医学遗传学

合集下载

医学遗传学

医学遗传学

医学遗传学绪论1、医学遗传学:就是用人类遗传学的理论和方法来研究这些“遗传病”从亲代传递至子代的特点和规律、起源和发生、病理机制、病变过程及其与临床关系(包括诊断、治疗和预防)的一门综合性学科2、遗传病:按经典的概念,遗传病或遗传性疾病的发生需要有一定的遗传基础,并通过这种遗传基础按一定的方式传于后代发育形成的疾病。

在现代医学中,遗传病的概念有所扩大,遗传因素不仅仅是一些疾病的病因,也与环境因素一起在疾病的发生、发展及转归中起关键性作用。

3、人类遗传病划分为5类:单基因病(白化病)多基因病(唇裂)染色体病(早期流产儿21三体综合症猫叫综合症)体细胞遗传病(恶性肿瘤)线粒体遗传病第一章人类基因和基因组1、基因的概念:是具有遗传效应的DNA片段2、基因的结构:增强子上游启动子启动子(TATA盒)转录起始点外显子内含子转录终止点3、基因的分类:单一基因基因家族假基因串联重复基因4、基因的自我复制具有互补性半保留性反向平行性不对称性不连续性5、基因表达:转录翻译第二章基因突变1、基因突变的形式:静态突变【点突变(碱基替换:转换颠换,同义突变无义突变错义突变终止密码突变;移码突变)片段突变】动态突变2、静态突变:是生物各世代中基因突变的发生,总是以相对稳定的一定频率发生,分为点突变和片段突变3、碱基替换:是DNA分子多核苷酸链中原有的某一特定碱基或碱基对被其他碱基或碱基对替换、替代的突变形式。

