结型场效应管的结构和工作原理
结型场效应管(JFET)的结构和工作原理

结型场效应管(JFET)得结构与工作原理1、JFET得结构与符号N沟道JFETP沟道JFET2、工作原理(以N沟道JFET为例)N沟道JFET工作时,必须在栅极与源极之间加一个负电压-—VGS<0,在D-S间加一个正电压——V DS>0、栅极—沟道间得PN结反偏,栅极电流iG≈0,栅极输入电阻很高(高达107Ω以上).N沟道中得多子(电子)由S向D运动,形成漏极电流iD。
i D得大小取决于VDS得大小与沟道电阻。
改变VGS可改变沟道电阻,从而改变i D。
主要讨论V GS对i D得控制作用以及VDS对iD得影响。
①栅源电压VGS对i D得控制作用当VGS〈0时,PN结反偏,耗尽层变宽,沟道变窄,沟道电阻变大,ID减小;VGS更负时,沟道更窄,I D更小;直至沟道被耗尽层全部覆盖,沟道被夹断,ID≈0。
这时所对应得栅源电压V GS称为夹断电压VP。
②漏源电压VDS对i D得影响在栅源间加电压V GS<0,漏源间加正电压VDS > 0。
则因漏端耗尽层所受得反偏电压为V GD=V GS-V DS,比源端耗尽层所受得反偏电压V GS大,(如:VGS=-2V, V DS =3V,V P=-9V,则漏端耗尽层受反偏电压为V GD=—5V,源端耗尽层受反偏电压为-2V),使靠近漏端得耗尽层比源端宽,沟道比源端窄,故V DS对沟道得影响就是不均匀得,使沟道呈楔形。
当V DS增加到使VGD=VGS-VDS=V P时,耗尽层在漏端靠拢,称为预夹断。
当V DS继续增加时,预夹断点下移,夹断区向源极方向延伸。
由于夹断处电阻很大,使VDS主要降落在该区,产生强电场力把未夹断区得载流子都拉至漏极,形成漏极电流ID.预夹断后I D基本不随VDS增大而变化。
①V GS对沟道得控制作用当V GS<0时,PN结反偏→耗尽层加厚→沟道变窄。
VGS继续减小,沟道继续变窄.当沟道夹断时,对应得栅源电压V GS称为夹断电压V P(或VGS(off) ).对于N沟道得JFET,VP〈0.②V DS对沟道得控制作用当VGS=0时,V DS→ID., G、D间PN结得反向电压增加,使靠近漏极处得耗尽层加宽,沟道变窄,从上至下呈楔形分布。
结型场效应管

晶体管工作在放大区时,输入回路 PN 结正偏,输入阻抗小, 且是一个电流控制的有源器件。
场效应管也是一种具有 PN 结的正向受控作用的有源器件, 它是利用电场效应来控制输出电流的大小,其输入端 PN 结一 般工作于反偏状态或绝缘状态。输入电阻很高。
场效应管根据结型场效应管 (JFET) 输入阻抗
沟道电阻 ID基本不变
4.1结型 场效应管
综上分析可知
• 沟道中只有一种类型的多数载流子参与导电, 所以场效应管也称为单极型三极管。
• JFET栅极与沟道间的PN结是反向偏置的,因 此iG0,输入电阻很高。 • JFET是电压控制电流器件,iD受vGS控制 • 预夹断前iD与vDS呈近似线性关系;预夹断后, iD趋于饱和。 P沟道JFET工作时,其电源极性与N沟道JFET 的电源极性相反。
4.1结型 场效应管
二、 JFET的特性曲线及参数
iD f ( vGS ) vD Sconst.
1. 转移特性
VP
vGS 2 iD I DSS (1 ) VP
(VP vGS 0)
2. 输出特性
iD f ( vDS ) vGSconst.
