高考数学专题讲座.ppt

合集下载

高三数学辅导讲座 函数一.ppt

高三数学辅导讲座 函数一.ppt

2)2 3
4 3
x(3x 4)
【解法2】 设x<0,则-x>0 ∴ f (-x) = (-x)·(4 + 3x) ∵ f ( x )是奇函数, ∴ f (-x) = -f ( x ) ∴ x<0时, f ( x ) =-f (-x )=x(4+3x).
若把问题改为: f ( x )满足f ( 1+x ) = f (3- x ) , x>2时,f ( x ) = x ·(4-3x),那么x<2时求 f ( x ) 的解析式.请解答.
例4 函数y = f ( x )在 (-∞,0] 上是减函数,而函数 y = f (x+1)是偶函数.设a f (log 1 4) , b = f ( 3 ) ,
2
c = f (arccos (-1)).那么a,b,c的大小关系是____.
【解】 a f (log 1 4) f (2, )
2
问题:函数f(x)满足f(a+x) =f(b-x)且f(c+x)= f(dx)那么f(x)是不是周期函数?为什么?若是,周期是多
少?
例6.定义在实数集上的函数f(x),对一切实数x都有 f(x+1)=f(2-x)成立,若f(x)=0仅有101个不同的
这里主要研究运用函数的概念及函数的性质 解题,函数的性质通常是指函数的定义域、值 域、解析式、单调性、奇偶性、周期性、对 称性等等,在解决与函数有关的(如方程、不 等式等)问题时,巧妙利用函数及其图象的相 关性质,可以使得问题得到简化,从而达到 解决问题的目的.关于函数的有关性质,这里 不再赘述,请大家参阅高中数学教材 复习, 这里以例题讲解应用
一.函数的对称性
例1 函数y = f ( x ) 对任意实数x,总有 (1)f (a-x) = f ( b + x ),这里a,

高三数学考前辅导专题讲座ppt课件

高三数学考前辅导专题讲座ppt课件

(A)0 (B)2
(C)4 (D)6
解: 选择支逐个代入题干中验证得a题一样,填空题也属小题,其解题的根本原 那么是“小题不能大做〞。解题根本战略是:巧做. 解题根本方法普通有:直接求解法、图像法、构 造法和特殊化法(特殊值、特殊函数、特殊角、特 殊数列、图形特殊位置、特殊点、特殊方程、特 殊模型)
1、直接求解法
直接从题设条件出发,用定义、性质、定理、 公式等,经变形、推理、计算、判别等得到正确结 论.这是解填空题常用的根本方法,运用时要擅长“透 过景象抓本质〞。力求灵敏、简捷。
例.数列{an}、{bn}都是等差数列,a1=0、b1= -4,用Sk Sk′分别表示{an}、{bn}的前k项和(k是正整数), 假设Sk+ Sk′=0,那么ak+bk=____。
②特殊函数:例.定义在R上的奇函数f(x)为减函数, 设a+b≤0,给出以下不等式:①f(a)·f(-a)≤0 ②f(b)·f(-b)≥0③f(a)+f(b)≤f(-a)+f(-b) ④f(a)+f(b)≥f(-a)+f(-b) 其中正确的不等式序号是〔 〕 A.①②④ B.①④ C.②④ D.①③
14.拆项法 15.错位相减法 16.迭加与连乘
17.等积(面积、体积)法
18.几何变换法:平移、旋转、对称
19.活用定义 20.分析法与综合法
4、化归与转化的思想:就是把不熟习、不规范、复 杂的问题转化为熟习、常规、简单的问题。转化有 等价与非等价转化。等价转化要求转化过程中前因 后果是充要的。非等价转化其过程是充分或必要的, 要对结论进展必要的修正.〔如无理方程化有理方 程要求验根〕转化能给人带来思想的闪光点,找到 解题的突破口。 5、有限与无限的思想:将标题条件扩展到极限情况, 采用极限思想,常给人一种豁然开朗的觉得。

