王英杰基于ANSYS的汽车传动轴有限元分析与优化设计

合集下载

基于ANSYS有限元的复合材料传动轴失效分析

基于ANSYS有限元的复合材料传动轴失效分析

基于ANSYS有限元的复合材料传动轴失效分析基于ANSYS有限元的复合材料传动轴失效分析1. 引言复合材料在传动轴应用中越来越广泛,其具有较高的强度和刚度,以及较低的密度和惯性矩。

然而,由于其复杂的结构和复杂的加载条件,传动轴在运行过程中可能会发生失效。

因此,基于有限元分析的复合材料传动轴失效分析显得尤为重要。

2. 传动轴结构和材料传动轴主要有轴状结构,通常由多个复合材料组件组成,如纤维增强聚合物复合材料(FRP)和碳纤维增强复合材料(CFRP)。

这些材料的组合可以提供较高的轴向和环向强度,从而提供更好的传递力矩和转速。

3. 复合材料传动轴的失效模式复合材料传动轴的失效模式包括弯曲破坏、蠕变破坏、疲劳破坏和环剪切破坏等。

这些失效模式通常是由不同的应力和应变引起的,并在不同的加载条件下发生。

4. 有限元模型的建立基于ANSYS有限元软件,可以建立复合材料传动轴的三维有限元模型。

模型的几何形状和材料属性可以根据实际情况进行设定。

5. 材料参数的输入复合材料的性能参数需要根据实际测试数据进行输入。

这些参数包括纤维体积分数、纤维方向的弹性模量和剪切模量,基体材料的弹性模量和剪切模量等。

这些参数的准确性对于分析结果的准确性至关重要。

6. 边界条件和加载条件的设定在进行有限元分析之前,需要确定边界条件和加载条件。

边界条件通常包括固定支撑和固定约束等,以保证模型的稳定性。

加载条件通常包括径向和环向的力矩和转速等。

7. 模型分析和结果评价通过对复合材料传动轴模型进行有限元分析,可以得到应力和应变的分布图,以及轴的变形情况。

利用这些结果可以评估轴的失效模式和强度。

8. 参数敏感性分析和优化设计在分析过程中,可以对模型的几何形状和材料参数进行敏感性分析。

通过调整这些参数,可以优化设计,提高传动轴的性能和可靠性。

9. 模型验证和实验验证为了验证有限元模型的准确性,可以进行实验验证。

将有限元分析结果与实验结果进行对比和验证,以确定模型的准确性和可靠性。

基于catia与ansys的汽车驱动桥壳有限元分析

基于catia与ansys的汽车驱动桥壳有限元分析

基于catia与ansys的汽车驱动桥壳有限元分析汽车驱动桥壳是汽车传动系统中不可或缺的部件,是汽车传动系统性能和可靠性的关键指标。

因此,对于汽车驱动桥壳的强度、刚度及疲劳性能的精确分析和预测具有重要意义。

近年来,有限元分析技术在汽车驱动桥壳分析领域得到广泛应用,可以有效获取整个汽车驱动桥壳的力学特性,为企业的产品质量提供有力支持。

本文基于Catia与Ansys有限元软件,采用节点法建立了汽车驱动桥壳模型,然后分析了汽车驱动桥壳的材料特性和结构特性。

首先,利用热处理工艺处理汽车驱动桥壳的材料,然后采用Catia 软件建立汽车驱动桥壳的有限元模型,并将材料参数和结构参数以及节点位置等信息导入模型,进而利用Ansys有限元分析软件对汽车驱动桥壳的力学特性进行分析。

在节点法的有限元有限元模型建立上,利用柔性节点、支座节点和悬臂梁元素,能够精确反映汽车驱动桥壳模型,解决汽车驱动桥壳实体模型中存在的几何复杂度和渐近问题。

有限元分析中,施加静载荷和动载荷分析,并利用应力平均值计算汽车驱动桥壳的材料强度指标,同时利用许用应力与应力最大值的比值判断汽车驱动桥壳的有效性。

为了更准确地提高汽车驱动桥壳的精度,本文采用KG分类结构网格方法,实现了粗模型与细模型的转换,即能够精确模拟实体模型中存在的几何非线性和材料非线性,从而得到准确无误的汽车驱动桥壳分析结果。

