高中数学立体几何解析几何常考题汇总
高三数学习题集:解析几何与立体几何综合练习

高三数学习题集:解析几何与立体几何综合练
习
解析几何与立体几何是高中数学中的重要内容之一,对于高三学生来说,掌握这两个领域的知识和技巧至关重要。
为了帮助同学们更好地复习与训练,以下是一些解析几何与立体几何综合练习题。
一、解析几何部分
1. 已知点A(2,3)、B(5,7),求直线AB的斜率和方程。
2. 设直线L1过点A(1,2),斜率为1,求L1与x轴、y轴的交点坐标。
3. 已知直线L2的方程为y=2x-3,求L2与y轴的交点坐标。
4. 设四边形ABCD的顶点分别为A(1,2)、B(4,5)、C(6,1)、D(3,-2),求四边形ABCD的周长和面积。
二、立体几何部分
1. 已知圆柱体的高为8cm,底面直径为6cm,求圆柱体的表面积和体积。
2. 设正方体的边长为3cm,求正方体的表面积和体积。
3. 设棱长为5cm的正六面体A,另有一条边长为4cm的直线段BC平行于A的一条棱,求BC与正六面体A的交点坐标。
4. 已知圆锥的高为12cm,底面半径为4cm,求圆锥的表面积和体积。
以上是一些解析几何与立体几何的综合练习题,希望同学们能够认真思考并灵活运用所学知识来解答这些问题。
通过不断练习,相信你们对解析几何与立体几何的理解和掌握会更上一层楼,为应对高考数学提供有力的支持。
加油!。
高中数学立体几何小题100题(含答案与解析)

立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C。
立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。
考题难度中等,常结合空间向量知识进行考查。
2024年高考有很大可能延续往年的出题方式。
题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。
历年高考立体几何经典题型以及解析

1.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体ABCD ﹣A 1B 1C 1D 1被平面α截得的截面面积为( )A. 36B. 26C. 5D. 5342.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,90B F ∠=∠=︒,60A ∠=︒,45D ∠=︒,BC DE =.现将两块三角板拼接在一起,取BC 中点O 与AC 中点M ,则下列直线与平面OFM 所成的角不为定值的是( )A. ACB. AFC. BFD. CF3. (多选题)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,PA AB =,截面BDE 与直线PC 平行,与PA 交于点E ,则下列判断正确的是( )A. E 为PA 的中点B. BD ⊥平面PACC. PB 与CD 所成的角为3πD. 三棱锥C BDE -与四棱锥P ﹣ABCD 的体积之比等于1:4.4.在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,M 是棱11A D 的中点,过C 1,B ,M 作正方体的截面,则这个截面的面积为( )35 35 C. 92 D. 985. 已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点M 为棱DD 1的中点,则平面ACM 截该正方体的内切球所得截面面积为( ) A.3π B. 23π C. π D. 43π 6.(多选题)在三棱锥P -ABC 中,(0,1,0)A ,(3,1,0)B ,(0,3,0)C ,(0,1,2)P ,则( )A. (3,0,2)PB =-B. (3,0,0)AB =-C. PB AC ⊥D. 13PB =7.在四面体ABCD 中,E 是棱BC 的中点,且AE xAD yDB zDC =++,则( )A. 1x y z ++=B. 12xyz =C. x y z =+D. 222x y z =+8.三棱锥P -ABC 中,P A ⊥平面ABC ,2,3,23,3BAC AP AB π∠===Q 是BC 边上的一个动点,且直线PQ 与面ABC 所成角的最大值为,3π则该三棱锥外接球的表面积为( ) A. 45πB. 63πC. 57πD. 84π 9.已知三棱锥P ﹣ABC 的四个顶点均在同一个球面上,底面△ABC 满足6BA BC ==,2ABC π∠=,若该三棱锥体积的最大值为3.则其外接球的体积为________.10. 如图,五边形ABSCD 中,四边形ABCD 为长方形,SBC ∆为边长为2的正三角形,将SBC ∆沿BC 折起,使得点S 在平面ABCD 上的射影恰好在AD 上.(Ⅰ)当2AB =,证明:平面SAB ⊥平面SCD ;(Ⅱ)若1AB =,求平面SCD 与平面SBC 所成二面角的余弦值的绝对值.11.如图PAD △中,90PDA ︒∠=,2DP DA ==,B 、C 分别是PA 、PD 的中点,将PBC 沿BC 折起连结PA 、PD ,得到多面体PABCD .(1)证明:在多面体PABCD 中,BC PD ⊥;(2)在多面体PABCD 中,当6PA =时,求二面角B PA D --的余弦值.12.直四棱柱ABCD ﹣A 1B 1C 1D 1被平面1A ECD 所截得到如图所示的五面体,CD CE ⊥,CD AD ⊥.(1)求证:BC ∥平面1A AD ;(2)若113BC CD BE AD ====,求二面角1B A E C --的余弦值. 13.如图,在四棱锥S ﹣ABCD 中,SD ⊥平面ABCD ,底面ABCD 是边长为2的正方形,DE SC ⊥,E 为垂足,M 为AB 的中点.(1)当点F 在线段BC 上移动时,判断DEF 是否为直角三角形,并说明理由 (2)若4SD =,求二面角D EM C --的正弦值如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长. 15.在四棱锥P ﹣ABCD 中,底面ABCD 为正方形,PB PD =.(1)证明:BD ⊥平面PAC ;(2)若PA 与底面ABCD 所成的角为30°,PA PC ⊥,求二面角B PC D --的余弦值. 16.如图,在四棱锥M ﹣ABCD 中,AB AD ⊥,2AB AM AD ===,22MB MD ==.(1)证明:AM ⊥平面ABCD ;(2)若//CD AB ,2CD AB =,E 为线段BM 上一点,且2BE EM =,求直线EC 与平面BDM 所成角的正弦值.如图,在四棱锥E -ABCD 中,AE ⊥DE ,CD ⊥平面ADE ,AB ⊥平面ADE ,CD =DA =6,AB =2,DE =3.(I )求棱锥C -ADE 的体积;(II )求证:平面ACE ⊥平面CDE ;(III )在线段DE 上是否存在一点F ,使AF ∥平面BCE ?若存在,求出EF ED的值;若不存在,说明理由.18.如图,在四边形ABCD 中,//AB CD ,且::3:2:2AB BC CD =,60ABC ∠=︒,点E 是线段AB 上靠近点A 的一个三等分点,以DE 为折痕将ADE 折起,使点A 到达点A 1的位置,且12A C BC ==.(1)证明:平面1A DE ⊥平面BCD ;(2)求平面1A BE 与平面1A CD 所成锐二面角的余弦值.19.如图,在四棱柱ABCD ﹣A 1B 1C 1D 1中,平面11A ADD ⊥平面ABCD ,底面ABCD 是菱形,60ABC ∠=︒,11A A A D AC ==,E 为DD 1的中点.(1)证明:1//BD 平面ACE ;(2)求直线1A D 与平面ACE 所成角的正弦值.20.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,其中//AD BC ,AB AD ⊥,122AB AD BC ===,4PA =,E 为棱BC 上的点,且14BE BC =.(1)求证:DE ⊥平面PAC ;(2)求二面角A PC D --的余弦值;(3)设Q 为棱CP 上的点(不与C ,P 重合),且直线QE 与平面PAC 所成角的正弦值5CQ CP 的值. 21.如图,在四棱锥P -ABCD 中,AP ⊥平面PCD ,//AD BC ,AB BC ⊥,12AP AB BC AD ===,E 为AD 的中点,AC 与BE 相交于点O .(1)证明:PO ⊥平面ABCD .(2)求直线BC 与平面PBD 所成角的正弦值.22.如图,在四棱锥P —ABCD 中, 90ABC BCD ︒∠=∠=,60,BAD ADP ︒∠=是等腰等直角三形,且2,22,7AP DP AB CD BP =====.(1)求证: AD ⊥BP ;(2)求直线BC 与平面ADP 所成角的正弦值.试卷答案1.B【分析】先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【详解】如图所示:1,,A P C 确定一个平面α,因为平面11//AA DD 平面11BB CC ,所以1//AQ EC ,同理1//AE QC ,所以四边形1AEC Q 是平行四边形.