高考数学一轮复习 9-1 直线的方程 新人教A版
高考数学(文)一轮复习课件:1-9函数与方程(人教A版)

高考考点预览
■ ·考点梳理· ■ 1. 函数的零点 (1)函数零点的定义 对于函数y=f(x),我们把使f(x)=0的实数x叫做函数 y=f(x)的零点. (2)几个等价关系 方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交 点⇔函数y=f(x)有零点.
思考:上述等价关系在研究函数零点、方程的根及 图象交点问题时有什么作用?
思考:若函数y=f(x)在区间(a,b)内有零点,则y= f(x)在区间[a,b]上的图象是否一定是连续不断的一条曲 线,且有f(a)·f(b)<0呢?
提示:不一定.由图(1)、(2)可知.
3.二分法 (1)二分法的定义 对于在区间[a,b]上连续不断且ff((aa))··ff((bb)<0 的函数y= f(x),通过不断地把函数f(x)的零点所在的区间一分为二 , 使区间的两端点逐步逼近零点,进而得到零点的近似值 的方法叫做二分法. (2)用二分法求函数零点近似解的步骤 第一步:确定区间[a,b],验证f(a)·f(b)<0 ,给定精 确度ε;
观察图象可以发现它们有4个交点,即函数y=f(x)- log3|x|有4个零点.
3. [2012·徐州模拟]根据下面表格中的数据,可以判
定方程ex-x-2=0的一个根所在的区间为________.
x
-1 0 1 2
3
ex 0.37 1 2.72 7.39 20.09
x+2 1 2 3 4
5
答案:(1,2)
3. 二分法是求方程的根的近似值的一种计算方法.其 实质是通过不断地“取中点”来逐步缩小零点所在的范 围,当达到一定的精确度要求时,所得区间的任一点就是 这个函数零点的近似值.
4. 要熟练掌握二分法的解题步骤,尤其是初始区间的 选取和最后精确度的判断.
2024届高考一轮复习数学课件(新教材人教A版):直线与圆、圆与圆的位置关系

3-4sin25θ+1,
所以 1≤4sin25θ+1<3,
所以 2 r2-d2=2 3-4sin25θ+1∈(0,2 2]. 所以当 4sin2θ+1=5,即 sin2θ=1 时,弦长有最大值 2 2.
题型二 圆与圆的位置关系
例5 (1)(2023·扬州联考)已知圆C:(x-1)2+(y+2 2)2=16和两点A(0,-m), B(0,m),若圆C上存在点P,使得AP⊥BP,则m的最大值为
则直线l与圆C相离,故B正确; 若点A(a,b)在圆C外,则a2+b2>r2,
所以 d= a2r+2 b2<|r|,则直线 l 与圆 C 相交,故 C 错误;
若点A(a,b)在直线l上,则a2+b2-r2=0, 即a2+b2=r2, 所以 d= a2r+2 b2=|r|,则直线 l 与圆 C 相切,故 D 正确.
第八章 直线和圆、圆锥曲线
§8.4 直线与圆、圆与 圆的位置关系
考试要求
1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系. 2.能用直线和圆的方程解决一些简单的数学问题与实际问题.
内容索引
第一部分
落实主干知识
第二部分
探究核心题型
第三部分
课时精练
第
一 部 分
落实主干知识
知识梳理
1.直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)若两圆没有公共点,则两圆一定外离.( × ) (2)若两圆的圆心距小于两圆的半径之和,则两圆相交.( × )
(3)若直线的方程与圆的方程组成的方程组有且只有一组实数解,则直线
与圆相切.( √ ) (4)在圆中最长的弦是直径.( √ )
2020高三数学一轮复习(人教版理):直线的倾斜角与斜率、直线方程

答案
1 (2)2
与直线方程有关的最值问题的解题思路 1.借助直线方程,用 y 表示 x 或用 x 表示 y。 2.将问题转化成关于 x(或 y)的函数。 3.利用函数的单调性或基本不等式求最值。
【变式训练】 (1)当 k>0 时,两直线 kx-y=0,2x+ky-2=0 与 x 轴围 成的三角形面积的最大值为________。
解 (1)设所求直线的斜率为 k,依题意 k=-4×13=-43。又直线经过点 A(1,3),因此所求直线方程为 y-3=-43(x-1),即 4x+3y-13=0。
(2)当直线不过原点时,设所求直线方程为2xa+ay=1,将(-5,2)代入所设方 程,解得 a=-12,所以直线方程为 x+2y+1=0;当直线过原点时,设直线方 程为 y=kx,则-5k=2,解得 k=-25,所以直线方程为 y=-25x,即 2x+5y= 0。故所求直线方程为 2x+5y=0 或 x+2y+1=0。
解析 (1)由题意知 cosθ≠0,则斜率 k=tanα=scions2θθ--01=-cosθ∈ [-1,0)∪(0,1],那么直线 AB 的倾斜角的取值范围是0,π4∪34π,π。
答案 (1)0,4π∪34π,π
(2)已知两点 M(2,-3),N(-3,-2),斜率为 k 的直线 l 过点 P(1,1)且 与线段 MN 相交,则 k 的取值范围是________。
2021届高考数学一轮复习第九章平面解析几何第1节直线的方程教学案含解析新人教A版

第1节 直线的方程考试要求 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知 识 梳 理1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角;(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0; (3)范围:直线的倾斜角α的取值范围是[0,π). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan__α. (2)计算公式:①经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率k =y 2-y 1x 2-x 1. ②若直线的方向向量为a =(x ,y )(x ≠0),则直线的斜率k =y x. 3.直线方程的五种形式名称 几何条件 方程适用条件 斜截式 纵截距、斜率 y =kx +b 与x 轴不垂直的直线点斜式 过一点、斜率 y -y 0=k (x -x 0) 两点式过两点y -y 1y 2-y 1=x -x 1x 2-x 1与两坐标轴均不垂直的直线截距式 纵、横截距x a +y b =1 不过原点且与两坐标轴均不垂直的直线 一般式Ax +By +C =0(A 2+B 2≠0)所有直线[常用结论与微点提醒]1.直线的倾斜角α和斜率k 之间的对应关系:α 0 0<α<π2π2 π2<α<π kk >0 不存在k <02.截距和距离的不同之处“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)直线的倾斜角越大,其斜率就越大.( ) (2)直线的斜率为tan α,则其倾斜角为α.( ) (3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )解析 (1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k 1=-1,k 2=1,k 1<k 2.(2)当直线斜率为tan(-45°)时,其倾斜角为135°. (3)两直线的斜率相等,则其倾斜角一定相等. 答案 (1)× (2)× (3)× (4)√2.(老教材必修2P89B5改编)若过两点A (-m ,6),B (1,3m )的直线的斜率为12,则直线的方程为________.解析 由题意得3m -61+m =12,解得m =-2,∴A (2,6),∴直线AB 的方程为y -6=12(x -2), 整理得12x -y -18=0. 答案 12x -y -18=03.(老教材必修2P101B2改编)若方程Ax +By +C =0表示与两条坐标轴都相交的直线(不与坐标轴重合),则应满足的条件是________.解析 由题意知,直线斜率存在且斜率不为零,所以A ≠0且B ≠0. 答案 A ≠0且B ≠04.(2020·西安调研)直线x -y +1=0的倾斜角为( ) A.30°B.45°C.120°D.150°解析 由题意得,直线y =x +1的斜率为1,设其倾斜角为α,则tan α=1,又0°≤α<180°,故α=45°. 答案 B5.(2020·昆明诊断)已知直线l 经过A (2,1),B (1,m 2)两点(m ∈R ),那么直线l 的倾斜角的取值范围是( ) A.[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π2,π解析 直线l 的斜率k =1-m 22-1=1-m 2,因为m ∈R ,所以k ∈(-∞,1],所以直线的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π.答案 B6.(2020·合肥调研)过点(-3,4),在x 轴上的截距为负数,且在两坐标轴上的截距之和为12的直线方程为______.解析 由题设知,横、纵截距均不为0,设直线的方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9(舍).故所求直线的方程为4x -y +16=0.