分析结果表明,汽车驱动桥壳模型的强度和刚度满足了汽车传动系统的要求,疲劳性能达到国家规定的明确要求,从而证明了本文提出的有限元分析方法是有效的、可行的。

本文以Catia与Ansys有限元软件建立汽车驱动桥壳有限元模型,并利用精细结构网格及求解器分析了汽车驱动桥壳的强度、刚度及疲劳性能,得出了较为准确的力学特性结果。

因此,本文提出的基于Catia与Ansys有限元分析技术具有较好的实用性,可以为汽车驱动桥壳相关产品的质量提供可靠的研究支持。

在未来的应用中,可以进一步改进有限元分析软件的计算精度,以满足不断提高的产品强度要求,并利用多因素及多组分的设计方法,研究设计新型汽车驱动桥壳的结构和性能。

基于ANSYS的WD615发动机曲轴的应力分析及可靠性分析

基于ANSYS的WD615发动机曲轴的应力分析及可靠性分析

基于ANSYS的WD615发动机曲轴的应力分析及可靠性分析摘要:曲轴作为发动机最重要的部件,其静刚度的好坏直接影响发动机的工作性能及使用寿命。

目前我国对发动机曲轴的静态特性的要求日渐苛刻,曲轴的疲劳失效将使发动机运转发生故障。

本文运用Ansys有限元分析软件对WD615发动机曲轴进行应力分析,主要分析其在承受最大外力载荷时所发生的应力集中和变形情况,为提高发动机的可靠性和使用寿命提供理论依据,具有实际应用价值。

关键词:曲轴;应力分析;有限元法引言曲轴为发动机的重要部件之一,在发动机的设计以及改进的过程中占有很重要的地位,它是发动机的主要旋转部件。

WD615发动机曲轴结构比较复杂,工作过程中曲轴内部会产生弯曲应力以及扭转应力,应力集中达到一定程度的时候,曲轴会产生失效或者断裂。

本文对WD615发动机曲轴进行应力分析,求解WD615发动机曲轴部件的局部应力和曲轴整体的应力分布以及曲轴在工作状态中的变形量。

1.WD615发动机曲轴的工作状态分析发动机工作过程中,气缸内气体燃烧产生气体爆发力并作用到活塞上,再通过连杆作用到曲轴上,曲轴在工作的过程中内部会产生弯曲应力和扭转应力,如果应力超过发动机曲轴能够承受的极限载荷,曲轴就会产生失效或者断裂现象。

曲轴刚度也很重要,刚度不足将会加剧曲轴的纵向振动和扭振振动,使与曲轴相连的柴油机零部件的工作条件出现恶化,增大柴油机的噪声。

2.WD615发动机曲轴的静态应力分析本文对发动机曲轴的静态应力分析是基于Ansys的有限元结构分析,用Solidworks软件建立曲轴的三维模型,将其导入到Ansys软件建立了WD615曲轴的有限元模型,然后定义分析类型和材料的力学性能,并且还要施加力载荷以及约束边界条件,最后得出应力分析的结果。

2.1 WD615发动机曲轴有限元模型的前处理WD615发动机曲轴为整体锻造模锻件,材料采用优质45 钢。

燃烧最高压力达3000~6000kPa。

毕业论文参考-基于ANSYS的连杆应力有限元分析及结构优化

毕业论文参考-基于ANSYS的连杆应力有限元分析及结构优化

XXXXX毕业设计(论文)摘要众所周知,发动机是汽车一切非简单部件中最重要的部件之一。

而曲轴连杆作为发动机转换能源的重要零部件,承担着将燃料化学能转换为机械能的重点工作。

其主要作用是将来自于活塞的力传递给曲轴,使活塞的往返运动转化为曲轴的旋转运动。

在发动机运行时,连杆承受着复杂的载荷,其受力主要包含来自于活塞的压力、活塞及其自身往复运动的惯性力,而且对于这些力的大小和方向,其特征都是周期性变化的。

所以,这就要求强度及刚度对连杆都要满足。

故而需要对发动机连杆进行强度分析及结构优化。

由于计算机的快速发展,采用计算机辅助分析的方法来研究机械结构在工程领域中已广泛使用。

ANSYS是一款通用性很强且功用非常强大的有限元分析软件,故本文以ANSYS14.0为核心对发动机连杆进行了有限元应力分析。

本论文主要做了如下工作:(1)使用UG10.0软件建立了连杆的三维模型,导入ANSYS14.0软件划分网格,得到有限元分析模型。

(2)对发动机连杆进行静力学分析,得到了连杆拉压工况的的应力云图和位移云图。

(3)结合连杆受力情况,对连杆进行了结构优化设计,使其在满足相同强度条件的情况下减少重量,以达到减小惯性力及材料的目标。

本文借助于大型有限元分析软件ANSYS14.0对发动机连杆进行有限元应力分析,验证了连杆的性能及研究了连杆强度计算和优化设计方法,从静力学方面判断出连杆工作的可靠性。