即正方体被平面截的截面.因为12B P PC =,所以112C B CE =,即1EC EB == 所以115,23AE EC AC ===由余弦定理得:22211111cos 25AE EC AC AEC AE EC +-∠==⨯ 所以126sin AEC ∠= 所以S 四边形1AEQC 1112sin 262AE EC AEC =⨯⨯⨯∠=故选:B 【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.2.B【分析】通过证明BC ⊥平面OMF ,可以找到,,BF CF AC 与平面OFM 所成的角,计算可知都为定值,由此可得答案.【详解】因为,O M 为中点,所以//OM AB ,所以OM BC ⊥,又OF BC ⊥,且OM OF O ⋂=,所以BC ⊥平面OMF ,所以,BF CF 与平面OFM 所成的角分别为BFO ∠和CFO ∠,它们相等,等于45°, 根据直线与平面所成角的定义知,AC 与平面OFM 所成的角为60CMO A ∠=∠= 故只有AF 与平面OFM 所成的角不为定值.故选:B【点睛】本题考查了直线与平面垂直的判定定理,考查了直线与平面所成角,属于基础题. 3.ABD【分析】采用排除法,根据线面平行的性质定理以及线面垂直的判定定理,结合线线角的求法,锥体体积公式的计算,可得结果.【详解】对于A ,连接AC 交BD 于点M ,连接EM ,如图所示,PC //面BDE ,PC ⊂面APC ,且面APC 面=BDE EM ,PC ∴//EM , 又四边形ABCD 是正方形,∴M 为AC 的中点,∴E 为PA 的中点,故A 正确.对于B ,PA ⊥面ABCD ,BD ⊂面ABCD ,∴PA BD ⊥,又AC BD ⊥,AC PA A ⋂=,,AC PA ⊂面PAC∴BD ⊥面PAC ,故B 正确.对于C ,//AB CD ,∴PBA ∠为PB 与CD 所成的角,PA ⊥面ABCD ,AB 面ABCD ,∴PA AB ⊥,在Rt PAB 中,PA AB =,4PBA=π∴∠,故C 错误.对于D ,由等体积法可得1.3C BDE E BCD BCD V V S EA --==⋅,13-=⋅⋅P ABCD ABCD V S PA 又1,22BCDABCD S S PA EA ==,∴14--=P ABC C BD DE V V ,故D 正确. 故选:ABD.【点睛】本题考查立体几何的综合应用,熟练线线、线面、面面之间的位置关系,审清题意,考验分析能力,属中档题. 4.C 【详解】 【分析】设1AA 的中点为N ,则1MNBC ,连接11,,MN NB BC MC , ,则梯形1MNBC 就是过1C ,B ,M 正方体的截面,其面积为()13292+22=222⨯⨯,故选C.5.A 【分析】根据球的特点可知截面是一个圆,根据等体积法计算出球心到平面ACM 的距离,由此求解出截面圆的半径,从而截面面积可求. 【详解】如图所示:设内切球球心为O ,O 到平面ACM 的距离为d ,截面圆的半径为r , 因为内切球的半径等于正方体棱长的一半,所以球的半径为1, 又因为O AMC M AOC V V --=,所以1233AMCAOCd S S ⨯⨯=⨯,又因为()()221122526,221222AMCAOCSS=⨯⨯-==⨯⨯=, 所以12633d ⨯=,所以63d =, 所以截面圆的半径22313r d =-=,所以截面圆的面积为233S ππ=⋅=⎝⎭. 故选:A.【点睛】本题考查正方体的内切球的特点以及球的截面面积的计算,难度一般.任何一个平面去截球,得到的截面一定是圆面,截面圆的半径可通过球的半径以及球心到截面的距离去计算. 6. ACD 【分析】根据空间向量的坐标运算可判断A 、B ,计算PB AC ⋅的值可判断C ,利用向量的模长公式可判断选项D ,即可得正确答案.【详解】对于选项A :()()3,1,00,1,2(3,0,2)PB =-=-,故选项A 正确; 对于选项B :()()3,1,00,1,0(3,0,0)AB =-=,故选项B 不正确;对于选项C :()()0,3,00,1,0(0,2,0)AC =-=,则3002200PB AC ⋅=⨯+⨯-⨯=,所以PB AC ⊥,故选项C 正确; 对于选项D :因为()223213PB =+-=D 正确,故选:ACD7.C 【分析】根据向量的加法法则和数乘的定义判断. 【详解】因为1()2AE AD DE AD DB DC =+=++, 所以1x =,12y z ==,则x y z =+. 故选:C . 8.C 【分析】根据题意画出图形,结合图形找出△ABC 的外接圆圆心与三棱锥P ﹣ABC 外接球的球心, 求出外接球的半径,再计算它的表面积.【详解】三棱锥P ﹣ABC 中,PA ⊥平面ABC ,直线PQ 与平面ABC 所成角为θ,如图所示;则sinθ=PA PQ =3PQ ,且sinθ的最大值是2,∴(PQ )min AQ A 到BC∴AQ ⊥BC ,∵Rt △ABQ 中可得6ABC π∠=,即可得BC=6;取△ABC 的外接圆圆心为O′,作OO′∥PA ,∴6120sin =2r ,解得∴取H 为PA 的中点,∴,PH=32,由勾股定理得, ∴三棱锥P ﹣ABC 的外接球的表面积是S=4πR 2=4×2π⨯=57π. 故答案为C9.323π 【分析】画出示意图,利用体积最大时P 所处的位置,计算出球的半径从而算出球的体积. 【详解】如图所示:设球心为O ,ABC 所在圆面的圆心为1O ,则1OO ⊥平面ABC ;因为6BA BC ==2ABC π∠=,所以ABC 是等腰直角三角形,所以1O 是AC 中点;所以当三棱锥体积最大时,P 为射线1O O 与球的交点,所以113p ABC ABCV PO S -=⋅⋅;因为16632ABCS==,设球的半径为R ,所以2221113PO PO OO R R AO R R =+=-=+-,所以(213333R R ⋅-⋅=,解得:2R =,所以球的体积为:343233R ππ=. 【点睛】本题考查三棱锥的外接球的相关计算,难度较难.处理球的有关问题时要充分考虑到球本身的性质,例如:球心与小圆面圆心的连线垂直于小圆面. 10.(Ⅰ)证明见解析;(Ⅱ)13.【详解】 【分析】 试题分析:(Ⅰ)作SO AD ⊥,垂足为O ,依题意得SO ⊥平面ABCD ,则,SO AB AB AD ⊥⊥,AB ⊥平面SAD ,AB SD ⊥,结合勾股定理可得SA SD ⊥,则SD ⊥平面SAB ,平面SAB ⊥平面SCD .(Ⅱ)由几何关系,以,,OA OE OS 为,,x y z 轴建立空间直角坐标系,由题意可得平面SCD 的法向量()2,0,1m =-,平面SBC 的法向量()0,2,1n =.计算可得平面SCD 与平面SBC 所成二面角的余弦值的绝对值为13. 试题解析:(Ⅰ)作SO AD ⊥,垂足为O ,依题意得SO ⊥平面ABCD ,,SO AB SO CD ∴⊥⊥, 又AB AD ⊥,AB ∴⊥平面SAD ,,AB SA AB SD ⊥⊥利用勾股定理得22422SA SB AB =-=-2SD =在SAD ∆中,2,2,AD SA SD SA SD ===∴⊥SD ∴⊥平面SAB ,又SD ⊂平面SCD ,所以平面SAB ⊥平面SCD (Ⅱ)连结,BO CO ,SB SC =,Rt SOB Rt SOC ∴∆≅∆,BO CO =,又四边形ABCD 为长方形,,Rt AOB Rt DOC OA OD ∴∆≅∆∴=.取BC 中点为E ,得OE ∥AB ,连结,3SE SE ∴= 其中1OE =,1OA OD ==,2312OS -由以上证明可知,,OS OE AD 互相垂直,不妨以,,OA OE OS 为,,x y z 轴建立空间直角坐标系.1,2OE OS =∴=,()()()0,1,0,1,1,2,2,0,0DC SC BC ∴==--=-,设()111,,m x y z =是平面SCD 的法向量,则有00m DC m SC ⎧⋅=⎨⋅=⎩即1111020y x y z =⎧⎪⎨-+-=⎪⎩,令11z =得()2,0,1m =-设()222,,n x y z =是平面SBC 的法向量,则有00n BC n SC ⎧⋅=⎨⋅=⎩即22222020x x y z -=⎧⎪⎨-+-=⎪⎩ 令11z =得()0,2,1n =. 则11,333m n cosm n m n⋅===⋅ 所以平面SCD 与平面SBC 所成二面角的余弦值的绝对值为13. 11.(1)见解析;(2)0.【分析】(1)根据线面垂直的判定定理,先得到BC ⊥平面PCD ,进而可得 BC PD ⊥; (2)根据题意,先得到,,CB CD CP 两两垂直,以C 为坐标原点,分别以,,CB CD CP 为,,x y z 轴建立空间直角坐标系,求出两平面,PAB PAD 的法向量,根据向量夹角计算公式,即可求出结果.