其具体表现为同类碱基或碱基对之间的替换及不同类碱基或碱基对之间的相互替换。

同类之间的替换,又被称为转换,即一种嘌呤碱或相应的嘌呤-嘧啶碱基对被另外一种嘌呤碱或相应的嘌呤-嘧啶碱基对所替代。

如果某种嘌呤碱或其相应的嘌呤-嘧啶碱基对被另外一种嘧啶碱或其相应的嘧啶-嘌呤碱基对所置换,则称之为颠换。

4、同义突变:由于存在遗传密码子的兼并现象,因此,替换的发生,尽管改变了原有三联遗传密码子的碱基组成,但是新、旧密码子所编码的氨基酸种类却依然保持不变。

医学遗传学名词解释

医学遗传学名词解释

医学遗传学名词解释医学遗传学是研究人类遗传信息在健康和疾病中的作用的学科。

以下是医学遗传学中常见的一些名词解释:1. 基因:基因是生物体内部含有被复制和传递给后代的遗传信息的DNA序列。

基因决定了个体的性状和特征。

2. 染色体:染色体是细胞核内的结构,其中包含了基因。

人类细胞中有23对染色体,其中一半来自父亲,一半来自母亲。

3. 遗传物质:遗传物质是指传递遗传信息的物质,包括DNA和RNA。

DNA是双螺旋结构的分子,它包含了基因的编码信息。

RNA则在基因表达过程中起着重要的作用。

4. 突变:突变是指基因序列发生改变,导致新的遗传变异。

突变可以是正面的,如使个体对疾病有抵抗力;也可以是负面的,如引起遗传病。

5. 遗传病:遗传病是由基因突变引起的疾病,可以通过遗传方式传递给后代。

遗传病包括单基因遗传病和复杂遗传病。

常见的遗传病有先天性心脏病、血友病等。

6. 单基因遗传病:单基因遗传病是由单个基因突变引起的遗传病。

这些基因突变可能是显性遗传或隐性遗传,决定了个体是否表现出疾病。

7. 复杂遗传病:复杂遗传病是由多个基因和环境因素共同作用引起的遗传病。

这些疾病的发生受到多个基因和环境因素相互作用的影响。

8. 表型:表型是指个体在遗传和环境因素共同作用下所表现出的形态、结构和功能特征。

表型可以受到基因的影响,同时也受到环境因素的影响。

9. 基因表达:基因表达是指基因转录成为mRNA并翻译为蛋白质的过程。

基因表达的调控是细胞发育和功能的关键。

10. 遗传咨询:遗传咨询是指专业人士为个体或家族提供有关遗传病风险评估和遗传信息咨询的服务。

遗传咨询可以帮助个体了解自己的风险,制定合理的生殖决策和健康管理措施。

总之,医学遗传学是研究遗传信息与健康和疾病之间关系的学科,它关注基因、染色体、遗传物质、突变、遗传病、表型、基因表达等重要概念。

了解这些名词的含义有助于我们更好地理解和应用医学遗传学的知识。

医学遗传学辅导教案

医学遗传学辅导教案

医学遗传学辅导教案一、教学目的医学遗传学是生物学和医学的交叉学科,主要研究遗传因素在疾病发生、发展和防治中的作用。

本教案旨在帮助学生了解医学遗传学的基本概念、原理和方法,掌握遗传病的发生机制、诊断、预防和治疗等方面的知识,提高学生运用遗传学知识解决实际问题的能力。

二、教学内容1.医学遗传学的基本概念:基因、遗传、变异、突变等。

2.遗传物质的组成和功能:DNA、RNA、蛋白质及其在遗传中的作用。

3.遗传信息的传递和表达:中心法则、基因表达调控等。

4.遗传病的发生机制:单基因遗传病、多基因遗传病、染色体异常遗传病等。

5.遗传病的诊断:临床检查、实验室检查、生物信息学分析等。

6.遗传病的预防:优生优育、遗传咨询、基因治疗等。

7.遗传病的研究方法:家系调查、关联分析、基因敲除等。

三、教学方法1.讲授法:讲解基本概念、原理和方法,引导学生掌握医学遗传学的基本知识。

2.案例分析法:通过分析具体遗传病例,使学生了解遗传病的发生机制和防治方法。

3.讨论法:针对遗传病的诊断、预防和治疗等问题,组织学生进行讨论,提高学生的思辨能力。

4.实践法:安排实验室实践和临床实习,让学生亲自操作,巩固所学知识。

四、教学安排1.引言(1课时):介绍医学遗传学的发展历程、研究内容和意义。

2.基本概念和原理(4课时):讲解基因、遗传、变异等基本概念,阐述遗传信息的传递和表达。

3.遗传病的发生机制(6课时):分析单基因遗传病、多基因遗传病、染色体异常遗传病等的发生机制。

4.遗传病的诊断(4课时):介绍临床检查、实验室检查、生物信息学分析等方法。

5.遗传病的预防(4课时):讲解优生优育、遗传咨询、基因治疗等措施。

6.遗传病的研究方法(4课时):介绍家系调查、关联分析、基因敲除等技术。

7.总结与展望(1课时):总结本课程内容,展望医学遗传学的发展前景。

五、教学评价1.课堂表现:观察学生在课堂上的参与程度、提问和回答问题的情况。

2.作业完成情况:检查学生课后作业的完成质量,评估学生对知识的掌握程度。

医学遗传学

医学遗传学

Human genetics:以人为研究对象的遗传学,与动植物及微生物的遗传学不同,主要是因为不能用人作杂交实验,故在各方面受到很大限制。

研究人的形态,结构生理,生化,免疫,行为等各种遗传上的相似和差别,人类群体的遗传规律及人类遗传性疾病的发生机理、传递规律和如何预防等方面的遗传分支学科,着重于人类遗传疾病的研究。

遗传病(inherited disease, genetic disorders):因遗传因素罹患的疾病,遗传物质的结构和功能改变,多为先天性,表现为家族性,也有散发表现。

医学遗传学(medical genetic):是研究遗传病发生机理、传递方式、诊断治疗、预后、再发风险和预防方法的科学。

细胞遗传学(cytogenetics):研究人类染色体的结构、数量异常(畸变)的类型、发生频率及与疾病的关系。

分子遗传学(molecular genetics):从基因的结构、突变、表达、调控等方面研究遗传病的分子改变,为遗传学的基因诊断、基因治疗等提供了新的策略和手段。

表观遗传学(epigenetics):研究在没有细胞核DNA序列改变的情况下,基因功能的可逆的、可遗传的改变;如DNA的甲基化,基因组印记,母体效应,基因沉默和RNA 编辑等。

行为遗传学(behavior genetics):用各种遗传学方法研究人类行为的控制,特别是异常行为,如精神分裂症、躁狂症的遗传基础。

体细胞遗传学(somatic cell genetics):以体外培养细胞系为材料,研究DNA的复制、基因突变、基因表达、基因调控和肿瘤形成机制等问题。

肿瘤遗传学(cancer genetics):研究肿瘤发生的遗传物质,恶性肿瘤发生、发展中染色体改变、癌基因与抑癌基因的作用以阐明肿瘤发生机理,为肿瘤诊断、治疗和预防提供方法。

