (x )=f (x )sin x; (3)出现f ′(x )cos x -f (x )sin x 形式,构造函数F (x )=f (x )cos x ;(4)出现f ′(x )cos x +f (x )sin x cos 2x 形式,构造函数F (x )=f (x )cos x. 【例题选讲】[例1](1)已知函数f (x )是定义在⎝⎛⎭⎫-π2,π2上的奇函数.当x ∈[0,π2)时,f (x )+f ′(x )tan x >0,则不等式cos xf (x +π2)+sin xf (-x )>0的解集为( ) A .⎝⎛⎭⎫π4,π2 B .⎝⎛⎭⎫-π4,π2 C .⎝⎛⎭⎫-π4,0 D .⎝⎛⎭⎫-π2,-π4 (2)对任意的x ∈⎝⎛⎭⎫0,π2,不等式f (x )tan x <f ′(x )恒成立,则下列不等式错误的是( ) A .f ⎝⎛⎭⎫π3>2f ⎝⎛⎭⎫π4 B .f ⎝⎛⎭⎫π3>2f (1)cos 1 C .2f (1)cos1>2f ⎝⎛⎭⎫π4 D .2f ⎝⎛⎭⎫π4<3f ⎝⎛⎭⎫π6 (3)定义在⎝⎛⎭⎫0,π2上的函数f (x ),函数f ′(x )是它的导函数,且恒有f (x )<f ′(x )tan x 成立,则( ) A .3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π3 B .f (1)<2f ⎝⎛⎭⎫π2sin 1 C .2f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π4 D .3f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π3 (4)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎫-π2,π2满足f ′(x )cos x +f (x )sin x >0(其中f ′(x )是函数f (x )的导函数),则下列不等式不成立的是( )A .2 f ⎝⎛⎭⎫π3<f ⎝⎛⎭⎫π4B .2 f ⎝⎛⎭⎫-π3<f ⎝⎛⎭⎫-π4C .f (0)<2 f ⎝⎛⎭⎫π4D .f (0)<2f ⎝⎛⎭⎫π3 (5)已知定义在⎝⎛⎭⎫0,π2上的函数f (x ),f ′(x )是f (x )的导函数,且恒有cos xf ′(x )+sin xf (x )<0成立,则( ) A .f ⎝⎛⎭⎫π6>2f ⎝⎛⎭⎫π4 B .3f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π3 C .f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3 D .2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4(6)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎫0,π2满足f ′(x )·cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( )A .2f ⎝⎛⎭⎫π3<f ⎝⎛⎭⎫π4B .2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π4C .2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4D .2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:构造函数解决问题 ——函数单调性与导数
1:设()()f x g x 、是R 上的可导函数,'()'()f x g x 、分别为()()f x g x 、的导函数,且满足'()()()'()0f x g x f x g x +<,则当a x b <<时,有( )
.()()()()A f x g b f b g x > .()()()()B f x g a f a g x >
.()()()()C f x g x f b g b > .()()()()D f x g x f b g a >
变式1:设()()f x g x 、是R 上的可导函数,'()()()'()0f x g x f x g x +<,(3)0g -=,则不等式()()0f x g x <的解集.
变式2::设()()f x g x 、分别是定义在R 上的奇函数、偶函数,当0x <时,'()()()'()0f x g x f x g x +>,(3)0g -=,则不等式()()0f x g x <的解集.
2.已知定义在R 上的函数()()f x g x 、满足()()
x f x a g x =,且'()()()'()f x g x f x g x <,(1)(1)5(1)(1)2f f g g -+=-,若有穷数列*()()()f n n N g n ⎧⎫∈⎨⎬⎩⎭
的前n 项和等于3132,则n 等于 . 变式:已知定义在R 上的函数()()f x g x 、满足()()
x f x a g x =,且'()()()'()f x g x f x g x <,若若(1)(1)5(1)(1)2
f f
g g -+=-,则关于x 的不等式log 1a x >的解集 . 3:已知定义域为R 的奇函数()f x 的导函数为'()f x ,当0x ≠时,()'()0f x f x x
+>,若)2(ln 2
1ln ,)2(2,)21(21f c f b f a =--==
,则下列关于,,a b c 的大小关系正确的是( ) .Aa b c >> .B a c b >> .C c b a >> a c b D >>.
4已知函数()f x 为定义在R 上的可导函数,且()'()f x f x <对于任意x R ∈恒成立,e 为自然对数的底数,则( )
2013.(1)(0)(2013)(0)A f e f f e f >⋅<⋅、 2013.(1)(0)(2013)(0)B f e f f e f <⋅>⋅、
2013.(1)(0)(2013)(0)C f e f f e f >⋅>⋅、 2013.(1)(0)(2013)(0)D f e f f e f <⋅<⋅、
变式:设()f x 是R 上的可导函数,且'()()f x f x ≥-,(0)1f =,2
1(2)f e =
.则(1)f 的值 . 5:(09天津)设函数()f x 在R 上的导函数为'()f x ,且2
2()'()f x xf x x +>,下面的不等式在R 内恒成立的是( ) .()0A f x > .()0B f x < .()C f x x > .()D f x x <
变式:已知()f x 的导函数为'()f x ,当0x >时,2()'()f x xf x >,且(1)1f =,若存在x R +∈,使2()f x x =,则x 的值.
【模型总结】
关系式为“加”型
(1)'()()0f x f x +≥ 构造[()]'['()()]x x e f x e f x f x =+
(2)'()()0xf x f x +≥ 构造[()]''()()xf x xf x f x =+
(3)'()()0xf x nf x +≥ 构造11[()]''()()['()()]n n n n x f x x f x nx f x x xf x nf x --=+=+
(注意对x 的符号进行讨论)
关系式为“减”型
(1)'()()0f x f x -≥ 构造2()'()()'()()[]'()x x x x x f x f x e f x e f x f x e e e
--== (2)'()()0xf x f x -≥ 构造2
()'()()[]'f x xf x f x x x -= (3)'()()0xf x nf x -≥ 构造121()'()()'()()[]'()n n n n n f x x f x nx f x xf x nf x x x x -+--==。