专题讲座六-课件

专题讲座六-课件

3 .
栏目 导引
专题策略
(2)由条件可知
g(x)=sinx-π3 -
3 . 2
当 x∈π2 ,π时,有 x-π3 ∈π6 ,2π 3 ,
从而 y=sinx-π3 的值域为12,1,
那么 y=sinx-π3 - 23的值域为1-2
3,2- 2
栏目 导引
专题讲座二 三角函数、解三角形与平面向量在高考中的常见题型与求解策略
解:(1)由题意知,f(x)=2cos2x- 3sin 2x=1+cos 2x- 3sin
2x=1+2cos2x+π3 ,
所以 f(x)的最小正周期 T=π,
因为 y=cos x 在[2kπ,2kπ+π](k∈Z)上单调递减,
栏目 导引
专题讲座二 三角函数、解三角形与平面向量在高考中的常见题型与求解策略
1.已知函数
f(x)=
sinω
x+π 6
+sinωx-π6
-2cos2ωx,x∈R,ω>0.
2
(1)求函数 f(x)的值域;
(2)若函数 y=f(x)的图象与直线 y=-1 的两个相邻交点间的 π
距离为 ,求函数 y=f(x)的单调增区间. 2
栏目 导引
专题讲座二 三角函数、解三角形与平面向量在高考中的常见题型与求解策略
3.已知 f(x)=a·b,其中 a=(2cos x,- 3sin 2x), b=(cos x,1)(x∈R). (1)求 f(x)的最小正周期和单调递减区间; (2)在△ABC 中,角 A,B,C 的对边分别为 a,b,c,f(A) =-1,a= 7,A→B·A→C=3,求边长 b 和 c 的值(b>c).
子天 是开
梅放
花;
,有
选的

高考数学复习专题讲座

高考数学复习专题讲座
回归课本,关注数学概念的发生发展过程, 应该是考查余弦定理的最主要原因。
2020/3/23
2019年我省进入实施新课标的高考,到2019年的 高考,从结果上看,领会《课标大纲》的精神,把握 “课标大纲”的本质,科学有效的备考,是考前非常 重要的工作。已经实施新课标高考的各省新课标考纲 说明都是严格按照课程标准、全国新课标考纲编写的 ,且都没有超出范围。全国新课标考纲自从2019年底 制定以来变化不大,特别是主干知识几乎没有太大变 化,正所谓“保留主干,去其枝蔓”。对新增内容的 考察力度较大,考查要求逐年提高,但相对稳定。
2020/3/23
⑤ 数据处理能力
对现实生活中的问题的研究,一般先获取数 据,对数据用列表或作图等方法进行分析,再结合 数学、物理、化学、地理等自然科学的知识,采用 某个数学模型来刻画它,通过对模型的研究,发现 该类问题具有的属性,并对它作出决策和判断。
数据处理一般分三步:第一步,收集数据;第 二步,整理并分析数据,得出这些数据资料所遵循 的规律;第三步,依据统计方法对数据进行整理、 分析,抽取出有用的信息,作出判断。
掌握空间向量的正交分解及量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直)
② 空间向量的应用(理解直线的方向向量与平面的法向量,
能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系, 能用向量方法证明有关直线和平面位置关系的一些定理,能用向量解决直线 与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究 立体几何问题中的应用)
2020/3/23
(三)考查余弦定理的意义 余弦定理是高中数学的重要知识,也是解
决数学问题的重要工具。因此,从知识上讲, 考查余弦定理理所当然。
余弦定理的证明过程是推理论证的重要体 现,能充分地考查学生的推理论证能力。

高三数学《数形结合》专题讲座课件

高三数学《数形结合》专题讲座课件

1.转换数与形的三条途径:
① 通过坐标系的建立,引入数量化静为动,以动求解。 ② 转化,通过分析数与式的结构特点,把问题转化到另一个角度 来考虑。 ③ 构造,比如构造一个几何图形,构造一个函数,构造一个图表等。
2.运用数形结合思想解题的三种类型及思维方法: ①“由形化数” :就是借助所给的图形,仔细观察研究, 提示出图形中蕴含的数量关系,反映几何图形内在的属性。 ②“由数化形” :就是根据题设条件正确绘制相应的图形, 使图形能充分反映出它们相应的数量关系,提示出数与式 的本质特征。 ③“数形转换” :就是根据“数”与“形”既对立,又统一 特 征,观察图形的形状,分析数与式的结构,引起联想, 适时将它们相互转换,化抽象为直观并提示隐含的数量
由双曲线的图象和
3 |x+1|-|x-1| 2
3 知 x 4
【例13】函数f(x)=sinx+2|sinx|,x∈[0,2π]的图 象与直线y=k有且仅有2个不同的交点,则k的取值 范围是_____.
例[14]。关于x的方程 +a=x有两个不 相等的实数根,试求实数a的取值范围.
| 1 x2 |
【例1】已知:有向线段PQ的起点P与终点Q坐标分别为 P(-1,1),Q(2,2).若直线l∶x+my+m=0与有向线 段PQ延长相交,求实数m的取值范围.
x m y 1
斜率函数模型
yb xa
【例2】求y=(cosθ-cosα+3)2+(sinθ-sinα-2)2的最大 (小)值.
θ,α∈R
【例11】已知f(x)是R上的偶函数,且在[0,+∞)上是减函 数,f(a)=0(a>0),那么不等式xf(x)<0的解集是( ). A. {x|0<x<a} B. {x|-a<x<0或x>a} C. {x|-a<x<a} D. {x|x<-a或0<x<a}