【详解】(1)证明:PAD △中,因为,B C 分别是,PA PD 的中点,90,PDA ∠=所以//BC AD ,90BCP BCD ∠=∠=,所以多面体PABCD 中, BC PC ⊥,BC CD ⊥, 又PCCD C =,BC ∴⊥平面PCD ;因为PD ⊂平面PCD ,.BC PD ∴⊥(2)依题意可得, 1PC CD ==,直角ADC 中,得5AC =,又6,PA =所以222PA PC AC =+,PC CA ∴⊥, 由(1)知, BC PC ⊥,PC ∴⊥平面.ABCD以C 为坐标原点,分别以,,CB CD CP 为,,x y z 轴,建立如图的坐标系.则(1,0,0),(2,1,0),(0,1,0),(0,0,1)B A D P , 得(2,1,1),(1,0,1),(0,1,1).PA PB PD =-=-=-设平面,PAB PAD 的一个法向量分别是(,,),(,,)m x y z n p q r ==,则20,0.m PA x y z m PB x z ⎧⋅=+-=⎨⋅=-=⎩可取(1,1,1)m =-.20,0.n PA p q r n PD q r ⎧⋅=+-=⎨⋅=-=⎩可取(0,1,1)n =. 01cos ,03m n m n m n⋅-<>===⋅⋅. 所以二面角B PA D --的余弦值为0.【点睛】本题主要考查证明线线垂直,以及求二面角的余弦值问题,熟记线面垂直的判定定理及性质,灵活运用向量的方法求解二面角即可,属于常考题型. 12.(1)见解析(2 【分析】(1)利用面面平行的性质定理,可证得线面平行;(2)以D 为坐标原点,DA 为x 轴,DC 为y 轴,过D 垂直于ABCD 的直线为z 轴,如图建系,求出平面1A EC 的一个法向量(1,0,1)u =-,平面1A EB 的一个法向量(1,2,0)v =,求出向量夹角的余弦值,即可得到答案;【详解】(1)在直四棱柱1111ABCD A B C D -中,BE ⊥平面ABCD , ∵CD ⊂平面ABCD ,∴BE CD ⊥∵CD CE ⊥,BE CE E ⋂=,∴CD ⊥平面BCE 同理可证CD ⊥平面1A AD , ∴平面//BCE 平面1A AD ,∵BC ⊂平面BCE ,∴//BC 平面1A AD(2)∵平面//BCE 平面1A AD ,平面1A ECD ⋂平面BCE CE =,平面1A ECD ⋂平面11A AD A D =,∴1A D ∥EC ,∴1A D 和CE 与平面ABCD 所成角相等,即1A B DA EC ∠=∠; ∵BC BE =,∴45ECB ︒∠=,∴13AA AD ==,以D 为坐标原点,DA 为x 轴,DC 为y 轴,过D 垂直于ABCD 的直线为z 轴,如图建系,(0,1,0)C ,(1,1,0)B ,(1,1,1)E ,1(3,0,3)A ,∴(1,0,1)CE =,1(2,1,2)EA =-,(0,0,1)BE =, 设()111,,u x y z =为平面1A EC 的一个法向量,则10u CE u EA ⎧⋅=⎪⎨⋅=⎪⎩,即111110220x z x y z +=⎧⎨-+=⎩, 令11x =,则(1,0,1)u =-设()222,,v x y z =为平面1A EB 的一个法向量,则10v BE v EA ⎧⋅=⎪⎨⋅=⎪⎩,即22220220z x y z =⎧⎨-+=⎩, 令21x =,则(1,2,0)v =, 则110cos ,||||1025u v u v u v ⋅<>===⨯, 由图知,二面角1B A E C --为锐角,则二面角1B A E C --10. 【点睛】本题考查利用面面平行证明线面平行、向量法求二面角的余弦值,考查转化与化归思想,考查空间想象能力、运算求解能力. 13.(1)证明见解析;(2)57042. 【分析】(1)先证明BC ⊥平面SCD ,可得BC DE ⊥,结合DE SC ⊥,即可证得DE ⊥平面SBC ,进而可得DE EF ⊥,即可得出DEF 是直角三角形;(2)以D 为原点,分别以,,DA DC DS 所在的直线为,,x y z 轴建立空间直角坐标系,根据//SE SC ,设()0,2,4SE tSC t t ==-,利用0DE SC ⋅=求出t 的值,再计算平面DEM 的法向量,平面EMC 的法向量,利用向量夹角公式求夹角余弦值,再计算正弦值即可. 【详解】(1)因为SD ⊥平面ABCD ,BC ⊂平面ABCD ,所以SD BC ⊥, 因为四边形ABCD 是边长为2的正方形,所以CD BC ⊥, 因为SDCD D =,所以BC ⊥平面SCD ,因为DE ⊂平面SCD ,所以BC DE ⊥, 又因为DE SC ⊥,BCSC C =,所以DE ⊥平面SBC ,因为EF ⊂平面SBC ,所以DE EF ⊥,可得90DEF ∠=, 所以DEF 是直角三角形.(2)如图以D 为原点,分别以,,DA DC DS 所在的直线为,,x y z 轴建立空间直角坐标系,则()0,0,0D ,()2,0,0A ,()2,2,0B ,()0,0,4S ,()0,2,0C ,()2,1,0M ,()0,2,4SC =-,因为//SE SC ,设()0,2,4SE tSC t t ==-,所以()()()0,0,40,2,40,2,44DE DS SE t t t t =+=+-=- 因为DE SC ⊥,所以()224440DE SC t t ⋅=⨯--=,解得:45t =, 所以840,,55DE ⎛⎫= ⎪⎝⎭,()84342,1,00,,2,,5555EM DM DE ⎛⎫⎛⎫=-=-=-- ⎪⎪⎝⎭⎝⎭, ()2,1,0MC =-,设平面DEM 的一个法向量为()1111,,x n y z =,由1111118405520n DE y z n DM x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩ 令12y =可得14z =-,11x =-, 所以()11,2,4n =--,设平面EMC 的一个法向量为()2222,,n x y z =, 由222212234205520n EM x y z n MC x y ⎧⋅=--=⎪⎨⎪⋅=-+=⎩令21x =,可得22y =,21z =, 所以()21,2,1n =设二面角D EM C --的平面角为θ,则1212cos 1n n n n θ⋅===+, 因为0θπ≤≤,所以sin θ===, 故二面角D EM C --【点睛】方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果. 14.(Ⅰ)见证明;(Ⅱ)49(Ⅲ)87【分析】首先利用几何体的特征建立空间直角坐标系(Ⅰ)利用直线BF 的方向向量和平面ADE 的法向量的关系即可证明线面平行; (Ⅱ)分别求得直线CE 的方向向量和平面BDE 的法向量,然后求解线面角的正弦值即可; (Ⅲ)首先确定两个半平面的法向量,然后利用二面角的余弦值计算公式得到关于CF 长度的方程,解方程可得CF 的长度.【详解】依题意,可以建立以A 为原点,分别以,,AB AD AE 的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得()()()()()0,0,0,1,0,0,1,2,0,0,1,0,0,0,2A B C D E .设()0CF h h =>,则()1,2,F h .(Ⅰ)依题意,()1,0,0AB =是平面ADE 的法向量,又()0,2,BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(Ⅱ)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--,设(),,n x y z =为平面BDE 的法向量,则00n BD n BE ⎧⋅=⎨⋅=⎩,即020x y x z -+=⎧⎨-+=⎩,不妨令z =1,可得()2,2,1n =, 因此有4cos ,9||||CE n CE n CE n ⋅〈〉==-. 所以,直线CE 与平面BDE 所成角的正弦值为49. (Ⅲ)设(),,m x y z =为平面BDF 的法向量,则00m BD m BF ⎧⋅=⎨⋅=⎩,即020x y y hz -+=⎧⎨+=⎩. 不妨令y =1,可得21,1,m h ⎛⎫=- ⎪⎝⎭.由题意,有2241cos ,3432m nhm n m n h -⋅===⨯+,解得87h =. 经检验,符合题意。所以,线段CF 的长为87. 【点睛】本题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力. 15.(1)见解析,(2)17-【分析】(1)连接BD 交AC 于O ,连接PO ,则有AC BD ⊥,O 为BD 的中点,再由PB PD =可得BD PO ⊥,由线面垂直的判定定理可证得结论;(2)由(1)可知,平面PAC ⊥平面ABCD ,两平面的交线为AC ,所以过P 作PE 垂直AC 于E ,则PE ⊥平面ABCD ,从而可知平面30PAC ∠=︒,若设PC =2,由可把其它边求出来,然后以A 为坐标原点,AB 为x 轴,AD 为y 轴,过A 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,利用空间向量求解二面角B PC D --的余弦值.