4.1结型 场效应管
输出特性
输出特性曲线表达以UGS为参变 量时iD与uDS的关系。根据特性曲线 的各部分特征,分为四个区域: 1)饱和区 饱和区区相当于双极型晶体管
的放大区。其主要特征为: uGS对iD的控制能力很强 ,uDS的变化对iD影响很小。 2)可变电阻区 与双极型晶体管不同,在JFET中,栅源电压uGS对iD上升的斜 率影响较大,随着|UGS|增大,曲线斜率变小,说明JFET的输出电 阻变大。 3) 截止区 当|UGS|>|UP|时,沟道被全部夹断,iD=0,故此区为截止区。
结型场效应管的结构、工作原理

结型场效应管的结构、工作原理1.结构下图中示出了N沟道结型场效应管的结构示意图以及它在电路中的符号。
在一块N型硅棒的两侧,利用合金法、集中法与其他工艺做成掺杂程度比较高的P型区(用符号P+表示),则在P+型区和N型区的交界处将形成一个PN结,或称耗尽层。
将两侧的P+型区连接在一起,引出一个电极,称为栅极(G),再在N型硅棒的一端引出源极(S),另一端引出漏极(D),见图(a)。
假如在漏极和源极之间加上一个正向电压,即漏极接电源正端,源极接电源负端,则由于N型半导体中存在多数载流子电子,因而可以导电。
这种场效应管的导电沟道是N 型的,所以称为N沟道结型场效应管,其电路符合见图(b)。
留意电路符号中,栅极上的箭头指向内部,即由P+区指向N区。
2. 工作原理从结型场效应管的结构已经看出,在栅极和导电沟道之间存在一个PN结。
假设在栅极和源极之间加上反向电压UGS,使PN结反向偏置,则可以通过转变UGS的大小来转变耗尽层的宽度。
例如,当反向电压的值|UGS|变大时,耗尽层将变宽,于是导电沟道的宽度相应地减小,使沟道本身的电阻值增大,于是,漏极电流ID将削减。
所以,通过转变UGS的大小,即可掌握漏极电流ID的值。
由于导电沟道的半导体材料(例如N区)掺杂程度相对比较低,而栅极一边(例如P+区)的掺杂程度很高,因此当反向偏置电压值上升时,耗尽层总的宽度将随之增大。
但交界面两侧耗尽层的宽度并不相等。
因此,掺杂程度低的N型导电沟道中耗尽层的宽度比高掺杂的P+区栅极一侧耗尽层的宽度大得多。
可以认为,当反向偏置电压增大时,耗尽层主要向着导电沟道一侧展宽。
转变栅极和源极之间的电压UGS,即可掌握漏极电流ID。
这种器件利用栅极和源极这宰的电压UGS平转变PN结中的电场,然后掌握漏极电流ID,故称为场效应管。
对于结型场效应管来说,总是在栅极和源极之间加一个反抽偏置电压,使PN结反向偏置,此时可以认为栅极基本上不取电流,因此,场效应管的输入电阻很高。
场效应管

D (mA) 可变电阻区
i
uGS= 0V uGS = -1V uGS = -2V uGS= -3V
u
DS
时,iD 是 vDS 的线性函数,
管子的漏源间呈现为线
性电阻,且其阻值受 vGS
控制。 (2)管压降vDS 很小。
沟道未 夹断
用途:做压控线性电阻和无触点的、闭合状态
的电子开关。
gm
VDS
2、 极间电容: Cgs和Cgd约为1~3pF,和 Cds约为
0.1~1pF。高频应用时,应考虑极间电容的影响。
vDS 3、 输出电阻rd:rd iD
三、极限参数
VGS
1、 最大漏极电流IDM:管子正常工作时漏极电流 的上限值。
2、 最大耗散功率 PDM :决定于管子允许的温升。
3、当vGD< VGS(off)时,vGS对iD的控制作用
当vGD = vGS - vDS <VGS(off) 时,即vDS > vGS VGS(off) > 0,导电沟道夹断, iD 不随vDS 变化 ; 但vGS 越小,即|vGS| 越大,沟道电阻越大,对同 样的vDS , iD 的值越小。所以,此时可以通过改变
③ 场效应管的输入电阻远大于晶体管的输入电
阻,其温度稳定性好、抗辐射能力强、噪声系数小,
但易受静电影响。
④ 场效应管的漏极和源极可以互换,而互换后 特性变化不大;晶体管的集电极和发射极互换后特 性相差很大,只有在特殊情况下才互换使用。但要 注意的是,场效应管的某些产品在出厂时,已将衬 底和源极连接在一起,此时,漏极和源极不可以互 换使用。
JFET 结型