全高考数学解题技巧讲解课件PPT

全高考数学解题技巧讲解课件PPT
������������|cos θ=������������·������������ =
|������������ |
������ 2-1 ������ 2+1
=
������2 + 1 − ������22+1,
令 ������2 + 1=t(t>1),则|������������|= ������������22-+11=t-2������ .令 f(t)=t-2������ ,则有 f'(t)=1+������22.在
A.
5 5
,
2 3
B.
2 3
,
25 5
C.
5 5
,
7 3
D.
7 3
,
25 5
-7-
答案 (1)C (2)D
解析 (1)设等差数列{an}的公差为 d,∵a4=4,S5=15,

������1 + 3������ = 4,
5������1
+
5×4 2
������
=
15,解得
������1 = 1, ������ = 1.
(1)解题策略:小题巧解,不需“小题大做”,在准确、迅速、合理、 简洁的原则下,充分利用题设和选择支这两方面提供的信息作出判 断.先定性后定量,先特殊后一般,先间接后直接,多种思路选最简.对 于选择题可先排除后求解,既熟悉通法又结合选项支中的暗示及知 识能力,运用特例法、筛选法、图解法等技巧求解.
(2)解决方法:主要分直接法和间接法两大类,具体方法为:直接法, 特值、特例法,筛选法,数形结合法,等价转化法,构造法,代入法等.
A.2 019 B.0 C.1 D.-1 (2)平行四边形 ABCD 中,������������, ������������在������������上投影的数量分别为 3,-1, 则������������在������������上的投影的取值范围是( )

高考数学复习讲座.ppt

高考数学复习讲座.ppt
问题的能力、探究数学规律的能力和创造能力,以此体现加 强对学生发展性学力和创造性学力的科学培养。 (2)考查逻辑思维能力、运算能力、空间想象能力,以及运用数 学知识和方法分析问题和解决问题的能力。 (3)考查数学的基本思想和方法。数学的基本思想是指函数与方 程的思想、数形结合的思想、分类讨论的思想和等价转换的 思想。
4、善于对现实世界中的现象和过程进行合理的简化和量化, 建立数学模型的素养。
一、命题的指导思想
数学考试内容改革的指导思想
一、命题的指导思想
数学考试内容改革的指导思想
从测量学生的发展性学力和创造性学力着手,全面评价学生 的数学素养和能力,为高校选拔能适应新世纪挑战的新生;
一、命题的指导思想
数学考试内容改革的指导思想
从测量学生的发展性学力和创造性学力着手,全面评价学生 的数学素养和能力,为高校选拔能适应新世纪挑战的新生;
对中学数学教学的教育观念和教学方法有一个好的导向, 开创一个“面向世界、面向未来、面向现代化”的、崭新 的数学教育新局面。
二、命题的改革思路
二、命题的改革思路
变知识立意为能力立意
二、命题的改革思路
二、命题的改革思路
一、命题的指导思想
什么是数学能力,什么是数学素养? 数学素养
一、命题的指导思想
什么是数学能力,什么是数学素养? 数学素养
1、主动探寻并善于抓住数学问题中的背景和本质的素养;
一、命题的指导思想
什么是数学能力,什么是数学素养? 数学素养
1、主动探寻并善于抓住数学问题中的背景和本质的素养;
2、熟练地用准确的、严密的、简练的数学语言表达自己的 数学思想的素养;
二、命题的改革思路
变知识立意为能力立意
2、能力立意的命题思路 (1)注重考查学习新的数学知识的能力、应用数学知识解决实际