【详解】(1)证明:连接BD 交AC 于O ,连接PO ,因为四边形ABCD 为正方形,所以AC BD ⊥,O 为BD 的中点,因为PB PD =,所以BD PO ⊥,因为AC PO O =,所以BD ⊥平面PAC ;(2)解:因为BD ⊥平面PAC ,BD 在平面ABCD 内,所以平面PAC ⊥平面ABCD ,过P 作PE 垂直AC 于E ,则PE ⊥平面ABCD ,所以PAC ∠为PA 与底面ABCD 所成的角,即30PAC ∠=︒,设PC =2,因为PA PC ⊥,所以23,3,3,4,22PA PE AE AC AD =====, 如图,以A 为坐标原点,AB 为x 轴,AD 为y 轴,过A 作平面ABCD 的垂线为z 轴,建立空间直角坐标系, 则3232(0,0,0),(22,0,0),(22,22,0),(0,22,0),(,,3)22A B C D P , 22(0,22,0),(,,3)(22,0,0)22BC CP DC ==--=,, 设平面PBC 法向量为(,,)n x y z =,则220223022n BC y n CP x y z ⎧⋅==⎪⎨⋅=--+=⎪⎩,令1z =,则(6,0,1)n =, 设平面PDC 的法向量为(,,)m a b c =,则220223022n DC a n CP a b c ⎧⋅==⎪⎨⋅=--+=⎪⎩,令1c =,则(0,6,1)m =, 所以11cos ,777m nm n m n ⋅===⨯, 由图可知二面角B PC D --的平面角为钝角,所以二面角B PC D --的余弦值为17-【点睛】此题考查线面垂直的证明,考查二面欠余弦值的求法,考查空间中线线、线面、面面间的位置关系等知识,考查运算能力,属于中档题.16.(1)证明见解析(2159【分析】(1)利用线段长度得到AM 与,AB AD 间的垂直关系,再根据线面垂直的判定定理完成证明;(2)以AD 、AM 、AB 为x 轴、y 轴、z 轴建立空间直角坐标系,利用直线的方向向量与平面的法向量夹角的余弦值的绝对值等于线面角的正弦值,计算出结果.【详解】(1)∵2AB AM AD ===,22MB MD ==,∴222AM AD MD +=,222AM AB MB +=∴AM AD ⊥,AM AB ⊥ ∵AB AD A ⋂=,AD ⊂平面ABCD ,∴AM ⊥平面ABCD (2)由(1)知AB AD ⊥,AM AD ⊥,AM AB ⊥又A 为坐标原点,分别以AD 、AM 、AB 为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,0,0A ,()0,2,0M ,()2,0,0D ,()0,0,2B ,()2,0,1C ,()2,0,2BD =-,()2,2,0DM =-,∵2BE EB =,∴420,,33E ⎛⎫ ⎪⎝⎭,412,,33CE ⎛⎫=-- ⎪⎝⎭ 设(),,n x y z =是平面BDM 的一个法向量则00n BD n DM ⎧⋅=⎨⋅=⎩,即220220x z x y -=⎡⎢-+=⎣,取1x =得()1,1,1n = ∴41215933cos ,53||||5333CE CE CE n n n -+-⋅〈〉===⋅⨯∴直线EC 与平面BDM 所成的正弦值为15953 【点睛】本题考查线面垂直的证明以及用向量法求解线面角的正弦,难度一般.用向量方法求解线面角的正弦值时,注意直线方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值. 17. (Ⅰ)93;(Ⅱ)证明见解析;(Ⅲ)存在,13.【分析】(I )在Rt ADE △中,22AE AD DE =-,可得12ADE S AE DE =⋅,由于CD ⊥平面ADE ,可得13C ADE ADE V CD S -=⋅;(II )由CD ⊥平面ADE ,可得CD AE ⊥,进而得到AE ⊥平面CDE ,即可证明平面ACE ⊥平面CDE ;(III )在线段DE 上存在一点F ,使AF 平面BCE ,13EF ED =.设F 为线段DE 上的一点,且13EF ED =,过F 作FM CD 交CE 于点M ,由线面垂直的性质可得:CDAB .可得四边形ABMF 是平行四边形,于是AF BM ,即可证明AF 平面BCE【详解】(I )在Rt △ADE 中,2233AE AD DE =-=,因为CD ⊥平面ADE , 所以棱锥C-ADE 的体积为1193332C ADE ADE AE DE V S CD CD -∆⋅=⋅=⋅⋅=. (II )因为CD ⊥平面ADE ,AE ⊂平面ADE ,所以CD AE ⊥.又因为AE DE ⊥,CD DE D ⋂=,所以AE ⊥平面CDE ,又因为AE ⊂平面ACE ,所以平面ACE ⊥平面CDE.(III )在线段DE 上存在一点F ,且13EF ED =,使AF 平面BCE .解:设F 为线段DE 上一点,且13EF ED =,过点F 作//FM CD 交CE 于M ,则13FM CD =. 因为CD ⊥平面ADE ,AB ⊥平面ADE ,所以//CD AB ,又因为3CD AB = 所以MF AB =,//FM AB ,所以四边形ABMF 是平行四边形,则//AF BM . 又因为AF ⊄平面BCE ,BM ⊂平面BCE ,所以//AF 平面BCE .18.(1)证明见解析;(2)65.【分析】(1)连接1OA ,OC ,结合勾股定理和等边三角形的性质,证得1OA OC ⊥和OC DE ⊥,利用线面垂直的判定定理,得到OC ⊥平面1A DE ,再由面面垂直的判定定理,即可证得平面1A DE ⊥平面BCD.(2)以OC 的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz ,分别求得平面1A BE 和平面1A CD 的一个法向量,结合向量的夹角公式,即可求解.【详解】(1)由题意,四边形BCDE 为菱形,连接CE ,取DE 的中点O ,连接1OA ,OC ,如图所示,在ADE 中,60AED ABC ∠=∠=︒,且2DE =,1AE =,可得,AD =则222DE AE AD =+,则90EAD ∠=︒,即AD AE ⊥,即11A D A E ⊥.因为O 是DE 的中点,所以1112OA DE ==, 因为60CDE ABC ∠=∠=︒,所以CDE ∆为等边三角形,所以OC DE ⊥,且OC =所以22211A C OA OC =+,所以190A OC ∠=︒,即1OA OC ⊥.又因为OC DE ⊥,且1OA DE O ⋂=,所以OC ⊥平面1A DE ,又因为OC ⊂平面BCD ,所以平面1A DE ⊥平面BCD.(2)以OC 的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz ,则(0,1,0)D ,(0,1,0)E -,(3,0,0)C ,(3,2,0)B -,1130,,22A ⎛⎫- ⎪ ⎪⎝⎭, 设平面1A BE 的法向量为(,,)m x y z =,则13013022m BE x y m EA y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令1z =,可得(1,3,1)m =--, 设平面1A CD 的法向量为(),,n x y z '''=,则13033022n CD x y n DA y z ⎧⋅=-+=⎪⎨⋅'''=-+=⎪⎩',令1x '=,得(1,3,3)n =. 因为13365cos ,65||||513m n m n m n ⋅--+〈〉===-⨯. 所以平面1A BE 与平面1A CD 所成锐二面角的余弦值为6565.19.(1)证明见解析;(2387.【分析】(1)连接BD 交AC 于O ,连接OE ,可证1//OE BD ,从而得线面平行;(2)取AD 中点M ,连接1MA ,MC ,由已知证明1A M ⊥平面ABCD ,MC AD ⊥,以1,,MC MD MA 为,,x y z 轴建立空间直角坐标系,设2AD =,得出各点坐标,求出平面AEC 的法向量n ,由法向量n 与1A D 的夹角的余弦值的绝对值等于直线1A D 与平面AEC 所成有的正弦可得.