9.2 结型场效应管
一、结型场效应管的结构
mosfet 与 jfet 的工作原理及应用场合

MOSFET 与 JFET 的工作原理及应用场合一、引言在现代电子领域中,场效应晶体管(F ET)是一种重要的半导体器件,具有优越的性能和广泛的应用。
其中,金属氧化物半导体场效应管(M OS FE T)和结型场效应管(J FE T)是两种常见的FE T。
本文将介绍M O SF ET和J FE T的工作原理及其在不同应用场合的应用。
二、M O S F E T(金属氧化物半导体场效应管)M O SF ET是由一层金属氧化物绝缘层隔离门极和半导体基片的晶体管。
其工作原理如下:1.栅极电压变化:当栅极电压变化时,M O SF ET内部的电场分布发生变化,进而改变了通道中的载流子浓度。
2.载流子控制:当正向偏置栅极,使得栅极与源极之间形成正向偏压时,可以控制通道中的正负载流子的浓度。
M O SF ET在数字电路、模拟电路和功率放大器等方面有着广泛的应用:-逻辑门电路:M OS FE T可用于构建与门、或门、非门等逻辑门电路。
-放大器电路:M OS FE T可以实现低噪声、高增益的放大器电路,常用于音频放大器等领域。
-电源开关:由于MOS F ET具有低导通电阻和高关断电阻的特点,适用于电源开关电路,如开关稳压器。
三、J F E T(结型场效应管)J F ET是由P型或N型半导体材料形成的通道,两侧有控制端和漏源端的晶体管。
其工作原理如下:1.控制电压:当控制端电压变化时,通过改变通道中的空间电荷区宽度,从而改变了导电性能。
2.漏源电压:调整漏源间的电压,使其达到最大或最小值,以控制导电。
J F ET在放大器、开关和稳流源等方面具有广泛的应用:-放大器电路:J FE T具有高输入阻抗和低输出阻抗的特点,适用于低频放大器、微弱信号放大器等。
-开关电路:JF ET由于其控制电压变化范围大,可用于开关电路中的信号开关。
-稳流源:通过合理选择JF ET工作状态和参数,可以将其应用于稳流源电路,如电流源。
四、M O S F E T与J F E T的优缺点对比-M OS FE T的优点:1.噪声低:MO SF ET具有较低的输入噪声。
场效应管

MOS管分为四种类型:N沟道耗尽型管、N沟道增强型管、P沟道耗尽型管和 P沟道增强型管。
MOS管的特点
输入阻抗高、栅源电压可正可负、耐高温、易 集成。
N沟道增强型绝缘栅场效应管 (1)结构与符号 增强型的特点
1. 工作原理
绝缘栅场效应管利用 UGS 来控制“感应电荷”
的多少,改变由这些“感应电荷”形成的导电沟道的
一、结型场效应管(JFET)
1 结构与工作原理 (1)构成 结型场效应管又有N沟道和P沟道两种类型。
N沟道结型场效应管的结构示意图
结型场效应管的符号
(a)N沟道管
(b) P沟道管
(2)工作原理 N· JFET的结构及符号
在同一块N型半导体上制作两 个高掺杂的P区,并将它们连 接在一起,引出的电极称为栅 极G,N型半导体的两端引出 两个电极,一个称为漏极D, 一个称为源极S。P区与N区交 界面形成耗尽层,漏极和源极 间的非耗尽层区域称为导电沟 道。
直流输入电阻 RGS :其等于栅源电压与栅极电流之比,结型管的 RGS 大于10^7 欧,而MOS管的大于10^9欧。
二、交流参数
1. 低频跨导 gm 用以描述栅源之间的电压 UGS 对漏极电流 ID 的控 制作用。 ΔI D gm ΔU GS U DS 常数 单位:ID 毫安(mA);UGS 伏(V);gm 毫西门子(mS)
绝缘栅
B端为衬底,与源极短接在一起。
N沟道耗尽型MOS管的结构与符号
(2)N沟道的形成 N沟道的形成与外电场对N沟道的影响 控制原理分四种情况讨论:
① uGS 0时,来源于外电场UGS正极的正电荷使SiO2中原有的正电荷数目增加, 由于静电感应,N沟道中的电子随之作同等数量的增加,沟道变宽,沟道电阻减 小,漏电流成指数规律的增加。
场效应管的结构及工作原理(教案)

场效应管的结构及工作原理(教案)章节一:引言教学目标:使学生了解场效应管的基本概念,掌握场效应管的分类及应用领域。