药物遗传学(parmacogenetics):研究药物代谢的遗传差异和不同个体对药物反应的遗传差异,为指导医生用药的个体化原则提供理论依据。

医学遗传学讲解

医学遗传学讲解

1. 什么是医学遗传学?医学遗传学(Medical genetics)就是用人类遗传学的理论和方法来研究遗传病从亲代传至子代的特点和规律、起源和发生、病理机制、病变过程及其与临床关系(包括诊断、治疗和预防)的一门综合性学科。

2.什么是遗传病?包括哪些类型?有何特点?☆一般把遗传因素作为唯一或主要病因的疾病称为遗传病(Genetic disorders)。

遗传物质改变而引起的疾病称为遗传病。

类型:①单基因病单基因突变所致AD、AR、XR、XD、YL②多基因病有一定家族史、但没有单基因性状遗传中所见到的系谱特征的一类疾病,环境因素在这类疾病的发生中起不同程度的作用。

③染色体病染色体结构或数目异常引起的一类疾病④体细胞遗传病其累积病变只在特异的体细胞中发生,体细胞基因突变是此类疾病发生的基础。

⑤线粒体遗传病特点:①传播方式:一般以“垂直方式”出现,不延伸至无亲缘关系的个体。

②数量分布:患者与正常成员之间有一定的数量关系。

③先天性:先天性即生来就有的特性。

④家族性:疾病的发生所具有的家族聚集性,但不是所有的家族性疾病都是遗传病,如夜盲症。

⑤传染性:人类朊粒蛋白病是一种既遗传又传染的疾病。

3.理解遗传病与先天性疾病及家族性疾病的关系。

(1)遗传病往往具有先天性特点(白化病),但并非所有的遗传病都是先天的(亨廷顿舞蹈症);反过来,有些先天性疾病是遗传的(白化病),但有些是获得性的(妇女妊娠时感染风疹病毒,致使婴儿患有先天性心脏病)。

(2)疾病的发生往往具有的家族聚集性(亨廷顿舞蹈症),但并非所有的遗传病都表现为家族性(白化病);反过来,不是所有的家族性疾病都是遗传病,如夜盲症。

4.基因(gene):基因是具有特定遗传效应的DNA片段,它决定细胞内RNA和蛋白质(包括酶分子)等的合成,从而决定生物的遗传性状。

5.基因组(genome): 细胞或生物体内一套完整的单倍体遗传物质的总和,称为基因组。

6.基因家族(gene family): 来源于同一个祖先,由一个基因通过基因重复而产生两个或更多的拷贝而构成的一组基因,它们在结构和功能上具有明显的相似性,编码相似的蛋白质产物。

医学遗传学(medical genetics)PPT课件

医学遗传学(medical genetics)PPT课件

二、遗传病的概念
➢ 遗传病是遗传物质改变所致的疾病。 ➢ 遗传物质包括染色体和基因。
三、遗传病的类型
单基因病 多基因病 染色体病 体细胞遗传病
遗传病的类型
(一)单基因病
1、常染色体显性遗传病 2、常染色体隐性遗传病 3、X连锁显性遗传病 4、X连锁隐性遗传病 5、Y连锁遗传病 6、线粒体遗传病
2、基本由遗传因素决定发病,但是需要环境中一定的诱因才能发病。
苯丙酮尿症
蚕豆病(G6PD缺陷 )
疾病的发生与遗传因素和环境因素的关系
3、遗传因素和环境因素对发病都有作用,其中遗传因素所起的 作用的大小称为遗传度。在不同的疾病中,其遗传度各不相同。 例如:
①唇裂、腭裂、先天性幽门狭窄等,遗传度70﹪以上,说明遗传 因素对这些疾病的发生较为重要,但环境因素也是不可缺少的。 精神发育障碍、精神分裂症等疾病也是如此。
5 Pˉ女婴患者 ( 猫叫综合征 ,5号染色体短臂缺失)
遗传病的类型
(四)体细胞遗传病