关键词:曲轴连杆,有限元,强度分析,优化IXXXXX毕业设计(论文)ABSTRACTAs we all know, engine is one of the most important parts of all the complex parts of automobile. Crankshaft connecting rod, as an important part of engine power conversion, undertakes the core task of converting fuel chemical energy into mechanical energy.Its main function is to transfer the force from the piston to the crankshaft, so that the reciprocating motion of the piston can be transformed into the rotating motion of the crankshaft. When the engine works, the connecting rod bears harsh working conditions and complex loads. The force mainly comes from the gas force of the piston, the inertia force of the piston and its reciprocating motion, and the magnitude and direction of these forces show periodic changes. Therefore, it requires the connecting rod to have enough strength and stiffness. Therefore, it is necessary to analyze the strength and optimize the structure of the engine connecting rod.Because of the rapid development of computer, the method of computer aided analysis has been widely used in the field of engineering. ANSYS is a very versatile and powerful finite element analysis software, so this paper takes ANSYS14.0 as the core to carry out finite element stress analysis of engine connecting rod.The main work of this paper is as follows:(1) The three-dimensional model of the connecting rod is established by UG10.0 software, and meshed by ANSYS14.0 software, the finite element analysis model is obtained.(2) Static analysis of engine connecting rod is carried out to check the correctness of finite element model and boundary conditions, and stress nephogram which is in accordance with actual working conditions is obtained.(3) Optimized design of the connecting rod in combination with the force of the connecting rod, so that the weight of the connecting rod can be reduced under theIIXXXXX毕业设计(论文)same strength condition, in order to achieve the purpose of reducing inertial force and material.In this paper, the finite element stress analysis of engine connecting rod is carried out by means of the large-scale finite element analysis software ANSYS14.0. The performance of the connecting rod is verified, the strength calculation and the optimization design method of the connecting rod are studied, and the reliability of the connecting rod is judged from the static aspect.KEY WORDS:crankshaft connecting rod, finite element, strength analysis, optimizationIIIXXXXX毕业设计(论文)目录摘要 (I)ABSTRACT ......................................................................................................................I I 目录 . (IV)第一章绪论 (1)1.1论文研究背景和意义 (1)1.2有限元法研究现状 (1)1.3发动机连杆有限元分析研究现状 (2)1.4本章小结 (3)第二章有限元分析基础 (4)2.1有限元法介绍 (4)2.1.1有限元法发展历史 (4)2.1.2有限元法基本理论 (5)2.1.3有限元法分析步骤 (7)2.2ANSYS软件介绍 (9)2.3本章小结 (9)第三章连杆的受力分析 (10)3.1连杆受载情况及参数 (10)3.1.1连杆受力分析 (10)3.1.2已知参数 (11)3.2燃气压力计算 (11)3.3惯性力计算 (12)IVXXXXX毕业设计(论文)3.5连杆最大压应力工况受力分析 (15)3.6本章小结 (16)第四章连杆应力有限元分析与结构优化 (17)4.1连杆三维模型的建立 (17)4.1.1 UG10.0软件介绍 (17)4.1.2建立连杆三维模型 (18)4.1.3三维模型的简化 (19)4.2有限元模型前处理 (22)4.2.1三维模型的导入 (22)4.2.2材料参数的设定 (24)4.2.2单元类型的选择及网格划分 (25)4.3连杆载荷施加及边界条件 (28)4.3.1连杆载荷处理与分布 (28)4.3.1.1载荷处理 (28)4.3.1.2连杆大小端拉应力加载 (29)4.3.1.3连杆大小端压应力加载 (31)4.3.2连杆位移边界条件的确定 (34)4.4运算及结果分析 (35)4.5连杆结构优化分析 (37)4.6.1连杆优化概述 (37)4.6.2连杆优化分析 (38)4.6本章小结 (40)第五章总结与展望 (41)5.1工作总结 (41)5.2工作展望 (42)参考文献 (44)VXXXXX毕业设计(论文)致谢 (46)毕业设计小结 (47)VIXXXXX毕业设计(论文)第一章绪论1.1论文研究背景和意义以往对发动机的主要组成部件的受力分析,只能靠传统力学计算方法,大致反映这些零件受力状态,因为这些零件受力复杂且形状不规则,比如活塞、连杆、气缸、曲轴等。