答案 4x -y +16=0考点一 直线的倾斜角与斜率典例迁移【例1】 (一题多解)(经典母题)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.解析 法一 设PA 与PB 的倾斜角分别为α,β,直线PA 的斜率是k AP =1,直线PB 的斜率是k BP =-3,当直线l 由PA 变化到与y 轴平行的位置PC 时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞).当直线l 由PC 变化到PB 的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,-3].故斜率的取值范围是(-∞,-3]∪[1,+∞). 法二 设直线l 的斜率为k ,则直线l 的方程为y =k (x -1),即kx -y -k =0.∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1-k )(-3-k )≤0,即(k -1)(k +3)≥0,解得k ≥1或k ≤- 3.即直线l 的斜率k 的取值范围是(-∞,-3]∪[1,+∞). 答案 (-∞,-3]∪[1,+∞)【迁移1】 若将例1中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围. 解 设直线l 的斜率为k ,则直线l 的方程为y =k (x +1),即kx -y +k =0.∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1+k )(-3+k )≤0,即(3k -1)(k -3)≤0,解得13≤k ≤ 3.即直线l 的斜率的取值范围是⎣⎢⎡⎦⎥⎤13,3. 【迁移2】 若将例1中的B 点坐标改为B (2,-1),其他条件不变,求直线l 倾斜角的取值范围.解 由例1知直线l 的方程kx -y -k =0,∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1-k )(2k +1-k )≤0, 即(k -1)(k +1)≤0,解得-1≤k ≤1.即直线l 倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.规律方法 1.由直线倾斜角的取值范围求斜率的取值范围或由斜率的取值范围求直线倾斜角的取值范围时,常借助正切函数y =tan x 在⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π上的单调性求解,这里特别要注意,正切函数在⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π上并不是单调的.2.过一定点作直线与已知线段相交,求直线斜率范围时,应注意倾斜角为π2时,直线斜率不存在.【训练1】 如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 2解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2. 答案 D考点二 直线方程的求法【例2】 求适合下列条件的直线方程: (1)经过点P (1,2),倾斜角α的正弦值为45;(2)(一题多解)经过点P (2,3),并且在两坐标轴上截距相等;(3)经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线的一个方向向量v =(-3,2). 解 (1)由题可知sin α=45,则tan α=±43,∵直线l 经过点P (1,2),∴直线l 的方程为y -2=±43(x -1),即y =±43(x -1)+2,整理得4x -3y +2=0或4x +3y -10=0.(2)法一 ①当截距为0时,直线l 过点(0,0),(2,3), 则直线l 的斜率为k =3-02-0=32,因此,直线l 的方程为y =32x ,即3x -2y =0.②当截距不为0时,可设直线l 的方程为x a +y a=1. 因为直线l 过点P (2,3),所以2a +3a=1,所以a =5.所以直线l 的方程为x +y -5=0.综上可知,直线l 的方程为3x -2y =0或x +y -5=0. 法二 由题意可知所求直线斜率存在, 则可设y -3=k (x -2),且k ≠0.令x =0,得y =-2k +3.令y =0,得x =-3k+2.于是-2k +3=-3k +2,解得k =32或k =-1.则直线l 的方程为y -3=32(x -2)或y -3=-(x -2),即直线l 的方程为3x -2y =0或x +y -5=0.(3)联立⎩⎪⎨⎪⎧x +y =2,2x -y =1,得x =1,y =1,∴直线过点(1,1),∵直线的方向向量v =(-3,2), ∴直线的斜率k =-23.则直线的方程为y -1=-23(x -1),即2x +3y -5=0.规律方法 1.在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.2.对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).【训练2】 (1)求经过点B (3,4),且与两坐标轴围成一个等腰直角三角形的直线方程; (2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. 解 (1)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 所求直线的方程为x -y +1=0或x +y -7=0.(2)当直线不过原点时,设所求直线方程为x 2a +y a =1,将(-5,2)代入所设方程,解得a =-12,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,则-5k =2,解得k=-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0.考点三 直线方程的综合应用 多维探究角度1 直线过定点问题【例3-1】 已知k ∈R ,写出以下动直线所过的定点坐标: (1)若直线方程为y =kx +3,则直线过定点________; (2)若直线方程为y =kx +3k ,则直线过定点________; (3)若直线方程为x =ky +3,则直线过定点________. 解析 (1)当x =0时,y =3,所以直线过定点(0,3). (2)直线方程可化为y =k (x +3),故直线过定点(-3,0). (3)当y =0时,x =3,所以直线过定点(3,0). 答案 (1)(0,3) (2)(-3,0) (3)(3,0)规律方法 1.直线过定点问题,可以根据方程的结构特征,得出直线过的定点坐标. 2.含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.角度2 与直线方程有关的多边形面积的最值问题【例3-2】 已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________.解析 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2(2-a )+12×2(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154,又0<a <2,所以当a =12时,面积最小.答案 12规律方法 1.求解与直线方程有关的面积问题,应根据直线方程求解相应坐标或者相关长度,进而求得多边形面积.2.求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.【训练3】 已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程可化为k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1. ∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2k k,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k >0; 当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)解 由题意可知k ≠0,再由l 的方程,得A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k |=12·(1+2k )2k =12⎝⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.A 级 基础巩固一、选择题1.(2020·安阳模拟)若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =( ) A.1±2或0 B.2-52或0 C.2±52D.2+52或0解析 由题意知k AB =k AC ,即a 2+a 2-1=a 3+a3-1,即a (a 2-2a -1)=0,解得a =0或a =1± 2.答案 A2.(2020·广东七校联考)若过点P (1-a ,1+a )和Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是( ) A.