教学内容:1. 场效应管的定义2. 场效应管的分类(结型场效应管、绝缘栅场效应管)3. 场效应管的应用领域教学方法:采用讲解、案例分析的方式进行教学。
教学过程:1. 讲解场效应管的定义及重要性。
2. 介绍场效应管的分类及其特点。
3. 通过案例分析,使学生了解场效应管在实际应用中的重要作用。
章节二:结型场效应管的结构与工作原理教学目标:使学生掌握结型场效应管的结构特点,理解其工作原理。
教学内容:1. 结型场效应管的结构特点2. 结型场效应管的工作原理教学方法:采用讲解、实验演示的方式进行教学。
教学过程:1. 讲解结型场效应管的结构特点,如源、漏、栅三端子等。
2. 通过实验演示,使学生了解结型场效应管的工作原理。
3. 分析结型场效应管的导通与截止条件。
章节三:绝缘栅场效应管的结构与工作原理教学目标:使学生掌握绝缘栅场效应管的结构特点,理解其工作原理。
教学内容:1. 绝缘栅场效应管的结构特点2. 绝缘栅场效应管的工作原理教学方法:采用讲解、实验演示的方式进行教学。
教学过程:1. 讲解绝缘栅场效应管的结构特点,如源、漏、栅三端子等。
2. 通过实验演示,使学生了解绝缘栅场效应管的工作原理。
3. 分析绝缘栅场效应管的导通与截止条件。
章节四:场效应管的参数与选用教学目标:使学生了解场效应管的主要参数,掌握场效应管的选择与使用方法。
教学内容:1. 场效应管的主要参数(如跨导、漏极电流、输入阻抗等)2. 场效应管的选择与使用方法教学方法:采用讲解、案例分析的方式进行教学。
教学过程:1. 讲解场效应管的主要参数及其意义。
2. 介绍场效应管的选择与使用方法。
3. 通过案例分析,使学生掌握场效应管在实际应用中的选用技巧。
章节五:场效应管的应用举例教学目标:使学生了解场效应管在实际应用中的典型应用,提高学生的实践能力。
场效应管(建议看)

0V –1V –2V uGS = – 3 V
uDS
IDSS
可 变 电 阻 区
预夹断轨迹,uGD=UGS(off)
恒 流 区
击 穿 区
i D gm U GS
夹断电压
夹断区(截止区)
夹断电压为负
∴栅源电压越负,电流iD越小。
①夹断区: i D 0 UGS<UGS(off) ②可变电阻区(预夹断轨迹左边区域):
之间的函数关系,即
iD f (uGS ) |U DS 常数
N沟道结型场效应管UGS=0时,存在导电沟道,电流最大;
栅源之间加负向电压UGS<0直至沟道消失,电流为零。
UGS=0V -1V -2V -3V 夹断电压
U GS ( off ) 0
栅源电压越负,电流越小 恒流区条件:
U GS U GS (off )
3、特性曲线与电流方程
转移特性 输出特性曲线
N沟道增强型MOS管在UGS=0时,无导电沟道,电流为零。
UGS加正向电压至开启电压后,电流随UGS的增大而增大。
VDS 为正的
6V 5V 4V 3V 开启电压
U GS ( th ) 0
栅源电压越正,电流越大 恒流区条件:
U GS U GS (th )
增强型N沟道
耗尽型N沟道
增强型P沟道 耗尽型P沟道
说明:
1、栅极用短线和沟道隔开,表示绝缘栅; 2、箭头:由P区指向N区; 3、虚线:增强型MOS管; 实线:耗尽型MOS管。
二、N沟道增强型MOS管的工作原理
在通常情况下,源极一般都与衬底相连,即UBS=0。 为保证N沟道增强型MOS管正常工作,应保证: ① UGS=0时,漏源之间是两只背向的PN结,不管UDS 极性 如何,其中总有一个PN结反偏,所以不存在导电 沟道。UGS必须大于0(UGS>0)管子才能工作。 ②漏极对源极的电压UDS必须为正值(UDS>0)。这样在漏 极电压作用下,源区电子沿导电沟道行进到漏区,产 生自漏极流向源极的电流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结型场效应管(JFET)的结构和工作原理
1. JFET的结构和符号
N沟道JFET P沟道JFET
2. 工作原理(以N沟道JFET为例)
N沟道JFET工作时,必须在栅极和源极之间加一个负电压——V GS< 0,在D-S间加一个正电压——V DS>0.