基于ANSYS的汽车传动轴的有限元分析

基于ANSYS的汽车传动轴的有限元分析

基于ANSYS的汽车传动轴的有限元分析
唐良兵;王伟
【期刊名称】《机械》
【年(卷),期】2013(040)001
【摘要】利用ANSYS进行传动轴的强度及刚度校核,给出相应的扭转应力、单位扭转角等数据有限元分析结果,在进行强度及刚度校核时,还将利用ANSYS进行验证.在相同的受力条件下,分别对实心轴和空心轴进行应力分析,分析出传动轴中空心轴和实心轴的性能优劣,为传动轴设计提供理论依据.对实际工程中选用有着重要参考意义.
【总页数】5页(P45-48,51)
【作者】唐良兵;王伟
【作者单位】中国船舶重工集团公司第七二二研究所,湖北武汉430079;湖北航天技术研究院总体设计所,湖北武汉430040
【正文语种】中文
【中图分类】O242.21
【相关文献】
1.基于ANSYS的传动轴有限元分析 [J], 丁新兵
2.基于ANSYS Workbench的汽车传动轴的有限元分析 [J], 田国富;赵庆斌
3.基于ANSYS泵体传动轴的有限元分析 [J], 张宏辉;冯海全
4.基于平转浸出器传动轴的ANSYS的有限元分析 [J], 姜云宽
5.基于ANSYS的机械传动轴有限元分析及优化 [J], 姚万琴
因版权原因,仅展示原文概要,查看原文内容请购买。

基于ANSYS有限元的复合材料传动轴失效分析

基于ANSYS有限元的复合材料传动轴失效分析

碳纤维复合材料由于较高的比强度和比模量以及较小的密度,在航空航天领域已经得到了广泛应用,可以利用碳纤维复合材料这种可变的性能参数来满足不同的使用性能要求。

传动轴是复合材料的一个重要应用方面,目前在航天飞机、高性能汽车以及特殊用途的机械中得到了广泛应用。

复合材料的抗拉和抗压性能较好,而复合材料结构设计标准的不足或日常维护不当常常成为制约复合材料有效应用的重要因素。

因此,对复合材料结构进行有限元数值并基于此的失效分析研究具有较大的工程应用价值。

基于复合材料基础应用理论,该文针对某小型飞机碳纤维复合材料传动轴的几何尺寸及受力特性,通过合理简化结构模型、运用刚体约束技术和适当施加边界条件及载荷,通过A NSYS软件对该复合材料传动轴进行直接建模并分析了该传动轴在设定扭矩下的特性,获得该复合材料传动轴的位移、应力云图,并对该传动轴的应力失效和应变失效进行分析。

1 复合材料传动轴有限元模型的建立该型飞机复合材料传动轴结构,是由玻璃纤维或环氧树脂基体制成的碳布组成的。

环氧树脂基体可以保护纤维,并转移分布在纤维上的载荷。

每层材料都由不同的正交各向异性材料构成,并且其主方向也各不相同。

对于叠层复合材料,纤维的方向即决定了层的主方向。

对于该传动轴结构来说,共由10个铺层组成,从第一层到第十层的铺角分别为-45°、45°、-45°、45°、-45°、45°、-45°、45°、-45°、45°。

该轴所受扭矩为2 000 N ·m,其材料常数如表1所述。

①基金项目:SR 20飞机复合材料结构修理的工程分析及验证方法研究(项目编号:J2015-54)。

作者简介:王凯(1984—),男,汉,河南荥阳人,硕士研究生,现任中国民航飞行学院洛阳分院工程师,从事航空器工程技 术管理工作。

叶年江(1972—),男,汉,河南南召人,本科,现任中国民航飞行学院洛阳分院机务部副主任、工程师,从事航空维 修管理工作。

基于ANSYS workbench的汽车传动轴有限元分析和优化设计

基于ANSYS workbench的汽车传动轴有限元分析和优化设计

基于ANSYS workbench的汽车传动轴有限元分析和优化设计使用ANSYS Workbench进行汽车传动轴的有限元分析和优化设计是一种常见的方法。

以下是基于ANSYS Workbench的汽车传动轴有限元分析和优化设计的一般步骤:1.创建几何模型:使用CAD软件创建传动轴的几何模型,并将其导入到ANSYS Workbench中。