(-2,1) B.(-1,2)C.(-∞,0)D.(-∞,-2)∪(1,+∞)解析 由题意知2a -1-a 3-1+a <0,即a -12+a <0,解得-2<a <1.答案 A3.(2020·福建六校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )解析 当a >0,b >0时,-a <0,-b <0,结合选项知B 符合,其他均不符合. 答案 B4.(2020·成都诊断)过点(2,1),且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( ) A.x =2 B.y =1 C.x =1D.y =2解析 直线y =-x -1的倾斜角为3π4,则所求直线的倾斜角为π2,故所求直线斜率不存在,又直线过点(2,1),所以所求直线方程为x =2. 答案 A5.已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( ) A.y =3x +2 B.y =3x -2 C.y =3x +12D.y =-3x +2解析 因为直线x -2y -4=0的斜率为12,所以直线l 在y 轴上的截距为2,所以直线l 的方程为y =3x +2.答案 A6.(2020·湖北四地七校联考)已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝ ⎛⎭⎪⎫π4-x =f ⎝⎛⎭⎪⎫π4+x ,则直线ax -by +c =0的倾斜角为( )A.π4B.π3C.2π3D.3π4解析 由f ⎝⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x 知函数f (x )的图象关于直线x =π4对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π2,所以a =-b ,由直线ax -by +c =0知其斜率k =a b =-1,所以直线的倾斜角为3π4,故选D.答案 D7.直线x sin α+y +2=0的倾斜角的取值范围是( ) A.[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫π2,π解析 设直线的倾斜角为θ,则有tan θ=-sin α.又sin α∈[-1,1],θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.答案 B8.(2020·东北三省四校调研)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则点P 横坐标的取值范围为( )A.⎣⎢⎡⎦⎥⎤-1,-12B.[-1,0]C.[0,1]D.⎣⎢⎡⎦⎥⎤12,1解析 由题意知,y ′=2x +2,设P (x 0,y 0),则在点P 处的切线的斜率k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.答案 A 二、填空题9.直线l 的倾斜角为60°,且在x 轴上的截距为-13,则直线l 的方程为________.解析 由题意可知,直线l 的斜率为3,且该直线过⎝ ⎛⎭⎪⎫-13,0,∴直线l 的方程为y =3⎝ ⎛⎭⎪⎫x +13,即3x -3y +1=0. 答案 3x -3y +1=010.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0.答案 x +13y +5=011.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 解析 b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.所以b 的取值范围是[-2,2].答案 [-2,2]12.若经过两点A (4,2y +1),B (2,-3)的直线的倾斜角是直线4x -3y +2 020=0的倾斜角的一半,则y 的值为________.解析 因为直线4x -3y +2 020=0的斜率为43,所以由倾斜角的定义可知直线4x -3y +2 020=0的倾斜角α满足tan α=43,因为α∈[0,π),所以α2∈⎣⎢⎡⎭⎪⎫0,π2,所以2tanα21-tan 2α2=43,解得tan α2=12,由已知及倾斜角与斜率的关系得2y +1+34-2=12,所以y =-32.答案 -32B 级 能力提升13.(2019·湖南长郡中学月考)已知点(-1,2)和⎝ ⎛⎭⎪⎫33,0在直线l :ax -y +1=0(a ≠0)的同侧,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎭⎪⎫π4,π3B.⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫34π,πC.⎝ ⎛⎭⎪⎫34π,56πD.⎝ ⎛⎭⎪⎫23π,34π解析 因为点(-1,2)和⎝ ⎛⎭⎪⎫33,0在直线l :ax -y +1=0(a ≠0)的同侧,所以(-a -2+1)·⎝⎛⎭⎪⎫33a -0+1>0,即(a +1)(a +3)<0,所以-3<a <-1,又知直线l 的斜率k =a ,即-3<k <-1,又因为直线倾斜角的范围是[0,π),所以直线l 的倾斜角的取值范围为⎝ ⎛⎭⎪⎫23π,34π,故选D. 答案 D14.(2020·兰州模拟)若直线ax +by +c =0同时要经过第一、二、四象限,则a ,b ,c 应满足( ) A.ab >0,bc <0 B.ab >0,bc >0 C.ab <0,bc >0D.ab <0,bc <0解析 易知直线的斜率存在,则直线方程可化为y =-a b x -cb ,由题意知⎩⎪⎨⎪⎧-ab <0,-cb >0,所以ab >0,bc <0.答案 A15.已知数列{a n }的通项公式为a n =1n (n +1)(n ∈N *),其前n 项和S n =910,则直线x n +1+y n=1与坐标轴所围成的三角形的面积为________. 解析 由a n =1n (n +1)可知a n =1n -1n +1,所以S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1, 又知S n =910,所以1-1n +1=910,所以n =9.所以直线方程为x 10+y9=1,且与坐标轴的交点为(10,0)和(0,9),所以直线与坐标轴所围成的三角形的面积为12×10×9=45.答案 4516.(2020·豫北名校调研)直线l 过点P (6,4),且分别与两坐标轴的正半轴交于A ,B 两点,当△ABO 的面积最小时,直线l 的方程为________.解析 设直线l 的方程为y -4=k (x -6)(k ≠0),则A ⎝⎛⎭⎪⎫6-4k,0,B (0,4-6k ),由题意知k <0,则S △ABO =12×|OA |·|OB |=12⎝ ⎛⎭⎪⎫6-4k ·(4-6k )=24-18k -8k ,∵k <0,∴-18k >0,-8k >0,∴-18k -8k≥2(-18k )·⎝ ⎛⎭⎪⎫-8k =24,当且仅当-18k =-8k ,即k 2=49,也即k =-23时取得等号,所以△ABO 的面积的最小值为48,此时直线l 的方程为y -4=-23(x -6),即2x +3y -24=0.答案 2x +3y -24=0C 级 创新猜想17.(多填题)设点A (-2,3),B (3,2),已知直线l 的方程为ax +y +2=0,则直线l 过定点________,若直线l 与线段AB 没有交点,则实数a 的取值范围是________.解析 直线ax +y +2=0恒过点M (0,-2),且斜率为-a ,∵k MA =3-(-2)-2-0=-52,k MB =2-(-2)3-0=43,结合题意可知-a >-52,且-a <43,∴a ∈⎝ ⎛⎭⎪⎫-43,52.答案 (0,-2) ⎝⎛⎭⎪⎫-43,52。
高考一轮复习教案数学(理)新课标 第九篇 解析几何 2 两条直线的位置关系