【详解】(1)连接BD 交AC 于O ,连接OE ,∵ABCD 是菱形,∴O 是BD 中点,又E 是1DD 中点,∴1//OE BD ,1BD ⊄平面AEC ,OE ⊂平面AEC ,∴1//BD 平面ACE ;(2)取AD 中点M ,连接1MA ,MC ,∵11AA A D =,∴1A M AD ⊥,又平面11A ADD ⊥平面ABCD ,平面11A ADD 平面ABCD AD =,∴1A M ⊥平面ABCD ,又菱形ABCD 中,60ABC ∠=︒,所以ABC 和ACD △都是等边三角形,所以MC AD ⊥,如图,以1,,MC MD MA 为,,x y z 轴建立空间直角坐标系,设2AD =, 则3MC =,222211213A M A A AM =-=-=∴(0,1,0)A -,(0,1,0)D ,3,0,0)C ,13)A ,13)D ,33(0,,22E , ∴1(0,1,3)A D =-,(3,1,0)AC =,53(0,,22AE =, 设(,,)n x y z =是平面ACE 的一个法向量,则 305302n AC x y n AE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,则3y =5z =,(1,3,5)n =-, 设直线1A D 与平面ACE 所成角为θ, 则111353387sin cos ,29292n A Dn A D n A D θ⋅--=<>===⨯.【点睛】本题考查证明线面平行,考查用空间向量法求线面角.求空间角的常用方法是空间向量法,在题中有垂直的情况下,常常取过同一点且两两垂直的三条直线为坐标轴建立空间直角坐标系,用空间向量法求空间角,考查了学生的运算求解能力.20.(1)证明见解析;(225;(3)23CQ CP =.【分析】(1)建立适当的空间直角坐标系,确定各点坐标,得到0DE AC ⋅=,0DE AP ⋅=,根据线面垂直的判定定理,即可证明.(2)由(1)可知,平面PAC 的法向量(2,1,0)m =-,确定平面PCD 的法向量(2,2,1)n =-,根据cos ,||||m n m n m n ⋅〈〉=⋅,求解即可. (3)设(01)CQ CPλλ=<<,确定(22,44,4)Q λλλ=--,(2,43,4)QE λλλ=--,根据直线QE 与平面PAC 5,求解λ,即可. 【详解】(1)因为PA ⊥平面ABCD ,AB平面ABCD ,AD ⊂平面ABCD所以PA AB ⊥,PA AD ⊥因为AB AD ⊥ 则以A 为坐标原点,建立如图所示的空间直角坐标系.由已知可得(0,0,0)A ,()2,0,0B ,(2,4,0)C ,(0,2,0)D ,(0,0,4)P ,(2,1,0)E . 所以(2,1,0)DE =-,(2,4,0)AC =,(0,0,4)AP =.因为221400DE AC ⋅=⨯-⨯+=,0DE AP ⋅=.所以DE AC ⊥,DE AP ⊥又AP AC A ⋂=,AP ⊂平面PAC ,AC ⊂平面PAC .所以DE ⊥平面PAC .(2)设平面PAC 的法向量m ,由(1)可知,(2,1,0)m DE ==-设平面PCD 的法向量(,,)n x y z =因为(0,2,4)PD =-,(2,4,4)PC =-.所以00n PD n PC ⎧⋅=⎨⋅=⎩,即2402440y z x y z -=⎧⎨+-=⎩ 不妨设1z =,得(2,2,1)n =-. 2222225cos ,||||2(1)(2)21m n m n m n ⋅⨯〈〉===⋅+-⨯-++ 所以二面角A PC D --25. (3)设(01)CQ CPλλ=<<,即(2,4,4)CQ CP λλλλ==--. 所以(22,44,4)Q λλλ=--,即(2,43,4)QE λλλ=--.因为直线QE 与平面PAC 5所以2||cos ,5||||2QE m QE m QE m ⋅〈〉===⋅+∣3=解得23λ=即23CQ CP =. 【点睛】本题考查空间向量在立体几何中的应用,考查综合分析求解与论证能力,属于较难题. 21.(1)证明见解析(2)11【分析】(1)通过证明BE ⊥平面APC ,得到BE PO ⊥,再证PO AC ⊥即可证得PO ⊥平面ABCD . (2)建立空间直角坐标系,求出平面的法向量、直线的方向向量,利用空间向量法求出线面角的正弦值.【详解】(1)证明:AP ⊥平面PCD ,CD ⊂平面PCD ,AP CD ∴⊥, //,AD BC 12BC AD =,E 为AD 的中点,则//BC DE 且BC DE =. ∴四边形BCDE 为平行四边形,//BE CD ∴,AP BE ∴⊥.又,AB BC ⊥12AB BC AD ==,且E 为AD 的中点,∴四边形ABCE 为正方形,BE AC ∴⊥,又,AP AC A =BE ∴⊥平面APC ,PO ⊂平面APC ,则BE PO ⊥.AP ⊥平面,PCD PC ⊂平面PCD ,AP PC ∴⊥,又AC ==,PAC ∴∆为等腰直角三角形,O 为斜边AC 上的中点,PO AC ∴⊥且,ACBE O =PO ∴⊥平面ABCD . (2)解:以O 为坐标原点,建立空间直角坐标系O -xyz ,如图所示不妨设1OB =,则(1,0,0),B (0,1,0),C (0,0,1),P (2,1,0)D -,则(1,1,0),BC =-(1,0,1),PB =-(2,1,1)PD =--.设平面PBD 的法向量为(,,)n x y z =,则00n PB n PD ⎧⋅=⎨⋅=⎩,,即0,20,x z x y z -=⎧⎨-+-=⎩即,3,x z y z =⎧⎨=⎩ 令1z =,得(1,3,1)n =.设BC 与平面PBD 所成角为θ, 则()2222211310122sin cos ,13111BC n θ-⨯+⨯+⨯=<>==++-+【点睛】本题考查线面垂直,线面角的计算,属于中档题. 22.(1)证明见解析;(2)14.【分析】(1)取AD 中点E ,连接PE 、BE 、BD ,由平面几何的知识可得AD PE ⊥、AD BE ⊥,由线面垂直的判定可得AD ⊥平面PBE ,再由线面垂直的性质即可得证; (2)由题意建立空间直角坐标系,求出所需点的坐标后,再求出33,22BC ⎛⎫=-- ⎪ ⎪⎝⎭、平面ADP 的一个法向量为n ,由sin cos ,n BC α=即可得解.【详解】(1)证明:取AD 中点E ,连接PE 、BE 、BD ,如图:ADP △是等腰直角三角形,且2AP DP ==,∴AD PE ⊥且2AD =,2AB =且60BAD ∠=,∴ABD △是等边三角形,∴AD BE ⊥,又BE PE E ⋂=,∴AD ⊥平面PBE , BP ⊂平面PBE ,∴AD BP ⊥;(2)AE ⊥平面PBE ,以E 为坐标原点,分别以AE ,BE 为x 轴、y 轴,过点E 与平面ABCD 垂直的方向为z 轴建立空间直角坐标系E-xyz 如图所示:则()()()()0,0,0,1,0,0,3,0,1,0,0E A B D -,()213,0AB DC =-=,∴33(,22C -, 1PE =,3EB =7BP =∴2223cos 22PE EB BP PEB PE EB +-∠==-⋅,∴150PEB ∠=,∴310,,22P ⎛⎫- ⎪ ⎪⎝⎭, 则33,22BC ⎛⎫=-- ⎪ ⎪⎝⎭,()2,0,0AD =-,311,22AP ⎛⎫=-- ⎪⎝⎭, 设平面ADP 的一个法向量为(,,)n x y z =,则20102n AD x n AP x y z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩,取y =(0,3,3)n =, 设直线BC 与平面ADP 所成角为α, 则1sin cos ,43n BCn BC n BC α⋅====⋅. 【点睛】本题考查了线面垂直的判定与性质、利用空间向量求线面角的应用,考查了空间思维能力与运算求解能力,属于中档题.。
高考立体几何经典30题__详细解释

高考立体几何经典30题1(2010浙江理数)(6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是(A )若l m ⊥,m α⊂,则l α⊥ (B )若l α⊥,l m //,则m α⊥ (C )若l α//,m α⊂,则l m // (D )若l α//,m α//,则l m //2(2010全国卷2理数)(11)与正方体1111ABCD A BC D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点(A )有且只有1个 (B )有且只有2个(C )有且只有3个 (D )有无数个 2【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.3(2010全国卷2理数)(9)已知正四棱锥S ABCD -中,23SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B )3 (C )2 (D )34(2010陕西文数) 8.若某空间几何体的三视图如图所示,则该几何体的体积是 [B](A )2 (B )1(C )23(D )135(2010辽宁文数)(11)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,2BC =,则球O 的表面积等于(A )4π (B )3π (C )2π (D )π6(2010辽宁理数)(12) (12)有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是(A)(0,62+) (B)(1,22) (C) (62-,62+) (D) (0,22) 最大值,可知AD=3,SD=21a -,则有21a -<2+3,即22843(62)a <+=+,即有a<62+(2)构成三棱锥的两条对角线长为a ,其他各边长为2,如图所示,此时a>0; 综上分析可知a ∈(0,62+)7(2010全国卷2文数)(11)与正方体ABCD —A 1B 1C 1D 1的三条棱AB 、CC 1、A 1D 1所在直线的距离相等的点(A )有且只有1个 (B )有且只有2个(C )有且只有3个 (D )有无数个 8(2010全国卷2文数)(8)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为(A )34 (B) 54(C)74(D) 349(2010江西理数)10.