➢ ﹡体细胞中遗传物质改变所致的疾病,称为体细胞遗传病。 ➢ 遗传物质的改变只发生在特异的体细胞,所以不向后代传递。 ➢ ﹡这类疾病包括恶性肿瘤, 因为各种肿瘤的发病都涉及到特
定组织中的染色体和癌基因或抑癌基因的变化,所以肿瘤是体 细胞遗传病。 ➢ ﹡白血病、自身免疫缺陷病以及衰老等。 ➢ ﹡在经典的遗传病中,并不包括这一类疾病。
演进优生学(积极优生学)
目前采用的方法: 人工受精 试管婴儿 单性生殖等
临床遗传学(clinical genetics)
第三节 遗传性疾病的概述
一、疾病的发生与遗传因素和环境因素的关系 二、遗传病的概念 三、遗传病的类型
一、疾病的发生与遗传因素和环境因素的关系

医学遗传学

医学遗传学

第一章绪论:医学遗传学:应用遗传学的理论和方法研究人类遗传性疾病和人类疾病发生的遗传学问题的一门综合性学科。

★概念:遗传病是因遗传物质改变而引起的疾病。

1,遗传决定发病,无环境因素作用:色盲,唐氏综合征,2,基本由遗传因素决定,但需要有环境中的一定的诱因:蚕豆病,苯丙酮尿症,3,遗传因素和环境因素对发病都有作用:高血压,精神分裂症,糖尿病4,发病取决于环境因素:流感,夜盲症遗传病的特点:①基因突变或染色体畸变是发生遗传病的根本原因②垂直传递③只有生殖细胞或受精卵发生的遗传物质改变才能遗传④家族性聚集现象。

★分类:1.单基因病主要是受一对等位基因所控制的疾病。

常染色体显性遗传病:多指、并指、舞蹈症。

常染色体隐性遗传病:白化病、聋哑。

X连锁显性遗传病:抗VD佝偻病。

X连锁隐性遗传病:血友病、色盲。

Y连锁遗传病:SRY、外耳道多毛症2.多基因病由两对或两对以上基因和环境因素共同作用所引起的疾病。

多为常见病、多发病。

高血压、唇裂腭裂、精神分裂症3,。

染色体病常染色体性染色体{数目和结构畸变}4体细胞遗传病5线粒体遗传病遗传性疾病:色盲,先天性聋哑,蚕豆病,高血压,精神分裂症,肺癌,肝癌唐氏综合征--先天愚型,Leber遗传性视神经病除了:结核病,夜盲症甲型H1N1流感第二章基因:基因(gene):DNA分子上的具有特定功能的核苷酸序列。