第2讲 两条直线的位置关系【2013年高考会这样考】1.考查两直线的平行与垂直.2.考查两点间的距离公式、点到直线的距离公式、两平行直线间的距离公式.【复习指导】1.对两条直线的位置关系,求解时要注意斜率不存在的情况,注意平行、垂直时直线方程系数的关系.2.熟记距离公式,如两点之间的距离、点到直线的距离、两条平行线之间的距离.基础梳理1.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线l 1、l 2,其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2,特别地,当直线l 1、l 2的斜率都不存在时,l 1与l 2的关系为平行.(2)两条直线垂直①如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则l 1⊥l 2⇔k 1k 2=-1.②如果l 1、l 2中有一条直线的斜率不存在,另一条直线的斜率为0时,l 1与l 2的关系为垂直.2.两直线相交交点:直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解;平行⇔方程组无解;重合⇔方程组有无数个解.3.三种距离公式(1)平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2. 特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B2. (3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2.一条规律与直线Ax +By +C =0(A 2+B 2≠0)平行、垂直的直线方程的设法:一般地,平行的直线方程设为Ax +By +m =0;垂直的直线方程设为Bx -Ay +n =0.两个防范(1)在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑. (2)在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2时,一定要注意将两方程中的x ,y 系数化为分别相等.三种对称(1)点关于点的对称点P (x 0,y 0)关于A (a ,b )的对称点为P ′(2a -x 0,2b -y 0).(2)点关于直线的对称设点P (x 0,y 0)关于直线y =kx +b 的对称点P ′(x ′,y ′), 则有⎩⎪⎨⎪⎧ y ′-y 0x ′-x 0·k =-1,y ′+y 02=k ·x ′+x 02+b ,可求出x ′,y ′.(3)直线关于直线的对称①若已知直线l 1与对称轴l 相交,则交点必在与l 1对称的直线l 2上,然后再求出l 1上任一个已知点P 1关于对称轴l 对称的点P 2,那么经过交点及点P 2的直线就是l 2;②若已知直线l 1与对称轴l 平行,则与l 1对称的直线和l 1分别到直线l 的距离相等,由平行直线系和两条平行线间的距离即可求出l 1的对称直线.双基自测1.(人教A 版教材习题改编)直线ax +2y -1=0与直线2x -3y -1=0垂直,则a的值为( ).A .-3B .-43C .2D .3解析 由⎝ ⎛⎭⎪⎫-a 2×23=-1,得:a =3. 答案 D2.原点到直线x +2y -5=0的距离为( ).A .1 B. 3 C .2 D. 5解析 d =|-5|1+22= 5. 答案 D3.(2012·银川月考)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ).A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0 解析 ∵所求直线与直线x -2y -2=0平行,∴所求直线斜率k =12,排除C 、D.又直线过点(1,0),排除B ,故选A.答案 A4.点(a ,b )关于直线x +y +1=0的对称点是( ).A .(-a -1,-b -1)B .(-b -1,-a -1)C .(-a ,-b )D .(-b ,-a )解析 设对称点为(x ′,y ′),则⎩⎪⎨⎪⎧ y ′-b x ′-a ×(-1)=-1,x ′+a 2+y ′+b 2+1=0,解得:x ′=-b -1,y ′=-a -1.答案 B5.平行线l 1:3x -2y -5=0与l 2:6x -4y +3=0之间的距离为________.解析 直线l 2变为:3x -2y +32=0,由平行线间的距离公式得:d =⎪⎪⎪⎪⎪⎪-5-3232+22=132.答案13 2考向一两条直线平行与垂直的判定及应用【例1】►(1)已知两条直线y=ax-2和y=(a+2)x+1互相垂直,则实数a=________.(2)“ab=4”是直线2x+ay-1=0与直线bx+2y-2=0平行的().A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件[审题视点] (1)利用k1·k2=-1解题.(2)抓住ab=4能否得到两直线平行,反之两直线平行能否一定得ab=4.解析(1)由题意知(a+2)a=-1,所以a2+2a+1=0,则a=-1.(2)直线2x+ay-1=0与直线bx+2y-2=0平行的充要条件是-2a=-b2且-1a≠-1,即ab=4且a≠1,则“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的必要而不充分条件.答案(1)-1(2)C(1)充分掌握两直线平行与垂直的条件是解决本题的关键,对于斜率都存在且不重合的两条直线l1和l2,l1∥l2⇔k1=k2,l1⊥l2⇔k1·k2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率是多少一定要特别注意.(2)①若直线l1和l2有斜截式方程l1:y=k1x+b1,l2:y=k2x+b2,则:直线l1⊥l2的充要条件是k1·k2=-1.②设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0.则:l1⊥l2⇔A1A2+B1B2=0.(3)注意转化与化归思想的应用.【训练1】已知直线l1:x+my+6=0,l2:(m-2)x+3y+2m=0,求m的值,使得:(1)l1与l2相交;(2)l1⊥l2;(3)l1∥l2;(4)l1,l2重合.解(1)由已知1×3≠m(m-2),即m2-2m-3≠0,解得m≠-1且m≠3.故当m ≠-1且m ≠3时,l 1与l 2相交.(2)当1·(m -2)+m ·3=0,即m =12时,l 1⊥l 2.(3)当1×3=m (m -2)且1×2m ≠6×(m -2)或m ×2m ≠3×6,即m =-1时,l 1∥l 2.(4)当1×3=m (m -2)且1×2m =6×(m -2),即m =3时,l 1与l 2重合.考向二 两直线的交点【例2】►求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程.[审题视点] 可先求出l 1与l 2的交点,再用点斜式;也可利用直线系方程求解.解 法一 先解方程组⎩⎨⎧3x +2y -1=0,5x +2y +1=0, 得l 1、l 2的交点坐标为(-1,2),再由l 3的斜率35求出l 的斜率为-53,于是由直线的点斜式方程求出l :y -2=-53(x +1),即5x +3y -1=0.法二 由于l ⊥l 3,故l 是直线系5x +3y +C =0中的一条,而l 过l 1、l 2的交点(-1,2),故5×(-1)+3×2+C =0,由此求出C =-1,故l 的方程为5x +3y -1=0.法三 由于l 过l 1、l 2的交点,故l 是直线系3x +2y -1+λ(5x +2y +1)=0中的一条,将其整理,得(3+5λ)x +(2+2λ)y +(-1+λ)=0.其斜率-3+5λ2+2λ=-53,解得λ=15, 代入直线系方程即得l 的方程为5x +3y -1=0.运用直线系方程,有时会给解题带来方便,常见的直线系方程有:(1)与直线Ax +By +C =0平行的直线系方程是:Ax +By +m =0(m ∈R 且m ≠C );(2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R );(3)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.【训练2】 直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段的中点为P (-1,2),求直线l 的方程.解 法一 设直线l 与l 1的交点为A (x 0,y 0),由已知条件,得直线l 与l 2的交点为B (-2-x 0,4-y 0),并且满足⎩⎨⎧ 4x 0+y 0+3=0,3(-2-x 0)-5(4-y 0)-5=0, 即⎩⎨⎧ 4x 0+y 0+3=0,3x 0-5y 0+31=0,解得⎩⎨⎧ x 0=-2,y 0=5,因此直线l 的方程为y -25-2=x -(-1)-2-(-1),即3x +y +1=0. 法二 设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由⎩⎨⎧ kx -y +k +2=0,4x +y +3=0,得x =-k -5k +4. 由⎩⎨⎧kx -y +k +2=0,3x -5y -5=0,得x =-5k -155k -3. 则-k -5k +4+-5k -155k -3=-2,解得k =-3. 因此所求直线方程为y -2=-3(x +1),即3x +y +1=0.法三 两直线l 1和l 2的方程为(4x +y +3)(3x -5y -5)=0,①将上述方程中(x ,y )换成(-2-x,4-y ),整理可得l 1与l 2关于(-1,2)对称图形的方程:(4x +y +1)(3x -5y +31)=0.②①-②整理得3x +y +1=0.考向三 距离公式的应用【例3】►(2011·北京东城模拟)若O (0,0),A (4,-1)两点到直线ax +a 2y +6=0的距离相等,则实数a =________.[审题视点] 由点到直线的距离公式列出等式求a .解析 由题意,得6a 2+a 4=|4a -a 2+6|a 2+a4,即4a -a 2+6=±6,解之得a =0或-2或4或6.检验得a =0不合题意,所以a =-2或4或6.答案 -2或4或6用点到直线的距离公式时,直线方程要化为一般式,还要注意公式中分子含有绝对值的符号,分母含有根式的符号.而求解两平行直线的距离问题也可以在其中一条直线上任取一点,再求这一点到另一直线的距离.【训练3】 已知直线l 1:mx +8y +n =0与l 2:2x +my -1=0互相平行,且l 1,l 2之间的距离为 5,求直线l 1的方程. 