确保几何模型准确、完整,并符合设计要求。

2.网格划分:对传动轴几何模型进行网格划分,将其划分为离散的单元。

选择合适的网格划分方法和单元类型,以确保模型的准确性和计算效率。

3.材料属性定义:定义传动轴所使用的材料的力学性质,如弹性模量、泊松比、密度等。

确保选择适当的材料模型,以准确模拟材料的行为。

4.载荷和约束定义:定义施加在传动轴上的载荷,如扭矩、轴向力等。

同时,定义约束条件,如固定轴承端点、自由转动等。

5.设置分析类型和求解器:根据实际情况选择适当的分析类型,如静态、动态、模态等。

配置求解器设置,选择合适的求解器类型和参数。

6.进行有限元分析:运行有限元分析,计算传动轴的应力、变形和振动等。

根据分析结果,评估传动轴的性能和强度。

7.优化设计:根据有限元分析的结果,对传动轴的结构进行优化设计。

通过调整传动轴的几何形状、材料或其他参数,以提高其性能。

8.重新进行有限元分析:对优化后的设计进行再次有限元分析,以验证优化结果。

如果需要,可以多次进行重复优化和分析的步骤。

9.结果评估和优化验证:评估优化结果的有效性,并验证传动轴在实际工况下的性能。

根据需求进行修正和改进。

请注意,基于ANSYS Workbench的有限元分析和优化设计需要一定的专业知识和技能。

基于ANSYS的汽车传动轴的有限元分析_唐良兵

基于ANSYS的汽车传动轴的有限元分析_唐良兵

空心轴受到的最大剪应力为 Max=54.246 MPa; 实心轴受到的最大剪应力为 Max=79.509 MPa。 可见在载荷相同的条件下,空心轴的重量 只为实心轴的 32.36%,并且从数据中可以看出 其安全性能更好。空心轴在减轻重量、节约材 料、提高安全性等方面效果非常明显。因此, 在保持转矩不变的条件下,空心轴可以比实心 轴少用材料,重量将会大幅减轻。
收稿日期:2012-06-18 作者简介:唐良兵(1975-),男,湖北武汉人,硕士,主要研究方向为精密机械设计、非标机械设计。
・46・
计算机应用技术 (如图 1 所示)。
机械
2013 年第 1 期 总第 40 卷
取 2E11 Pa, 泊松比 μ 取 0.27, 许用应力[τ]及许 用扭转角[θ]分别为 60 MPa 和 2°/m。 首先在三维软件 Pro/E 中建立一段直径为 90 mm、长为 150 mm、壁厚为 2.5 mm 的圆管, 传动轴的长短并不影响传动轴的强度和刚度校 核,这里取 90 mm,是考虑到进行 ANSYS 有 限元分析时所花的时间短一些。
Wt
max
( 1) ( 2)
πD3 16
可以初步确定实心轴的半径 R=26 mm。
2.1 实心传动轴有限元模型的建立
实心轴的模型建立与空心轴建立是一致 的,在 Pro/E 软件中建立一段直径为 26 mm, 长 90 mm 的实心圆筒,导入到 ANSYS 中进行 分析,采用相同的映射网格划分。
由表 1 可知,694 号节点切向位移最大, Max=-0.91217E-01,对应的转角为:
机械
2013 年第 1 期 总第 40 卷
计算机应用技术
・47・
d
d x 0.091217 2.02705E - 3 rad 45 R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要ANSYS 有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。