过正方体1111ABCD A BC D -的顶点A 作直线L ,使L 与棱AB ,AD ,1AA 所成的角都相等,这样的直线L 可以作A.1条B.2条C.3条D.4条10(2010安徽文数)(9)一个几何体的三视图如图,该几何体的表面积是(A )372 (B )360 (C )292 (D )28011(2010山东文数)(4)在空间,下列命题正确的是 A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行12(2010北京文数)(8)如图,正方体1111ABCD-A B C D 的棱长2,动点E 、F 在棱11A B 上。
高中立体几何典型50题及解析

高中立体几何典型500题及解析(一)1、二面角βα--l 是直二面角,βα∈∈B A ,,设直线AB 与βα、所成的角分别为∠1和∠2,则(A )∠1+∠2=900 (B )∠1+∠2≥900 (C )∠1+∠2≤900 (D )∠1+∠2<900 解析:C分别作两条与二面角的交线垂直的线,则∠1和∠2分别为直线AB 与平面,αβ所成的角。
根据最小角定理:斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角2ABO ∴∠>∠1902190ABO ∠+∠=∴∠+∠≤2. 下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共..面.的一个图是PPQQRSSPPPQQRR RSSSPP PQQQ R RS SS PP Q QR RRSS(A ) (B ) (C ) (D ) D解析: A 项:PS 底面对应的中线,中线平行QS ,PQRS 是个梯形B 项:如图C 项:是个平行四边形D 项:是异面直线。
3. 有三个平面α,β,γ,下列命题中正确的是(A )若α,β,γ两两相交,则有三条交线 (B )若α⊥β,α⊥γ,则β∥γ(C )若α⊥γ,β∩α=a ,β∩γ=b ,则a ⊥b (D )若α∥β,β∩γ=∅,则α∩γ=∅ D解析:A 项:如正方体的一个角,三个平面相交,只有一条交线。
B 项:如正方体的一个角,三个平面互相垂直,却两两相交。
C 项:如图4. 如图所示,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P到直线AB 与直线B 1C 1的距离相等,则动点P 所在曲线的形状为1111C解析:11B C ⊥平面AB 111,B C PB ∴⊥,如图:点到定点B 的距离与到定直线AB 的距离相等,建立坐标系画图时可以以点B 1B 的中点为原点建立坐标系。
5. 在正方体ABCD -A 1B 1C 1D 1中与AD 1成600角的面对角线的条数是(A )4条 (B )6条 (C )8条 (D )10条C解析:如图这样的直线有4条,另外,这样的直线也有4条,共8条。
(完整版)高中数学立体几何经典常考题型

高中数学立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明 ∵OB=OC,又∵∠ABC=,∴∠OCB=,∴∠BOC=.⊥∴CO AB.又PO⊥平面ABC,⊥OC⊂平面ABC,∴PO OC.又∵PO,AB⊂平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO⊂平面COD,∴平面PDB⊥平面COD.(2)解 以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA=1,则PO=OB=OC=2,DA=1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),∴PD=(0,-1,-1),BC=(2,-2,0),BD=(0,-3,1).设平面BDC的一个法向量为n=(x,y,z),∴∴令y=1,则x=1,z=3,∴n=(1,1,3).设PD与平面BDC所成的角为θ,则sin θ===.即直线PD与平面BDC所成角的正弦值为.【类题通法】利用向量求空间角的步骤间标.第一步:建立空直角坐系第二步:确定点的坐标.线)坐标.第三步:求向量(直的方向向量、平面的法向量计夹(或函数值).第四步:算向量的角将夹转为间.第五步:向量角化所求的空角查关键错题规.第六步:反思回顾.看点、易点和答范【变式训练】 如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C.(2)求二面角EA1DB1的余弦值.(1)证明 由正方形的性质可知A1B1AB DC∥∥,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形,从而B1C A∥1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)解 因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以AB,AD,AA1为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为.设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量A1E=,A1D=(0,1,-1),由n1⊥A1E,n1⊥A1D得r1,s1,t1应满足的方程组(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量A1B1=(1,0,0),A1D=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角EA1DB1的余弦值为==.题型二:立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(1)求证:PD⊥平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.(1)证明 因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊥AD,所以AB⊥平面PAD,所以AB⊥PD.又PA⊥PD,AB∩PA=A,所以PD⊥平面PAB.(2)解 取AD的中点O,连接PO,CO.因为PA=PD,所以PO⊥AD.因为PO⊂平面PAD,平面PAD⊥平面ABCD,所以PO⊥平面ABCD.因为CO⊂平面ABCD,所以PO⊥CO.因为AC=CD,所以CO⊥AD.如图,建立空间直角坐标系O-xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD的一个法向量为n=(x,y,z),则即令z=2,则x=1,y=-2.所以n=(1,-2,2).又PB=(1,1,-1),所以cos〈n,PB〉==-.所以直线PB与平面PCD所成角的正弦值为.(3)解 设M是棱P A上一点,则存在λ∈0,1],使得AM=λAP.因此点M(0,1-λ,λ),BM=(-1,-λ,λ).因为BM⊄平面PCD,所以要使BM∥平面PCD,则BM·n=0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=.所以在棱P A上存在点M,使得BM∥平面PCD,此时=.应设,把要成立的作件结论当条,据此列方对断问题,先假存在【类题通法】(1)于存在判型的求解规围内”等.标,是否有定范的解程或方程组,把“是否存在”化问题转为“点的坐是否有解对问题,通常借助向量,引进参数,合已知和列出等式综结论,解出参数.(2)于位置探究型【变式训练】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,∠P AD=45°,E为P A的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.(1)证明 取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN===6,∴AB=12,而E,M分别为P A,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∥且EM=CD,四边形CDEM为平行四边形,∴EM CD∥∵⊂平面PBC,DE⊄平面PBC,∴DE CM.CM∴DE∥平面BPC.