解 ∵l 1∥l 2,∴m 2=8m ≠n -1,∴⎩⎨⎧ m =4,n ≠-2或⎩⎨⎧m =-4,n ≠2. (1)当m =4时,直线l 1的方程为4x +8y +n =0,把l 2的方程写成4x +8y -2=0.∴|n +2|16+64=5,解得n =-22或n =18. 所以,所求直线的方程为2x +4y -11=0或2x +4y +9=0.(2)当m =-4时,直线l 1的方程为4x -8y -n =0,l 2的方程为2x -4y -1=0,∴|-n +2|16+64=5,解得n =-18或n =22. 所以,所求直线的方程为2x -4y +9=0或2x -4y -11=0.考向四 对称问题【例4】►光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.[审题视点] 设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则直线A ′D ′经过点B 与C .解 作出草图,如图所示.设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y -66+4=x -11+2,即10x -3y +8=0.解决这类对称问题要抓住两条:一是已知点与对称点的连线与对称轴垂直;二是以已知点和对称点为端点的线段的中点在对称轴上.【训练4】 已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( ).A .x -2y +1=0B .x -2y -1=0C .x +y -1=0D .x +2y -1=0解析 l 1与l 2关于l 对称,则l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设其关于l 的对称点为(x ,y ),则⎩⎪⎨⎪⎧ x +02-y -22-1=0,y +2x ×1=-1,得⎩⎨⎧x =-1,y =-1.即(1,0)、(-1,-1)为l 2上两点,可得l 2方程为x -2y -1=0. 答案 B难点突破19——两直线平行与垂直问题的求解策略从近两年新课标高考试题可看出高考主要以选择题、填空题的形式考查两直线的平行和垂直问题,往往是直线方程中一般带有参数,问题的难点就是确定这些参数值,方法是根据两直线平行、垂直时所满足的条件列关于参数的方程(组),通过解方程(组)求出参数值,但要使参数符合题目本身的要求,解题时注意直线方程本身的限制.【示例1】►(2011·浙江)若直线x-2y+5=0与直线2x+my-6=0互相垂直,则实数m=________.【示例2】►(2010·上海)已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是().A.1或3 B.1或5 C.3或5 D.1或2。
2020年高考人教A版理科数学一轮复习(全册PPT课件 1520张)

2020版高考 全册精品 PPT课件
第1章 集合与常用逻辑用语 第一节 集 合 第二节 命题及其关系、充分条件与必要条件 第三节 简单的逻辑联结词、全称量词与存在量词
第2章 函数、导数及其应用 第一节 函数及其表示 第二节 函数的单调性与最值 第三节 函数的奇偶性与周期性 第四节 二次函数与幂函数 第五节 指数与指数函数 第六节 对数与对数函数 第七节 函数的图象
[答案] (1)× (2)× (3)× (4)×
23 答案
2 . ( 教 材 改 编 ) 若 集 合 A = D [由题意知 A={0,1,2},由 a= {x∈N|x≤2 2},a= 2,则下列结 2,知 a∉A.] 论正确的是( ) A.{a}⊆A B.a⊆A C.{a}∈A D.a∉A
解2析4 答案
22
[基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打 “×”) (1)任何一个集合都至少有两个子集.( ) (2){x|y=x2}={y|y=x2}={(x,y)|y=x2}.( ) (3)若{x2,1}={0,1},则 x=0,1.( ) (4)直线 y=x+3 与 y=-2x+6 的交点组成的集合是{1,4}.( )
第8章 平面解析几何 第一节 直线的倾斜角与斜率、直线的方程 第二节 两条直线的位置关系 第三节 圆的方程 第四节 直线与圆、圆与圆的位置关系 第五节 椭 圆
第1课时 椭圆的定义、标准方程及其性质 第2课时 直线与椭圆的位置关系
第六节 双曲线 第七节 抛物线 第八节 曲线与方程 第九节 圆锥曲线中的定点、定值、范围、最值问题 高考大题增分课(五) 平面解析几何中的高考热点问题
第9章 算法初步、统计与统计案例 第一节 算法与程序框图 第二节 随机抽样 第三节 用样本估计总体 第四节 变量间的相关关系与统计案例
2024届高考一轮复习数学课件(新教材人教A版):两条直线的位置关系

√A.4
B.-4
C.1
D.-1
因为直线 2x+my+1=0 与直线 3x+6y-1=0 平行,所以23=m6 ≠-11, 解得 m=4.
教材改编题
3.直线x-2y-3=0关于x轴对称的直线方程为_x_+__2_y_-__3_=__0_.
直线 x-2y-3=0 的斜率为 k=12且与 x 轴交于点(3,0), 故所求直线的斜率为-12,且过点(3,0), 其方程为 y=-12(x-3), 即x+2y-3=0.
跟踪训练1 (1)(2023·襄阳模拟)设a,b,c分别为△ABC中角A,B,C所对
边的边长,则直线xsin A+ay+c=0与bx-ysin B+sin C=0的位置关系是
A.相交但不垂直 C.平行
√B.垂直
D.重合
由题意可知,直线 xsin A+ay+c=0 与 bx-ysin B+sin C=0 的斜率 分别为-sina A,sinb B, 又在△ABC 中,sina A=sinb B, 所以-sina A·sinb B=-1, 所以两条直线垂直.
(2)(2022·桂林模拟)已知直线l1:ax+(a-1)y+3=0,l2:2x+ay-1=0,
若l1⊥l2,则实数a的值是
√A.0或-1
B.-1或1
C.-1
D.1
由题意可知l1⊥l2,故2a+a(a-1)=0, 解得a=0或a=-1,经验证,符合题意.
思维升华
判断两条直线位置关系的注意点 (1)斜率不存在的特殊情况. (2)可直接利用直线方程系数间的关系得出结论.
命题点1 点关于点的对称问题
例 3 直线 3x-2y=0 关于点13,0对称的直线方程为
A.2x-3y=0 C.x-y=0
【走向高考】(2013春季发行)高三数学第一轮总复习 8-1直线的方程与两条直线的位置关系 新人教A版

8-1直线的方程与两条直线的位置关系基础巩固强化1.(文)(2012²乌鲁木齐地区质检)在圆x 2+y 2+2x -4y =0内,过点(0,1)的最短弦所在直线的倾斜角是( )A.π6 B.π4 C.π3D.3π4[答案] B[解析] 圆心为(-1,2),过点(0,1)的最长弦(直径)所在直线斜率为-1,且最长弦与最短弦垂直,∴过点(0,1)的最短弦所在直线的斜率为1,倾斜角是π4.(理)(2012²内蒙包头模拟)曲线y =x 2+bx +c 在点P (x 0,f (x 0))处切线的倾斜角的取值范围为[0,π4],则点P 到该曲线对称轴距离的取值范围为( )A .[0,1]B .[0,12]C .[0,|b |2]D .[0,|b -1|2][答案] B[解析] y ′|x =x 0=2x 0+b ,设切线的倾斜角为α,则0≤tan α≤1,即0≤2x 0+b ≤1,∴点P (x 0,f (x 0))到对称轴x =-b 2的距离d =|x 0+b 2|=12|2x 0+b |∈[0,12],故选B.2.(文)(2011²辽宁沈阳二中检测)“a =2”是“直线2x +ay -1=0与直线ax +2y -2=0平行”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[答案] B[解析] 两直线平行的充要条件是2a =a 2≠-1-2,即两直线平行的充要条件是a =±2.故a=2是直线2x +ay -1=0与直线ax +2y -2=0平行的充分不必要条件.[点评] 如果适合p 的集合是A ,适合q 的集合是B ,若A 是B 的真子集,则p 是q 的充分不必要条件,若A =B ,则p ,q 互为充要条件,若B 是A 的真子集,则p 是q 的必要不充分条件.(理)(2011²东营模拟)已知两条直线l 1:ax +by +c =0,直线l 2:mx +ny +p =0,则an =bm 是直线l 1∥l 2的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] B[解析] l 1∥l 2时,an -bm =0;an -bm =0时⇒/ l 1∥l 2. 故an =bm 是直线l 1∥l 2的必要不充分条件.3.(2011²烟台模拟)点P (-3,4)关于直线x +y -2=0的对称点Q 的坐标是( ) A .(-2,1) B .(-2,5) C .(2,-5) D .(4,-3)[答案] B[解析] x =2-4=-2,y =2-(-3)=5,故选B.4.(文)(2011²梅州模拟)已知直线a 2x +y +2=0与直线bx -(a 2+1)y -1=0互相垂直,则|ab |的最小值为( )A .5B .4C .2D .1 [答案] C[解析] 由题意知,a 2b -(a 2+1)=0且a ≠0,∴a 2b =a 2+1,∴ab =a 2+1a =a +1a,∴|ab |=|a +1a |=|a |+1|a |≥2.