栅极—沟道间的PN结反偏,栅极电流i G»0,栅极输入电阻很高(高达107W以上)。
N沟道中的多子(电子)由S向D运动,形成漏极电流i D。
i D的大小取决于V DS的大小和沟道电阻。
改变V GS可改变沟道电阻,从而改变i D。
主要讨论V GS对i D的控制作用以及V DS对i D的影响。
①栅源电压V GS对i D的控制作用
当V GS<0时,PN结反偏,耗尽层变宽,沟道变窄,沟道电阻变大,I D减小;V GS更负时,沟道更窄,I D更小;直至沟道被耗尽层全部覆盖,沟道被夹断,I D≈0。
这时所对应的栅源电压V GS称为夹断电压V P。
②漏源电压V DS对i D的影响
在栅源间加电压V GS<0 ,漏源间加正电压V DS> 0。
则因漏端耗尽层所受的反偏电压为V GD=V GS-V DS,比源端耗尽层所受的反偏电压V GS大,(如:V GS=-2V, V DS=3V, V P=-9V,则漏端耗尽层受反偏电压为V GD=-5V,源端耗尽层受反偏电压为-2V),使靠近漏端的耗尽层比源端宽,沟道比源端窄,故V DS对沟道的影响是不均匀的,使沟道呈楔形。
当V DS增加到使V GD=V GS-V DS=V P时,耗尽层在漏端靠拢,称为预夹断。
当V DS继续增加时,预夹断点下移,夹断区向源极方向延伸。
由于夹断处电阻很大,使V DS主要降落在该区,产生强电场力把未夹断区的载流子都拉至漏极,形成漏极电流I D。
预夹断后I D基本不随V DS增大而变化。
①V GS对沟道的控制作用
当V GS<0时,PN结反偏®耗尽层加厚®沟道变窄。
V GS继续减小,沟道继续变窄。
当沟道夹断时,对应的栅源电压V GS称为夹断电压V P(或V GS(off) )。
对于N沟道的JFET,V P<0。
②V DS对沟道的控制作用
当V GS=0时,V DS®I D, G、D间PN结的反向电压增加,使靠近漏极处的耗尽层加宽,沟道变窄,从上至下呈楔形分布。
当V DS增加到使V GD=V P时,在紧靠漏极处出现预夹断。
此时V DS®夹断区延长®沟道电阻®I D基本不变。
③V GS和V DS同时作用时
当V P <V GS<0 时,导电沟道更容易夹断,对于同样的V DS ,I D的值比V GS=0时的值要小。
在预夹断处,V GD=V GS-V DS=V P(或V DS=V GS- V P).
综上分析可知
l沟道中只有一种类型的多数载流子参与导电,所以场效应管也称为单极型三极管。
l JFET栅极与沟道间的PN结是反向偏置的,因此i G»0,输入电阻很高。
l JFET是电压控制电流器件,i D受v GS控制。
l预夹断前i D与v DS呈近似线性关系;预夹断后,i D趋于饱和。