DNA的分子结构主链(双螺旋,反向平行)碱基对(碱基互补配对原则)螺距(3.4nm)深沟与浅沟(交替出现)基因组:生殖细胞内基因的总和(人类所有的遗传信息)。

基因存在形式:高度重复顺序:卫星DNA(构成着丝粒,端粒和Y染色体长臂上的异染色质区),反向重复顺序。

中度重复顺序:短分散元件,长分散元件。

单一顺序断裂基因(split gene):在真核生物的基因中,编码序列和非编码序列间隔排列。

外显子(exon,E):属编码顺序,编码Pr内含子(intron,I)非编码顺序,不编码Pr,将外显子隔开。

医学遗传学的重要性与发展

医学遗传学的重要性与发展

医学遗传学的重要性与发展医学遗传学是研究遗传基础对人类健康和疾病的影响的学科。

随着基因科技的迅速发展,医学遗传学在现代医学中的重要性日益凸显。

本文将探讨医学遗传学的重要性以及它的发展趋势。

一、医学遗传学的重要性1. 遗传疾病预防:医学遗传学的研究和应用可以帮助人们了解遗传疾病的形成机理,提供有效的预防策略。

通过家族史的调查和遗传咨询,可以预测患病风险,并在生活中采取相应的干预措施,减少或避免遗传性疾病的发生。

2. 遗传疾病诊断:医学遗传学的研究可以为遗传性疾病的确诊提供准确的依据。

通过对患者的基因进行检测,可以确定患者是否携带特定的突变基因,从而为临床医生提供准确的诊断依据,指导合理的治疗方案。

3. 个体化治疗:医学遗传学的研究可以帮助医生更好地理解个体差异,为患者提供个体化的治疗方案。

通过对个体基因组的分析,可以预测患者对某些药物的反应性,从而为临床医生提供指导,选择最适合患者的治疗方案。

二、医学遗传学的发展趋势1. 基因组学的发展:随着高通量测序技术的广泛应用,可以更便捷地对大规模基因组进行测序分析。

这使得医学遗传学的研究不再局限于单个基因的研究,有助于揭示遗传因素在疾病发生和发展过程中的作用。

2. 精准医学的实践:医学遗传学已经成为精准医学的重要组成部分。

通过对患者个体基因组的分析,可以为精准医学提供重要的依据。

精准医学试图根据个体基因组特征,为患者提供更加针对性的防治策略和药物选择,从而提高疗效,减少副作用。

3. 合作平台的建立:医学遗传学的研究对数据资料的需求非常庞大。

为了更好地推进医学遗传学的发展,国际间已经建立了一些合作平台,如全球基因组计划和1000人基因组计划。

这些合作平台为基因组学和医学遗传学的研究提供了丰富的数据资源,促进了该学科的快速发展。

结论:医学遗传学的重要性与发展无疑对现代医学做出了巨大贡献。

通过研究遗传基础对人类健康和疾病的影响,可以从预防、诊断和治疗等多个层面为患者提供个体化的医疗服务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章人类基因与基因组第一节、人类基因组的组成1、基因是遗传信息的结构和功能单位。

2、基因组是是细胞内一套完整遗传信息的总和,人类基因组包含核基因组和线粒体基因组单拷贝序列串联重复序列按DNA序列的拷贝数不同,人类基因组高度重复序列反向重复序列重复序列短分散核元件中度重复序列长分散核元件3、多基因家族是指由某一祖先经过重复和所变异产生的一组基因。

4、假基因是基因组中存在的一段与正常基因相似但不能表达的DNA序列。

第二节、人类基因的结构与功能1、基因的结构包括:(1)蛋白质或功能RNA的基因编码序列。

(2)是表达这些结构基因所需要的启动子、增强子等调控区序列。

2、割裂基因:大多数真核细胞的蛋白质编码基因是不连续的编码序列,由非编码序列将编码序列隔开,形成割裂基因。

3、基因主要由外显子、内含子、启动子、增强子、沉默子、终止子、隔离子组成。

4、外显子大多为结构内的编码序列,内含子则是非编码序列。

5、每个内含子5端的两个核苷酸都是GT,3端的两个核苷酸都是AG,这种连接方式称为GT--AG法则。

6、外显子的数目等于内含子数目加1。

7、启动子分为1类启动子(富含GC碱基对,调控rRNA基因的编码)、2类启动子(具有TATA 盒特征结构)、3类启动子(包括A、B、C盒)。

第三节、人类基因组的多态性1、人类基因组DNA多态性有多种类型,包括单核苷酸多态性、插入\缺失多态性、拷贝数多态性。

第二章、基因突变突变是指生物体在一定内外环境因素的作用和影响下,遗传物质发生某些变化。

基因突变即可发生在生殖细胞,也可发生在体细胞。

第一节、基因突变的类型一、碱基置换:是指DNA分子多核苷酸链中的某一碱基或碱基对被另碱基或碱基对置换、替代的突变方式,通常又称点突变。

包括:1、同义突变:替换发生后,虽然碱基组成发生变化,但新旧密码子具有完全相同的编码意义。

同义突变并不产生相应的遗传学表观效应。

2、错义突变:替换发生后,编码某一氨基酸的密码子变成了编码另一种氨基酸的密码子,改变了多肽链中氨基酸种类的结构序列组成。

3、无义突变:替换后,编码某一氨基酸的密码子变成了不编码任何氨基酸的终止密码子,引起多肽链提前终止。

4、终止密码子突变:DNA分子中某一终止密码子发生单个碱基替换后,变成了具有氨基酸编码功能的遗传密码子,导致多肽链的合成非正常继续进行。

二、移码突变:是指DNA多核苷酸链中插入或缺失一个或多个碱基对,导致DNA读码序列发生移动,改变密码子的编码意义。

三、整码突变:基因组DNA多核苷酸链的密码子之间插入或缺失三或三的倍数个碱基,导致多肽链中增加或减少一个或多个氨基酸。

四、片段突变:包括缺失、重复、重组、重排。

五、动态突变:是指在DNA分子中,短串联重复序列,尤其是三核甘酸重复序列的重复次数可随着世代传递而逐代增加,这种增加达到一定程度后会产生突变效应,从而引起某些疾病。