(当且仅当a =±1时取“=”).(理)已知a 、b 为正数,且直线(a +1)x +2y -1=0与直线3x +(b -2)y +2=0互相垂直,则3a +2b的最小值为( )A .12 B.136C .1D .25[答案] D[解析] ∵两直线互相垂直,∴3(a +1)+2(b -2)=0, ∴3a +2b =1, ∵a 、b >0,∴3a +2b =(3a +2b )(3a +2b )=13+6b a+6ab≥13+26b a ²6a b=25.等号成立时,⎩⎪⎨⎪⎧6b a =6a b3a +2b =1,∴a =b =15,故3a +2b的最小值为25.5.两条直线l 1:x a -y b =1和l 2:x b -y a=1在同一直角坐标系中的图象可以是( )[答案] A[解析] 直线l 1在x 轴上的截距与直线l 2在y 轴上的截距互为相反数,直线l 1在y 轴上的截距与l 2在x 轴上的截距互为相反数,故选A.[点评] 可用斜率关系判断,也可取特值检验.6.(文)(2011²安徽省示范高中皖北协作区高三联考)若过点P (2,1)的直线与两坐标轴围成的三角形的面积为4,则这样的直线共有( )A .1条B .2条C .3条D .4条[答案] C[解析] 设过点P (2,1)的直线方程为x a +y b=1, 则2a +1b=1,即2b +a =ab ,又S =12|a ||b |=4,即|ab |=8,由⎩⎪⎨⎪⎧2b +a =ab ,|ab |=8,解得a 、b 有三组解⎩⎪⎨⎪⎧a =4,b =2,⎩⎨⎧a =-4-42,b =-2+22,或⎩⎨⎧a =42-4,b =-2-2 2.所以所求直线共有3条,故选C.(理)(2012²山东模拟)若直线(m 2-1)x -y -2m +1=0不经过第一象限,则实数m 的取值范围是( )A.12<m <1 B .-1<m ≤12C .-12≤m <1D.12≤m ≤1 [答案] D[解析] 若直线(m 2-1)x -y -2m +1=0不经过第一象限,则直线过二、三、四象限,则斜率和截距均小于等于0.直线变形为y =(m 2-1)x -2m +1,则⎩⎪⎨⎪⎧m 2-1≤0,-2m +1≤0,⇒12≤m ≤1,故选D.[点评] (1)令x =0得y =-2m +1,令y =0得,x =2m -1m 2-1,则⎩⎪⎨⎪⎧-2m +1<0,2m -1m 2-1<0,或⎩⎪⎨⎪⎧-2m +1=0,m 2-1≤0,也可获解.(2)取特值m =0,1,检验亦可获解.7.(2011²宁夏银川一中月考)直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是________.[答案] -2或1[解析] 令x =0得y =2+a ,令y =0得x =a +2a, 由条件知2+a =a +2a,∴a =-2或1. 8.(文)若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是①15° ②30° ③45° ④60° ⑤75°其中正确答案的序号为________.(写出所有正确答案的序号) [答案] ①⑤[解析] 求得两平行线间的距离为2,则m 与两平行线的夹角都是30°,而两平行线的倾斜角为45°,则m 的倾斜角为75°或15°,故填①⑤.(理)(2012²佛山市高三检测)已知直线x +2y =2分别与x 轴、y 轴相交于A ,B 两点,若动点P (a ,b )在线段AB 上,则ab 的最大值为________.[答案] 12[解析] 直线方程可化为x2+y =1,故直线与x 轴的交点为A (2,0),与y 轴的交点为B (0,1),由动点P (a ,b )在线段AB 上,可知0≤b ≤1,且a +2b =2,从而a =2-2b ,由ab=(2-2b )b =-2b 2+2b =-2(b -12)2+12,由于0≤b ≤1,故当b =12时,ab 取得最大值12.9.(2011²大连模拟)已知点A (1,-2),B (m,2),且线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值是________.[答案] 3[解析] 由已知条件可知线段AB 的中点⎝ ⎛⎭⎪⎫1+m 2,0在直线x +2y -2=0上,代入直线方程解得m =3.[点评] 还可利用AB ⊥l 求解,或AB →为l 的法向量,则AB →∥a ,a =(1,2),或先求AB 中点纵坐标y 0,利用AB 的中点在直线上求出其横坐标x 0再求m .10.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0.试确定m 、n 的值,使 (1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.[解析] (1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得⎩⎪⎨⎪⎧n =7,m =1,∴当m =1,n =7时,l 1与l 2相交于点P (1,-1).(2)l 1∥l 2⇔m 2=8m ≠n-1,得:m =4,n ≠-2,或m =-4,n ≠2. (3)l 1⊥l 2⇔m ³2+8³m =0, ∴m =0,则l 1:8y +n =0.又l 1在y 轴上的截距为-1,则n =8. 综上知m =0,n =8.[点评] 讨论l 1∥l 2时要排除两直线重合的情况.处理l 1⊥l 2时,利用l 1⊥l 2⇔A 1A 2+B 1B 2=0可避免对斜率存在是否的讨论.能力拓展提升11.(文)(2012²辽宁文)将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0 B .x +y +3=0 C .x -y +1=0 D .x -y +3=0[答案] C[解析] 本题考查了直线与圆的位置关系.将圆x 2+y 2-2x -4y +1=0化为标准方程(x -1)2+(y -2)2=4, ∵直线平分圆,∴直线过圆心. 因此,可代入验证. 经验证得C 正确.[点评] 关键是明确圆是轴对称图形,对称轴过圆心.(理)(2011²西安八校联考)已知直线l 的倾斜角为3π4,直线l 1经过点A (3,2),B (a ,-1),且直线l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( )A .-4B .-2C .0D .2[答案] B[解析] 依题意知,直线l 的斜率为k =tan 3π4=-1,则直线l 1的斜率为1,于是有2+13-a =1,∴a =0,又直线l 2与l 1平行,∴1=-2b,∴b =-2,∴a +b =-2,选B.12.(文)若三直线l :2x +3y +8=0,l 2:x -y -1=0,l 3:x +ky +k +12=0能围成三角形,则k 不等于( )A.32 B .-2 C.32和-1 D.32、-1和-12[答案] D[解析] 由⎩⎪⎨⎪⎧x -y -1=0,2x +3y +8=0,得交点P (-1,-2),若P 在直线x +ky +k +12=0上,则k =-12.此时三条直线交于一点;k =32时,直线l 1与l 3平行. k =-1时,直线l 2与l 3平行,综上知,要使三条直线能围成三角形,应有k ≠-12,32和-1.(理)(2011²北京文,8)已知点A (0,2),B (2,0).若点C 在函数y =x 2的图象上,则使得△ABC 的面积为2的点C 的个数为( )A .4B .3C .2D .1 [答案] A[解析] 因为|AB |=22,要使三角形面积是2,则C 点到直线AB 的距离为 2.直线AB 的方程为x +y -2=0,设C 点所在的直线方程为x +y +m =0,所以d =|m +2|2=2,解得m =0或m =-4,所以C 点的轨迹为x +y =0,或x +y -4=0.又因为点C 在函数y =x 2的图象上,x +y =0,和x +y -4=0与y =x 2分别有两个交点.故这样的点共有4个.[点评] 可利用点到直线距离公式,转化为方程解的个数的判定.13.已知指数函数y =2x的图象与y 轴交于点A ,对数函数y =lg x 的图象与x 轴交于点B ,点P 在直线AB 上移动,点M (0,-2),则|MP |的最小值为________.[答案]322[解析] A (0,1),B (1,0),∴直线AB :x +y -1=0,又M (0,-2),当|MP |取最小值时,MP ⊥AB ,∴|MP |的最小值为M 到直线AB 的距离d =|0-2-1|2=322.14.已知直线l 1:(k -3)x +(4-k )y +1=0与直线l 2:2(k -3)x -2y +3=0平行,则l 1与l 2的距离为________.[答案] 3或5[解析] 由(k -3)³(-2)-2(k -3)³(4-k )=0,且-2³1-(4-k )³3≠0,∴k =3或5.当k =3时,l 1:y +1=0,l 2:-2y +3=0,此时l 1与l 2距离为:52;当k =5时,l 1:2x -y +1=0,l 2:4x -2y +3=0,此时l 1与l 2的距离为|3-2|42+-22=510. 15.(文)已知两条直线l 1:(3+m )x +4y =5-3m ,l 2:2x +(5+m )y =8.