(2)解 由题意可得DA,DC,DP两两互相垂直,如图,以D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8).假设AB上存在一点F使CF⊥BD,设点F坐标为(8,t,0),则CF=(8,t-6,0),DB=(8,12,0),由CF·DB=0得t=.又平面DPC的一个法向量为m=(1,0,0),设平面FPC的法向量为n=(x,y,z).又PC=(0,6,-8),FC=.由得即不妨令y=12,有n=(8,12,9).则cos〈n,m〉===.又由图可知,该二面角为锐二面角,故二面角F-PC-D的余弦值为.题型三:立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD 上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D′EF的位置,OD′=.(1)证明:D′H⊥平面ABCD;(2)求二面角B-D′A-C的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD .又由AE =CF 得=,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO ==4.由EF ∥AC 得==.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH .又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF 的方向为x 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB =(3,-4,0),AC =(6,0,0),AD′=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量,则即所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量,则即所以可取n =(0,-3,1).于是cos 〈m ,n 〉===-.sin 〈m ,n 〉=.因此二面角B -D ′A -C 的正弦值是.【类题通法】立体几何中的折叠问题,是翻折前后形中面位置系和度量系的化关键搞清图线关关变情况,一般地翻折后在同一平面上的性不生化还个质发变,不在同一平面上的性生化个质发变.【变式训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD⊥平面A1OC;(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.(1)证明 在题图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=,所以BE⊥AC.即在题图2中,BE⊥OA1,BE⊥OC,从而BE⊥平面A1OC.又CD∥BE,所以CD⊥平面A1OC.(2)解 由已知,平面A1BE⊥平面BCDE,又由(1)知,BE⊥OA1,BE⊥OC,所以∠A1OC为二面角A1-BE-C的平面角,所以∠A1OC=.如图,以O为原点,OB,OC,OA1分别为x轴、y轴、z轴正方向建立空间直角坐标系,因为A1B=A1E=BC=ED=1,BC∥ED,所以B,E,A1,C,得BC=,A1C=,CD=BE=(-,0,0).设平面A1BC的一个法向量n1=(x1,y1,z1),平面A1CD的一个法向量n2=(x2,y2,z2),平面A1BC与平面A1CD的夹角为θ,则得取n1=(1,1,1);得取n2=(0,1,1),从而cos θ=|cos〈n1,n2〉|==,即平面A1BC与平面A1CD夹角的余弦值为.。
高考数学立体几何题型全归纳

高考数学立体几何题型全归纳一、空间几何体的结构特征1. 一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如下(单位cm),则该三棱柱的表面积为()正视图:是一个矩形,长为2,高为√(3);侧视图:是一个矩形,长为2,高为1;俯视图:是一个正三角形,边长为2。
解析:底面正三角形的边长a = 2,底面积S_{底}=(√(3))/(4)a^2=(√(3))/(4)×2^2=√(3)。
侧棱长h = 1,三个侧面的面积S_{侧}=3×2×1 = 6。
所以表面积S=2S_{底}+S_{侧}=2√(3)+6。
2. 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()正视图:是一个梯形,上底为1,下底为2,高为2;侧视图:是一个矩形,长为2,宽为1;俯视图:是一个矩形,长为2,宽为1。
解析:该几何体是一个四棱台。
上底面积S_{1}=1×1 = 1,下底面积S_{2}=2×2=4,高h = 2。
根据四棱台体积公式V=(1)/(3)h(S_{1}+S_{2}+√(S_{1)S_{2}})=(1)/(3)×2×(1 + 4+√(1×4))=(14)/(3)二、空间几何体的表面积与体积3. 已知球的直径SC = 4,A,B是该球球面上的两点,AB=√(3),∠ ASC=∠BSC = 30^∘,则棱锥S - ABC的体积为()解析:设球心为O,因为SC是球的直径,∠ ASC=∠ BSC = 30^∘所以SA=SB = 2√(3),AO = BO=√(3)又AB=√(3),所以 AOB是等边三角形,S_{ AOB}=(√(3))/(4)×(√(3))^2=(3√(3))/(4)V_{S - ABC}=V_{S - AOB}+V_{C - AOB}=(1)/(3)× S_{ AOB}×(SO + CO)=(1)/(3)×(3√(3))/(4)×2=√(3)4. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()正视图:是一个正方形,右上角缺了一个等腰直角三角形;侧视图:是一个正方形,右上角缺了一个等腰直角三角形;俯视图:是一个正方形,右上角缺了一个小正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标立体几何解析几何常考题汇总1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形(2) 若BD=AC=2,EG=2。
求异面直线AC 、BD 所成的角和EG 、BD 所成的角。
证明:在ABD ∆中,∵,E H 分别是,AB AD 的中点∴1//,2EH BD EH BD = 同理,1//,2FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。
(2) 90° 30 °考点:证平行(利用三角形中位线),异面直线所成的角2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。
求证:(1)⊥AB 平面CDE;(2)平面CDE ⊥平面ABC 。
证明:(1)BC AC CE AB AE BE =⎫⇒⊥⎬=⎭同理,AD BD DE AB AE BE =⎫⇒⊥⎬=⎭又∵CE DE E ⋂= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE又∵AB ⊆平面ABC , ∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定AHGFEDCB AEDBC3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。
证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外∴1//A C 平面BDE 。