高考数学专题讲座ppt课件

高考数学专题讲座ppt课件

重视近五年新课程高考试题的演练。
21
1.选择、填空题的强化训练.
选择题要在速度,准确率上下功夫.定
时定量进行训练(每周1~2次),总量不少 于8次,14(理8+6、文10+4)道选择、填空 题一般用时30~50分钟,“优秀生” 要争取 有更多的时间完成解答题。做选择填空题要
重视直接解法的训练,不要过分依赖特殊解
强化训练 提炼方法
通过专题复习和综合演练(套卷,选择、填空题的专项 训练等),达到对知识的全面整合。在整套试卷的模拟 训练中,对错题所涉及到的知识点,题型方法、数学思 想等方面,自我检查,及时补救。做到“二个强化二个 重视” :
选择、填空题的强化训练.
前三个大题的强化训练。
重视初中与高中、高中与大学衔接知识的复习。
出同样的写出参数方程的要求。
8
减低要求部分
(1)、反函数的处理,只要求以具体的函数为例进行解释和直观理解, 不要求一般地讨论形式化的反函数定义,也不要求求已知函数的反函数;
(2)、仅要求认识柱、锥、台、球及其简单组合体的结构特征,对棱 柱、正棱锥、球的性质由“掌握”降为不作要求;
(3)、不要求使用真值表; (4)、对双曲线的定义、几何图形和标准方程度要求由“掌握”降为
高考数学专题讲座:
科学备考 迈向成功
1
合理规划复习的三个阶段:
I:现在~I模(3月中旬) II :I模(3月中旬)~II模(4月下旬) III :II模(4月下旬)~5月下旬
2
第一阶段【现在~Iห้องสมุดไป่ตู้(3月中旬)】:
夯实基础 形成能力 一、全面复习基本知识和基本技能
第一轮复习,基本上涵盖数学学科的基础知 识,这一阶段应该在老师的带领下,对每一 章的知识进行梳理,构建框架,使知识系统 化、条理化,注重“通理通法”,抓住重点, 总结规律,形成知识板块和网络。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
座 :