当m 分别为何值时,l 1与l 2:(1)相交? (2)平行? (3)垂直?[解析] (1)当m =-5时,显然l 1与l 2相交;当m ≠-5时,两直线l 1和l 2的斜率分别为k 1=-3+m 4,k 2=-25+m,它们在y 轴上的截距分别为 b 1=5-3m 4,b 2=85+m .由k 1≠k 2,得-3+m 4≠-25+m ,即m ≠-7,且m ≠-1.∴当m ≠-7,且m ≠-1时,l 1与l 2相交.(2)由⎩⎪⎨⎪⎧k 1=k 2,b 1≠b 2,得⎩⎪⎨⎪⎧-3+m 4=-25+m ,5-3m 4≠85+m ,得m =-7.∴当m =-7时,l 1与l 2平行.(3)由k 1k 2=-1,得-3+m 4²(-25+m)=-1,m =-133.∴当m =-133时,l 1与l 2垂直.(理)(2011²青岛模拟)已知三点A (5,-1)、B (1,1)、C (2,m ),分别求满足下列条件的m 值.(1)三点构成直角三角形ABC ; (2)A 、B 、C 三点共线.[解析] (1)若角A 为直角,则AC ⊥AB , ∴k AC ²k AB =-1, 即m +12-5²1+11-5=-1,得m =-7; 若角B 为直角,则AB ⊥BC ,∴k AB ²k BC =-1,即-12²m -12-1=-1,得m =3;若角C 为直角,则AC ⊥BC , ∴k AC ²k BC =-1, 即m +1-3²m -12-1=-1,得m =±2, 综上可知,m =-7,或m =3,或m =±2. (2)方法一:∵A (5,-1),B (1,1),C (2,m ), ∴k AB =-1-15-1=-12,k AC =-1-m 5-2=-1+m 3, 由k AB =k AC ,得-12=-1+m 3,即m =12.∴当m =12时,三点A 、B 、C 共线.方法二:∵A (5,-1),B (1,1),C (2,m ), ∴AB →=(-4,2),AC →=(-3,m +1),由AB →=λAC →,得⎩⎪⎨⎪⎧-4=-3λ2=λm +1,得λ=43,m =12,∴当m =12时,三点A 、B 、C 共线.方法三:∵A (5,-1),B (1,1),C (2,m ), ∴|AB |=25,|BC |=m 2-2m +2, |AC |=m 2+2m +10.由三点横坐标可知,|BC |+|AC |=|AB |, 即m 2-2m +2+m 2+2m +10=25,m 2+2m +10=-m 2-2m +2+25,两边平方,得5²m 2-2m +2=3-m ,两边平方,得4m 2-4m +1=0,∴m =12,经验证m =12符合题意,故m =12时,三点A 、B 、C 共线.方法四:点A (5,-1)与B (1,1)确定的直线方程为x +2y -3=0,将C (2,m )的坐标代入得m =12,故m =12时,三点A 、B 、C 共线.16.(文)(2011²西安模拟)设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上的截距相等,求l 的方程. (2)若l 不经过第二象限,求实数a 的取值范围. [解析] (1)令x =0,得y =a -2. 令y =0,得x =a -2a +1(a ≠-1). 由a -2=a -2a +1,解得a =2,或a =0. ∴所求直线l 的方程为3x +y =0,或x +y +2=0. (2)直线l 的方程可化为y =-(a +1)x +a -2.∵l 不过第二象限,∴⎩⎪⎨⎪⎧-a +1≥0,a -2≤0.∴a ≤-1.∴a 的取值范围为(-∞,-1].(理)过点A (3,-1)作直线l 交x 轴于点B ,交直线l 1:y =2x 于点C ,若|BC |=2|AB |,求直线l 的方程.[解析] 当k 不存在时B (3,0),C (3,6). 此时|BC |=6,|AB |=1,|BC |≠2|AB |,∴直线l 的斜率存在,∴设直线l 的方程为:y +1=k (x -3), 令y =0得B (3+1k,0),由⎩⎪⎨⎪⎧y =2x y +1=k x -3得C 点横坐标x c =1+3kk -2.若|BC |=2|AB |则|x B -x C |=2|x A -x B |, ∴|1+3k k -2-1k -3|=2|1k |,∴1+3k k -2-1k -3=2k 或1+3k k -2-1k -3=-2k, 解得k =-32或k =14.∴所求直线l 的方程为:3x +2y -7=0或x -4y -7=0.1.函数y =a sin x -b cos x 的图象的一条对称轴方程为x =π4,则直线ax -by +c =0的倾斜角为( )A .45°B .60°C .120°D .135°[答案] D[分析] 由函数的对称轴方程可以得到a 、b 的关系式,进而可求得直线ax -by +c =0的斜率k ,再由k =tan α可求倾斜角α.[解析] 令f (x )=a sin x -b cos x , ∵f (x )的一条对称轴为x =π4, ∴f (0)=f ⎝ ⎛⎭⎪⎫π2,即-b =a ,∴a b =-1. ∴直线ax -by +c =0的斜率为-1,倾斜角为135°.2.若三直线2x +3y +8=0,x -y -1=0,x +ky +k +12=0相交于一点,则k 的值为( )A .-2B .-12C .2D.12[解析] 由⎩⎪⎨⎪⎧x -y -1=02x +3y +8=0得交点P (-1,-2),P 在直线x +ky +k +12=0上,∴k =-12.3.(2011²江西)若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有4个不同的交点,则实数m 的取值范围是( )A .(-33,33) B .(-33,0)∪(0,33) C .[-33,33] D .(-∞,-33)∪(33,+∞) [答案] B [解析]曲线C 1:(x -1)2+y 2=1,图形为圆心为(1,0),半径为1的圆;曲线C 2:y =0或者y -mx -m =0,直线y -mx -m =0恒过定点(-1,0),即曲线C 2图象为x 轴与恒过定点(-1,0)的两条直线.作图分析:k 1=tan30°=33,k 2=-tan30°=-33, 又直线l 1(或直线l 2)、x 轴与圆共有四个不同的交点,结合图形可知m =k ∈(-33,0)∪(0,33). 4.设a 、b 、c 分别是△ABC 中角A 、B 、C 所对边的边长,则直线x sin A +ay +c =0与bx -y sin B +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直[解析] 由已知得a ≠0,sin B ≠0,所以两直线的斜率分别为k 1=-sin A a ,k 2=bsin B ,由正弦定理得:k 1²k 2=-sin A a ²bsin B=-1,所以两条直线垂直,故选C.5.(2011²安徽省高三联考)点P 到点A (1,0)和直线x =-1的距离相等,且点P 到直线y =x 的距离为22,这样的点P 的个数是( ) A .1 B .2 C .3 D .4 [答案] C[解析] ∵点P 到点A 和定直线x =-1距离相等,易知P 点轨迹为抛物线,方程为y 2=4x .设P (t 2,2t ),则22=|2t -t 2|2,解之得t 1=1,t 2=1+2,t 3=1-2,∴P 点有三个,故选C.6.(2011²深圳二月模拟)设l 1的倾斜角为α,α∈(0,π2),l 1绕其上一点P 沿逆时针方向旋转α角得直线l 2,l 2的纵截距为-2,l 2绕P 沿逆时针方向旋转π2-α角得直线l 3:x +2y -1=0,则l 1的方程为________.[答案] 2x -y +8=0[解析] 由条件知l 1⊥l 3,∴k l 1=2,∴tan α=2,又l 2的倾斜角为2α,tan2α=-43,∴l 2:y =-43x -2,由⎩⎪⎨⎪⎧y =-43x -2,x +2y -1=0,得P (-3,2),又P 在l 1上,∴l 1:2x -y +8=0. 7.曲线y =xx +2在(-1,-1)处的切线为l ,直线kx +2y +10=0与2x -3y +5=0与x 轴、y 轴围成的四边形有外接圆,则外接圆的圆心到l 的距离为________.[答案]19530[解析] 由y =xx +2得,y ′|x =-1=2x +22|x =-1=2,∴切线l :y +1=2(x +1),即2x -y +1=0,又由条件知,直线kx +2y +10=0与2x -3y +5=0垂直,∴2k -6=0,∴k =3. 在3x +2y +10=0中含y =0得x =-103,∴A (-103,0),在2x -3y +5=0中令x =0得y =53,∴B (0,53),AB 的中点C (-53,56)为圆心,故所求距离为19530. 8.(2011²苏北四市二调)已知直线l 1:ax -y +2a +1=0和l 2:2x -(a -1)y +2=0(a ∈R ),则l 1⊥l 2的充要条件是a =____________.[答案] 13[解析] 两条直线垂直的充要条件是A 1A 2+B 1B 2=0,对于本题而言就是2a +(a -1)=0,解得a =13.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
倾斜角;②规定:当直线l与x轴平行或重合时,规定它 的倾斜角为__0_;③范围:直线的倾斜角α的取值范围 是__[0_,__π__)_.