如脆性X染色体,Huntington病。

第二节、基因突变的诱发因素及作用机制基因突变分为自发突变和诱发突变。

自发突变是指在自然条件下发生的突变。

诱发突变则是指在人为干涉情况下导致的基因突变。

一、物理因素:1、紫外线:作用于细胞内的DNA,导致其结构发生变化,主要表现为DNA 序列中相邻的嘧啶类碱基结合形成嘧啶二聚体。

2:核辐射:引起染色体或DNA的断裂性损伤,断裂后的染色体或DNA序列片段发生重排。

二、化学因素三、生物因素第三节、基因突变的特性及生物学效应基因的一般特性:多向性、重复性、可逆性、随机性、稀有性、有害性和有利性、重演性。

基因的生物学效应:导致蛋白质编码区的功能异常和基因调控区的功能异常。

第四节、DNA损伤的修复一、紫外线引起的DNA损伤的修复1、光复活修复2、切除修复3、重组修复二、电离辐射引起的DNA修复1、超快修复2、快速修复3、慢速修复DNA复制的特点:半保留、半不连续、双向多复制起点和终止点。

第三章、人类染色体第一节、染色质1、染色质是间期细胞核内,其主要成分是DNA和组蛋白,还有非组蛋白和少量的RNA 的线性复合结构,易被碱性染料染色。

2、常染色质:通常位于间期细胞核的中心,螺旋化程度低,呈松散状,染色较浅而均匀,具有转录活性。

3、异染色质:一般分布在核膜内层周缘和核仁周围,螺旋化程度高,不活跃。

可分为兼性异染色质和结构异染色质。

4、X染色质失活假说(Lyon假说):(1)正常女性有两条X染色体,但只有一条有活性。

(2)在胚胎早期,一条失活。

(3)失活的染色体是随机的。

(4)生殖细胞形成时,失活的染色体可得到恢复。

5、X染色质数目比X染色体数目少1,正常男性无X染色质。

例如:一个女性的核型是48,XXXX,在她间期细胞核中可见到3个X染色质,47,XXX,可见到2个。

6、Y染色质的数目与Y染色体的数目相等。

例如:核型为47,XYY的个体,细胞核中有2个Y染色质。

第二节、染色体1、根据着丝粒位置可将人类染色体分为:(1)中着丝粒染色体:着丝粒位于或靠近染色体中央。

(2)亚中着丝粒染色体:着丝粒位置位于染色体纵轴的1\2--5\8,分为长短相近的两个臂。

(3)近端着丝粒染色体:着丝粒靠近一端,位于染色体纵轴的7\8至末端之间,此类染色体短臂较短。

2、3种DNA关键序列(填空题):(1)自主复制DNA序列(2)着丝粒DNA序列(3)端粒DNA序列3、Y染色体的存在对睾丸支持细胞的分化是必要的。

因为该染色体上携带有男性性别决定因的关键基因---睾丸决定因子(TDF),它决定着胚胎发育过程中性腺原基细胞的分化方向。

第三节、人类染色体核型1、核型:将一个体细胞中全部染色体按其大小和形态特征,依次排列而成的图像称为核型。

2、核型分析:是将待测细胞染色体进行技术、配对、分组、并分析形态特征的过程。

3、人类染色体按照大小和着丝粒,位置分为A、B、C、D、E、F、G7个组,,从大到小依次排列,A组最大,G组最小。

X染色体位于C组,Y染色体位于G组。

(详情见P35表格)4、G显带核型分析已成为目前临床常规应用的染色体病诊断的手段之一。

5、ISCN:人类细胞遗传学命名的国际体制6、描述特定带时须写明4个内容:(1)染色体序号:(2)臂的符号:(3)区的符号:(4)带的符号。

例如:1q21:第1号染色体,长臂,2区,1带。

7、核型分析常用符号和术语:der:衍生染色体;i:等臂染色体;inv:倒位;p:短臂q:长臂;ter:末端;del:缺失;dic:双着丝粒;ins:插入;rob:罗伯逊易位8、人类染色体多态性:在正常健康人群中,存在着各种染色体的微小变异,包括结构、带纹宽度和着色强度等。

这种恒定而微小的变异是按照孟德尔方式遗传的,通常没有明显的表型效应或病理学意义,称为染色体多态性。

可分为(1)随体区变异(2)次缢痕变异(3)Y 染色体变异。

第四章、染色体畸变与染色体病(重点)常染色体病双雌受精双雄受精染色体病整倍性改变核内复制核内有丝分裂第四章性染色体病染色体数目畸变超二倍体染色体畸变非整倍性改变亚二倍体染色体结构畸变嵌合体一、染色体畸变(一)、染色体数目畸变1、整倍性改变:细胞的染色体在二倍体(2n)的基础上,以单倍数(n)为基数,成倍地增加或减少。