科学备考 迈向成功
பைடு நூலகம்
合理规划复习的三个阶段:
I:现在~I模(3月中旬) II :I模(3月中旬)~II模(4月下旬) III :II模(4月下旬)~5月下旬
第一阶段【现在~I模(3月中旬)】:
夯实基础 形成能力 一、全面复习基本知识和基本技能
第一轮复习,基本上涵盖数学学科的基础知 识,这一阶段应该在老师的带领下,对每一 章的知识进行梳理,构建框架,使知识系统 化、条理化,注重“通理通法”,抓住重点, 总结规律,形成知识板块和网络。
新增知识点 幂函数 空间直角坐标系 全称量词与存在量词 算法 几何概型 茎叶图 定积分与微积分基本定理
由于参加新课标高考的省市只有4个, 因此之新课标卷的命制中,加强对新增 内容的考查,是必然的,也是新课标卷 的一个标志,如算法初步,选考内容等, 其实,在往年的高考试题中,也可 以找到新课标新增内容的影子:
的更好的解题思路和方法; 3、听老师对同类题型规律与方法的总结
归纳等。
对每一次大考,可从以下方面进行总结、反思
①课本不熟,基础不牢; ②审题不细,判断失误; ③表达不准、不规范; ④分析不透,应用知识不够灵活; ⑤易受干扰,注意力不能高度集中; ⑥解题速度慢,考试时间分配不当,应变能力差,不会作
出及时的调整; ⑦考试策略失误,容易、中等题没有拿到高分,会做的题
拿低分; ⑧解题没有掌握方法规律,找不到切入点? ⑨卷面不整洁; ⑩心理压力过大、太紧张、没有信心,总担心考不好。
三、一模后如何复习?
1、调整复习方法,有针对性地复习。
①统筹安排时间,一切安排要服从 “5科总分最高”这个大目标。
②做好三查一整理
•查漏补缺——查被忽略的、被冷落的 知识点。
•查错思对——不让同样的错误再犯 第二次。
例如:解决有关最值问题的常用方法:
(1)利用一次函数及线性规划; (2)利用二次函数(注意是整体最值还是局部最值); (3)利用均值不等式 ; (4)利用三角函数的有界性; (5)利用函数的单调性 ; (6)利用导数; (7)数形结合,利用图形的几何性质。
通过第一轮的复习,使自己明确重点,对高考“考什么”, “怎样考”要了如指掌。函数、不等式、数列、三角、概率、 导数、向量、立体几何(空间线面关系、角和距离)、解析几 何(曲线与方程、直线与圆锥曲线的位置关系)是高中数学的 主干知识,也是高考的重点,对这些重点知识内容进行全面的 梳理,巩固基础知识,提高解题能力。抓基础不仅仅要把书上 的结论看一遍(书固然要看,课本的典型题也要做,很多高考 题就是课本题的改编),而且还要理解知识的来源及其所蕴含 的数学思想、数学方法,把握知识的横纵联系,在理解的基础 上实现网络化并牢固地记忆;抓基础离不开做题,要掌握解题 的思考过程(解题中模糊想法的澄清,不同解法的比较分析)并 结合解题研读课本,深入理解基础知识。
•查弱补弱——狠抓最薄弱、最怕的 知识点,下决心突破它。
•整理——知识网络;错题重做;解题方法 和策略的积累,尤其是审题和答 题的方法。
优化问题体会导数在解决实际问题中的作用; 对原大纲未作要求的直线、双曲线、抛物线提
出同样的写出参数方程的要求。
减低要求部分
(1)、反函数的处理,只要求以具体的函数为例进行解释和直观理解, 不要求一般地讨论形式化的反函数定义,也不要求求已知函数的反函数;
(2)、仅要求认识柱、锥、台、球及其简单组合体的结构特征,对棱 柱、正棱锥、球的性质由“掌握”降为不作要求;
每个单元每个专题必须做好全面的细致 的归纳,并把它们一字不漏的记入脑中。即 使参考书上有现成的归纳总结,也要认真对 待。各单元各专题的归纳总结最好能自己做, 因为在做的过程中,已经提高了对课本的熟 悉程度,而且可能重拾已遗忘的知识点,或 对某个已熟记的知识点又有新的理解,做完 的总结归纳要与同学多交流传阅,或送至老 师处一起探讨,取长补短。
方的x的取值范围是(-1,0), 如果对函数的定义域不理解,
极易错答为(-1,+∞)。
重视新增内容
在新课程高考中,对新增数学内容(简易 逻辑、平面向量、空间向量、简单线性规 划、概率与统计、微积分、随机变量等) 要引起足够的重视。
提高要求部分
分段函数要求能简单应用; 知道最小二乘法的思想; 要求通过使利润最大、用料最省、效率最高等
(3)、不要求使用真值表; (4)、对双曲线的定义、几何图形和标准方程度要求由“掌握”降为
“了解”,对其简单几何性质由“掌握”降为“知道”; (5)、对组合数的两个性质不作要求; (6)、原大纲“理解圆与椭圆的参数方程”降为“选择适当的参数写
出它们的参数方程”; (7)极限(无穷递缩等比数列所有项的和)
比如,
【2003全国14题】使 log2 (x) x 1 成立的的取值范围
.
表面上看是解不等式,实际上是作出函数 y log2( x)
和 y = x 1 的图象( 在公共定义域(-∞,0)内),通 过观察,函数 y = x 1 的图象(直线)在函数
y log2( x)的图象(对数函数的图象做y轴对称的图象)上
——张睿(高考状元)
二、如何做好总结
(1)心理方面:考前、考中、考后的心理 (2)考前复习准备 (3)考后的结果: 考得好的、差的地方,薄
弱环节,未过关的知识点等 (4)经验教训: 通过讲评课、试卷分析、
加减法估算自己的实力 (5)其他
关于“讲评”
在听老师的“评讲”时,分数已经毫 无意义了,应该置之度外。那听什么? 1、听自己不会做的或者做错了的题的评讲 2、听自己虽然做对了,但老师同学有别
高考试题既强调基础,又提倡能力,复 习中应避免“题海战术”、“死记硬 背”、“硬套模式”,重视解题的分析, 注重方法的提炼,提高知识的灵活运用 能力。
因此,要善于总结
• 美国心理学家波斯纳提出 人成长的公式:成长=经验+反思
•明白“三分考试,七分反思和 总结”的人才会提高。
•没有总结的人永远不会提 高
相关文档
最新文档