整理课件
(2)直线的斜率 π
①定义:当直线 l 的倾斜角 α≠ 2 时,其倾斜角 α 的正
切值 tan α叫做这条直线的斜率,斜率通常用小写字母
整理课件
2.直线 3x-y+a=0(a 为常数)的倾斜角为
()
A.30° B.60° C.150° D.120°
解析 直线的斜率为 k=tan α= 3,又因为 0°≤α< 180°,所以α=60°.
答案 B
整理课件
3.如果A·C<0,且B·C<0,那么直线Ax+By+C=0不通过 ()
A.第一象限 B.第二象限 C.第三象限 D.第四象限 解析 由已知得直线 Ax+By+C=0 在 x 轴上的截距-CA>0, 在 y 轴上的截距-CB>0,故直线经过一、二、四象限,不经 过第三象限. 答案 C
第1讲 直线的方程
最新考纲 1.在平面直角坐标系中,结合具体图形,确定直 线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌 握过两点的直线斜率的计算公式;3.掌握确定直线位置的几 何要素,掌握直线方程的几种形式(点斜式、两点式及一般 式),了解斜截式与一次函数的关系.
整理课件
知识梳理
1.直线的倾斜角与斜率 (1)直线的倾斜角 ①定义:当直线l与x轴相交时,我们取x轴作为基准,x
整理课件
4.已知直线 l 经过点 P(-2,5),且斜率为-34,则直线 l 的
方程为
()
A.3x+4y-14=0
B.3x-4y+14=0
C.4x+3y-14=0
D.4x-3y+14=0
解析 由点斜式,得 y-5=-34(x+2),即 3x+4y-14=0. 答案 A
整理课件
5.(人教A必修2P100A9改编)过点P(2,3)且在两轴上截距相 等的直线方程为________. 解析 当截距为0时,直线方程为3x-2y=0; 当截距不为 0 时,设直线方程为xa+ay=1,则2a+3a=1, 解得 a=5.所以直线方程为 x+y-5=0. 答案 3x-2y=0或x+y-5=0
k 表示,即 k=__t_a_n_α__; ②斜率公式:经过两点yP2-1(xy11,y1),P2(x2,y2)(x1≠x2)的直 线的斜率公式为k=___x_2-__x_1__.
整理课件
2.直线方程的五种形式
名称 斜截式 点斜式 两点式
几何条件 纵截距、
斜率 过一点、
斜率
过两点
方程
适用条件
__y_=__k_x_+__b__ 与x轴不垂直的直
_y_-__y0_=__k_(_x_-__x_0)_ 线
_yy_2--__yy_11_=__xx_2--__xx_11_
与两坐标轴均不垂 直的直线
截距式
纵、横 截距
__xa_+__by_=__1__
不过原点且与两坐 标轴均不垂直的直 线
一般式
Ax+By+C=
0(A2+B2≠0)
整理课件
所有直线
3.线段的中点坐标公式
若点 P1,P2 的坐标分别为(x1,y1),(x2,y2),线段 P1P2
x=__________,
的中点 M 的坐标为(x,y),则
此公式
y=__________,
为线段 P1P2 的中点坐标公式.
整理课件
诊断自测
1.判断正误(在括号内打“√”或“×”)
精彩PPT展示
(1)坐标平面内的任何一条直线均有倾斜角与斜率. ( × )
整理课件
解析 (1)当 cos θ=0 时,方程变为 x+3=0,其倾斜角为
π 2 ;当
cos
θ≠0 时,由直线方程可得斜率 k=-cos1 θ.
∵cos θ∈[-1,1]且 cos θ≠0,∴k∈(-∞,-1]∪[1,
+∞),
即 tan α∈(-∞,-1]∪[1,+∞),又 α∈[0,π), ∴α∈π4 ,π2 ∪π2 ,3π4 .
(2)直线的倾斜角越大,其斜率就越大.
( ×)
(3)直线的斜率为tan α,则其倾斜角为α.
( ×)
(4)斜率相等的两直线的倾斜角不一定相等.
( ×)
(5)经过点P(x0,y0)的直线都可以用方程y-y0=k(x-x0)
表示.
( ×)
(6)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都 可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示. ( √ )
答案 (1)C (2)3π 4 ,π∪0,π4
整理课件
规律方法 (1)由直线倾斜角的取值范围求斜率的取值 范围或由斜率的取值范围求直线倾斜角的取值范围时, 常借助正切函数 y=tan x 在[0,π)上的单调性求解, 这里特别要注意,正切函数在[0,π)上并不是单调的; (2)过一定点作直线与已知线段相交,求直线斜率范围
π 时,应注意倾斜角为 2 时,直线无斜率.
整理课件
【训练1】 (1)直线xsin α-y+1=0的倾斜角的变化范围是
整理课件
考点一 直线的倾斜角与斜率
【例1】 (1)设直线l的方程为x+ycos θ+3=0(θ∈R),则直
线l的倾斜角α的范围是
()
A.[0,π) C.π4 ,3π 4
B.π4 ,π2 D.π4 ,π2 ∪π2 ,3π 4
(2)经过P(0,-1)作直线l,பைடு நூலகம்直线l与连接A(1,-2), B(2,1)的线段总有公共点,则直线l的倾斜角α的范围是 ________.
综上知,倾斜角的范围是π4 ,3π4 ,故选 C.
整理课件
(2)法一 如图所示, kPA=-2-1-(0-1)=-1, kPB=1-( 2--01)=1, 由图可观察出:直线 l 倾斜角 α 的范围是3π 4 ,π∪ 0,π4 .
整理课件
法二 由题意知,直线l存在斜 率.设直线l的斜率为k,则直 线l的方程为y+1=kx, 即kx-y-1=0. ∵A,B两点在直线的两侧或
深度思考 第(2)小题同 学们的解法应该多数是 求kPA,kPB,再根据图 象观察出倾斜角α的范
其中一点在直线l上,
围,但是还有一种方法
∴(k+2-1)(2k-1-1)≤0,
不妨试一试,在线性规
即2(k+1)(k-1)≤0,
划中提到过.
∴-1≤k≤1. ∴直线 l 的倾斜角 α 的范围是3π4 ,π∪0,π4 .