因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。

传动轴是最常件的零件,该零件结构较为简单,操作方便,加工精度高,价格低廉,因此得到了广泛的使用。

目前很多传动轴都做了适当的改进,使其适用性得到了更大的提高。

.本设计是基于ANSYS 软件来汽车传动轴行分析。

与传统的计算相比,借助于计算机有限元分析方法能更加快捷和精确的得到结果。

设置正确的模型、划分合适的网格,并合理设置求解过程,能够准确的获得分析模型各个部位的应力、变形等结果。

对零件的设计和优化有很大的参考作用。

正是因为上述优点,我在本设计中运用UG 来建立三维模型。

再将此模型导入ANSYS 软件来对其进行分析。

关键词:传动轴,三维建模,ANSYS,动静态分析A b st r ac tANSYS (f i n i t e e l e m e n t) package i s a m u l t i-p ur po s e f i n i t e e l e m e n t method for computer des i gn program that can be used to s o l ve the structure, fluid, e l ec tr i c i ty,e l ec tr o m ag n et i cf i e l ds and co lli s i on problems. So it can be applied to the followingi ndus tr i es: aerospace, au tom o t i v e,bi o m ed i ca l,b r i dge s,c on s tr uc t i on,e l ec tr o ni cs,h ea vy machinery, mi cro-el e ct r o m echa ni ca l systems, sports equipment and so on.Tr an s mi ss i on s h a f t i s the most common a r egu l a r part, the part structure i s s i m p l e, convenient o pera t i on, high pr ec i s i on, low pr i c es, it has been w i d e l y used. At pr ese n t, many have made the appro pr i at e Tr an s mi ss i on s h a f t i mpr o v e m e n t s,it has been gr ea t l y enhanced app li c a bi li ty.The des i gn i s based on ANSYS s o f t ware to Tr an s m i ss i on s ha f t by the line of s p i nd l e. Compared with the tr adi t i on a l c a l cu l at i on,computer-based f i n i t e e l e m e n t an a l y s i s method can be f a s t er and more accurate r es u l t s.Set the correct m o de l,dividing the right grid, and set a reasonable s o l ut i on process, an a ly t i ca l m o de l can ac curat e l y access t h e various parts of the stress and de f o r m at i on r es u l t s. On the part of the des i gn a ndop t i mi za t i on has great r ef ere n c e.It i s because of these advantages, the use of this des i gn in my UG to crea t et h r ee-di m e ns i on a l model Tr a ns m i ss i on s h a f t. Then this model was i n tr o duce d by t h e ANSYS s o f t wa r e to i t s line of a n a ly s i s.Key Words: Tr an smiss i on s h af t,t h r ee-d i me n si on al mo d e li ng,ANSYS,d y n am i c and s t a t i c a n al y s i s目录摘要.............................................................................................................................. - 1 -Abs tr ac t ............................................................................................................................. -2 -目录.............................................................................................................................. - 2 -第1 章绪论..................................................................................................................... - 4 -1.1 选题的目的和意义............................................................................................. - 4 -- 2 -1.2 选题的研究现状及发展趋势.............................................................................. - 4 -1.3 传动轴知识........................................................................................................ - 5 -1.4 传动轴的结构特点............................................................................................. - 5 -1.5 传动轴重要部件................................................................................................. - 6 -1.6 传动轴常用类型................................................................................................ - 7 -第2 章本课题任务和研究方法...................................................................................... - 8 -2.1 课题任务............................................................................................................ - 8 -2.2 分析方法............................................................................................................. - 8 -3.3 本课题的研究方法............................................................................................. - 9 -3.4 有限元方法介绍................................................................................................ - 9 -3.4.1 概述.................................................................................................................. - 9 -3.4.2 基本思想......................................................................................................... - 9 -3.4.3 特点................................................................................................................ -10 -3.5 ANSYS 软件简介............................................................................................. -11 -第4 章确定汽车传动轴研究对象和UG 建模............................................................. -12 -4.1 确定汽车传动轴研究对象概述........................................................................ -12 -4.2 汽车传动轴(变速箱第二轴)的3D 建模设计............................................. -14 -4.2.1 进入UG 的操作界面............................................................................ -14 -第5 章汽车传动轴的有限元分析................................................................................ -21 -5.1 有限元分析的基本步骤............................................................................ -21 -5.2 有限元分析过程与步骤........................................................................... -22 -5.2.1 转换模型格式........................................................................................ -22 -第六章总结和传动轴的优化设计分析........................................................................ -41 -结论................................................................................................................................ -41 -参考文献........................................................................................................................ -42 -致谢.............................................................................................................................. -43 -第1 章绪论1.1 选题的目的和意义随着计算机技术的日益普及和FEA 技术的蓬勃发展,人们已经广泛采用计算机有限元仿真分析来作为传动轴强度校核的方法。

相关文档
最新文档