(1)、双雌受精:一个正常精子与一个异常二倍体(2n)卵细胞受精,形成两种3倍体卵(3n);69,XXX;69,XXY。

(2)、双雄受精:两个正常精子同时与一个正常卵细胞受精,形成3倍体受精卵。

69,XXY 69,XYY。

(3)、核内复制:细胞有丝分裂时,DNA复制两次,细胞只分裂一次,形成的子细胞染色体数目加倍,形成四倍体。

(4)、核内有丝分裂:细胞有丝分裂时,染色体进行一次复制,但核膜没破裂,形成四倍体。

2、非整倍性改变:细胞的染色体在二倍体(2n)的基础上增加或减少一条或几条,所形成的细胞或个体称为非整倍体或异倍体。

(1)、超二倍体(2n+1):在二倍体(2n)的基础上增加一条或几条染色体则构成超二倍体。

超二倍体主要是三体型。

(2)、亚二倍体(2n-1):在二倍体(2n)的基础上减少一条或几条染色体则构成亚二倍体。

亚二倍体主要是单体型。

(3)、嵌合体:在人类中,有的个体内同时存在两种或两种以上核型不同的细胞系。

PS、假二倍体(2n+1-1):细胞的染色体数目变化涉及2条及以上的染色体,有的染色体增加,有的染色体减少,增加和减少的数目相等,细胞染色体数目仍与二倍体一样,但其染色体组成已不是正常二倍体,称为假二倍体。

3、非整倍性改变机制:包括染色体不分离和染色体丢失(1)、染色体不分离:是指在细胞分裂的中后期,两条同源染色体或姐妹染色单体不能正常分开二同时进入某一子细胞,导致该子细胞增多一条染色体或减少一条的现象,染色体不分离可发生在配子形成中减数分裂,或受精卵卵裂的有丝分裂过程中。

受精卵卵裂早期发生染色体不分离,可导致嵌合体的出现。

(2)、染色体丢失:在细胞分裂后期染色体移动过程中,某一染色体未能与其他染色体一起移动而进入子细胞,滞留在细胞质中而丢失。

发生在减数分裂中将导致子细胞缺失一条染色体,形成单体型,发生在受精卵卵裂中,将形成嵌合体。

(二)、染色体结构畸变1、缺失:染色体部分片段的丢失称为末端缺失和中间缺失。

(1)、末端缺失:染色体的一条臂断裂。

无着丝粒片段丢失。

例如:1q21断裂后,断点至长臂末端部分丢失,简式描述为:46,XX,del(1)(q21)(2)、中间缺失:是指一条染色体的一条臂上发生两次断裂形成三个片段,两断点之间的片段丢失。

例如:3q21和3q25发生断裂,中间片段3q21---3q25丢失,简式描述为:46,XX,del(3)(q21q25)2、倒位:一条染色体发生两次断裂,两断点之间的片段旋转180`后重接,称为倒位。

倒位分为臂内倒位和臂间倒位。

(1)、臂内倒位:两次断裂发生在一条染色体的同一条臂上,中间片段旋转重接所行成的倒位。

例如:1p22和1p34同时发生断裂,断点片段1p22--1p34发生倒位连接,简式描述为:46,XX,inv(1)(p22p34)(2)、臂间倒位:两次断裂分别发生在一条染色体的长臂和短臂上,中间含有着丝粒的片断旋转形成倒位。

3、易位:染色体位置发生改变称为易位。

包括单向易位,相互易位,罗伯逊易位。

最重要的是罗伯逊易位。

罗伯逊易位:是指人类近端着丝粒染色体间(D\D,D\G,G\G)发生的一种涉及整条长臂或短臂的相互易位形式。

两条近端着丝粒染色体在着丝粒处或附近断裂后重新形成两条衍生染色体i,一条由两者的长臂构成,另一条由两者的短臂构成。

这种易位又称为着丝粒融合。

4、环状染色体5、等臂染色体二、染色体病(一)、常染色体病1、特点:先天性多发畸形:生长发育迟缓;智力低下;皮纹异常。

2、概念:是由于常染色体数目或结构畸变而引起的疾病。

相关文档
最新文档