考点:线面平行的判定4、已知ABC ∆中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥又SA ⊥面ABC SA BC ∴⊥BC ∴⊥面SAC BC AD ∴⊥又,SC AD SC BC C ⊥⋂=AD ∴⊥面SBC 考点:线面垂直的判定5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.求证:(1) C 1O ∥面11AB D ;(2)1AC ⊥面11AB D . 证明:(1)连结11A C ,设11111A CB D O ⋂=,连结1AO∵ 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO =11AOC O ∴是平行四边形111,C O AO AO ∴⊂∥面11AB D ,1C O ⊄面11AB D ∴C 1O ∥面11AB D(2)1CC ⊥面1111A B C D 11!CC B D ∴⊥ 又1111A CB D ⊥∵, 1111B D AC C ∴⊥面 111AC B D ⊥即 同理可证11A C AD ⊥, 又1111D B AD D ⋂=∴1A C ⊥面11AB D考点:线面平行的判定(利用平行四边形),线面垂直的判定AED 1CB 1DCBASDCBAD 1ODB AC 1B 1A 1CMP6、正方体''''ABCD A B C D -中,求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面.考点:线面垂直的判定7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 证明:(1)由B 1B ∥DD 1,得四边形BB 1D 1D 是平行四边形,∴B 1D 1∥BD , 又BD ⊄平面B 1D 1C ,B 1D 1⊂平面B 1D 1C , ∴BD ∥平面B 1D 1C .同理A 1D ∥平面B 1D 1C .而A 1D ∩BD =D ,∴平面A 1BD ∥平面B 1CD .(2)由BD ∥B 1D 1,得BD ∥平面EB 1D 1.取BB 1中点G ,∴AE ∥B 1G .从而得B 1E ∥AG ,同理GF ∥AD .∴AG ∥DF .∴B 1E ∥DF .∴DF ∥平面EB 1D 1.∴平面EB 1D 1∥平面FBD .考点:线面平行的判定(利用平行四边形)8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且22EF AC =, 90BDC ∠=,求证:BD ⊥平面ACD证明:取CD 的中点G ,连结,EG FG ,∵,E F 分别为,AD BC 的中点,∴EG12//AC = 12//FG BD =,又,AC BD =∴12FG AC =,∴在EFG ∆中,222212EG FG AC EF +== ∴EG FG ⊥,∴BD AC ⊥,又90BDC ∠=,即BD CD ⊥,AC CD C ⋂= ∴BD ⊥平面ACD考点:线面垂直的判定,三角形中位线,构造直角三角形9、如图P 是ABC ∆所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点,3AN NB =(1)求证:MN AB ⊥;(2)当90APB ∠=,24AB BC ==时,求MN 的长。
A 1 AB 1C 1D 1D G EF证明:(1)取PA 的中点Q ,连结,MQ NQ ,∵M 是PB 的中点,∴//MQ BC ,∵ CB ⊥平面PAB ,∴ MQ ⊥平面PAB ∴QN 是MN 在平面PAB 内的射影 ,取 AB 的中点D ,连结 PD ,∵,PA PB =∴PD AB ⊥,又3AN NB =,∴BN ND = ∴//QN PD ,∴QN AB ⊥,由三垂线定理得MN AB ⊥ (2)∵90APB ∠=,,PA PB =∴122PD AB ==,∴1QN =,∵MQ ⊥平面PAB .∴MQ NQ ⊥,且112MQ BC ==,∴2MN = 考点:三垂线定理10、如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别是AB 、AD 、11C D 的中点.求证:平面1D EF ∥平面BDG .证明:∵E 、F 分别是AB 、AD 的中点,∴EF ∥BD 又EF ⊄平面BDG ,BD ⊂平面BDG ∴EF ∥平面BDG ∵1D GEB ∴四边形1D GBE 为平行四边形,1D E ∥GB又1D E ⊄平面BDG ,GB ⊂平面BDG ∴1D E ∥平面BDG1EF D E E⋂=,∴平面1D EF ∥平面BDG考点:线面平行的判定(利用三角形中位线)11、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. (1)求证:1//A C 平面BDE ; (2)求证:平面1A AC ⊥平面BDE . 证明:(1)设AC BD O ⋂=,∵E 、O 分别是1AA 、AC 的中点,∴1A C ∥EO又1AC ⊄平面BDE ,EO ⊂平面BDE ,∴1A C ∥平面BDE (2)∵1AA ⊥平面ABCD ,BD ⊂平面ABCD ,1AA BD ⊥ 又BD AC ⊥,1AC AA A⋂=,∴BD ⊥平面1A AC ,BD ⊂平面BDE ,∴平面BDE ⊥平面1A AC考点:线面平行的判定(利用三角形中位线),面面垂直的判定12、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 证明:在ADE ∆中,222AD AE DE =+,∴AE DE ⊥ ∵PA ⊥平面ABCD ,DE ⊂平面ABCD ,∴PA DE ⊥ 又PA AE A ⋂=,∴DE ⊥平面PAE(2)DPE ∠为DP 与平面PAE 所成的角在Rt PAD ∆,42PD =,在Rt DCE ∆中,22DE = 在Rt DEP ∆中,2PD DE =,∴030DPE ∠= 考点:线面垂直的判定,构造直角三角形13、如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD .(1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小. 证明:(1)ABD ∆为等边三角形且G 为AD 的中点,∴BG AD ⊥ 又平面PAD ⊥平面ABCD ,∴BG ⊥平面PAD(2)PAD 是等边三角形且G 为AD 的中点,∴AD PG ⊥ 且AD BG ⊥,PG BG G ⋂=,∴AD ⊥平面PBG ,PB ⊂平面PBG ,∴AD PB ⊥(3)由AD PB ⊥,AD ∥BC ,∴BC PB ⊥ 又BG AD ⊥,AD ∥BC ,∴BG BC ⊥ ∴PBG ∠为二面角A BC P --的平面角在Rt PBG ∆中,PG BG =,∴045PBG ∠=考点:线面垂直的判定,构造直角三角形,面面垂直的性质定理,二面角的求法(定义法)14、如图1,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1A O ⊥平面MBD . 证明:连结MO ,1A M ,∵DB ⊥1A A ,DB ⊥AC ,1A A AC A⋂=,∴DB ⊥平面11A ACC ,而1AO ⊂平面11A ACC ∴DB ⊥1A O . 设正方体棱长为a ,则22132A O a =,2234MO a =. 在Rt △11A C M 中,22194A M a =.∵22211A O MO A M +=,∴1AO OM ⊥. ∵OM ∩DB =O ,∴ 1A O ⊥平面MBD .考点:线面垂直的判定,运用勾股定理寻求线线垂直 15、如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD . 证明:取AB 的中点F,连结CF ,DF . ∵AC BC =,∴CF AB ⊥.∵AD BD =,∴DF AB ⊥.又CF DF F =,∴AB ⊥平面CDF . ∵CD ⊂平面CDF ,∴CD AB ⊥. 又CD BE ⊥,BE AB B ⋂=, ∴CD ⊥平面ABE ,CD AH ⊥.∵AH CD ⊥,AH BE ⊥,CD BE E ⋂=, ∴ AH ⊥平面BCD . 考点:线面垂直的判定16、证明:在正方体ABCD -A 1B 1C 1D 1中,A 1C ⊥平面BC 1D11A B 1D CB证明:连结ACBD AC ∵⊥∴ AC 为A 1C 在平面AC 上的射影∴⊥⊥⎫⎬⎭⇒⊥BD A CA C BC A C BC D11111同理可证平面考点:线面垂直的判定,三垂线定理17、如图,过S 引三条长度相等但不共面的线段SA 、SB 、SC ,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC ⊥平面BSC .证明∵SB=SA=SC ,∠ASB=∠ASC=60°∴AB=SA=AC 取BC 的中点O ,连AO 、SO ,则AO ⊥BC ,SO ⊥BC ,∴∠AOS 为二面角的平面角,设SA=SB=SC=a ,又∠BSC=90°,∴BC=2a ,SO=22a ,AO 2=AC 2-OC 2=a 2-21a 2=21a 2,∴SA 2=AO 2+OS 2,∴∠AOS=90°,从而平面ABC ⊥平面BSC .考点:面面垂直的判定(证二面角是直二面角)第九章 解析几何 第一节 直线和圆 第一部分 五年高考荟萃2009年高考题一、选择题1.(辽宁理,4)已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为A.22(1)(1)2x y ++-= B. 22(1)(1)2x y -++= C.22(1)(1)2x y -+-= D. 22(1)(1)2x y +++=【解析】圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可. 【答案】B2.(重庆理,1)直线1y x =+与圆221x y +=的位置关系为( ) A .相切 B .相交但直线不过圆心 C .直线过圆心D .相离【解析】圆心(0,0)为到直线1y x =+,即10x y -+=的距离2d ==,而012<<,选B 。