高中数学立体几何专题归纳
高中立体几何知识点及经典题型

高中立体几何知识点及经典题型立体几何是高中数学中的重要部分,它研究了在三维空间内的几何形体。
本文将介绍高中立体几何的主要知识点和经典题型。
知识点以下是高中立体几何的主要知识点:1. 空间几何基础:点、线、面的概念及性质。
2. 参数方程和一般式方程:用参数或方程表示几何体的方法。
3. 立体图形的投影:点、直线、平面在投影中的表现形式。
4. 空间几何中的平行与垂直:直线、平面之间的平行关系及垂直关系。
5. 直线与面的位置关系:直线与平面之间的交点、垂线、倾斜角等概念。
6. 空间角的性质:二面角、棱锥、棱台等形体的角度关系。
7. 空间几何中的直线及曲线:空间中直线与曲线的方程及性质。
8. 空间立体角:球、球台、球扇等形体的角度关系。
9. 空间的切线:曲线在空间中的切线方程及其性质。
10. 空间的幂:圆、球及其他形体的幂的概念和性质。
经典题型以下是高中立体几何的经典题型:1. 求直线与平面的位置关系问题:例如,给定一直线和一个平面,求它们之间的交点、垂直线、倾斜角等。
2. 求空间角的问题:例如,给定两个平面的交线,求二面角的度数。
3. 求直线与曲线的位置关系问题:例如,给定一条直线和一个曲面,求它们之间的位置关系。
4. 求切线和法平面的问题:例如,给定一个曲线和一个点,求曲线在该点处的切线方程及法平面方程。
5. 求空间形体的幂问题:例如,给定一个球和一个平面,求平面关于球的幂及其性质。
以上只是一些经典的立体几何题型,通过解答这些题目,可以加深对立体几何知识的理解和运用。
希望本文对高中立体几何知识点和题型的介绍能够帮助到你。
祝你在学习立体几何时取得好成绩!。
高中立体几何基础知识点全集(图文并茂).

高中立体几何基础知识点全集(图文并茂).第一篇:高中立体几何基础知识点全集(图文并茂).立体几何知识点整理姓名:一.直线和平面的三种位置关系: 1.线面平行 l 符号表示: 2.线面相交符号表示:3.线在面内符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。
m l m l l // // ⇒⎪⎪⎪⎪⎪ = ⋂⊂βαβα方法二:用面面平行实现。
m l m l // // ⇒⎪⎪⎪⎪⎪ = ⋂ = ⋂βγα γ β α方法三:用线面垂直实现。
若α α⊥ ⊥m l , ,则 m l //。
方法四:用向量方法: 若向量和向量共线且 l、l //。
2.线面平行: 方法一:用线线平行实现。
α α α// //不重合, 则 m ml l m m l ⇒⎪⎪⎪⎪⎪⊄⊂方法二:用面面平行实现。
α β β α //// l l ⇒⎪⎪⎪⊂方法三:用平面法向量实现。
若 n 为平面α的一个法向量, l n ⊥且α⊄ l , 则α // l。
3.面面平行: 方法一:用线线平行实现。
βαα β // ' , ' , ' // ' // ⇒⎪⎪⎪⎪⎪⎪⎪⊂⊂且相交且相交 m lm l m m l l 方法二:用线面平行实现。
βαβ α α // , // // ⇒⎪⎪⎪⎪⎪⊂且相交m l m l 三.垂直关系: 1.线面垂直: 方法一:用线线垂直实现。
αα ⊥⇒⎪⎪⎪⎪⎪⎪⎪⊂ = ⋂⊥ ⊥ l AB AC A AB AC AB l AC l , m l方法二:用面面垂直实现。
αββαβα⊥⇒⎪⎭⎪⎪⎪⊂⊥=⋂⊥l l m l m , 2.面面垂直: 方法一:用线面垂直实现。
βαβα⊥⇒⎭⎪⎪⊂⊥l l 方法二:计算所成二面角为直角。
3.线线垂直: 方法一:用线面垂直实现。
m l m l ⊥⇒⎭⎪⎪⊂⊥αα方法二:三垂线定理及其逆定理。
PO l OA l PA l αα⊥⎪⎪⊥⇒⊥⎪⎪⊂⎭方法三:用向量方法: 若向量和向量的数量积为 0,则m l ⊥。
高中数学—立体几何知识点总结(精华版)

立体几何知识点一.基本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1: 经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4 :平行于同一条直线的两条直线互相平行。
如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。
esp.空间向量法(找平面的法向量)(规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°])斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。
a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。
直,那么这条直线垂直于这个平面。
如果两条直线同垂直于一个平面,那么这两条直线平行。
如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
行,那么这条直线和这个平面平行。
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
面,那么这两个平面平行。
如果两个平行平面同时和第三个平面相交,则交线平行。
8.(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
高中数学 立体几何知识点总结

立体几何一、空间位置关系的证明(一)平行关系的证明1.线面平行的判定定理和性质定理2.面面平行的判定定理和性质定理3.重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β;(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b;(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(4)几何体中线面平行的证明常利用平行四边形的定义、性质或三角形中位线(二)垂直关系的证明1.直线与平面垂直(1)定义::如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.(2)判定定理与性质定理2.直线和平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.若一条直线垂直于平面,它们所成的角是直角,若一条直线和平面平行,或在平面内,它们所成的角是0°的角. (2)范围:[0,π2]. 3.平面与平面垂直 (1)二面角的有关概念①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角. (2)平面和平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(3)平面与平面垂直的判定定理与性质定理4.重要结论(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面. (2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直. (5)在几何体中垂直关系的证明中要重视勾股定理及平面几何知识的应用,如:菱形的对角线互相垂直,等腰三角形底边上的中线垂直于底边等。
二、立体几何中的向量方法 (一)证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2. (2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. (二)求空间角1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |.3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB→,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).。
高中数学的归纳立体几何的性质总结

高中数学的归纳立体几何的性质总结在高中数学学习中,立体几何是一个非常重要的内容。
通过研究不同形状的几何体及其性质,可以加深对空间概念的理解,提高解决问题的能力。
本文将对高中数学中常见的立体几何性质进行总结和归纳。
一、平行四边形的性质平行四边形是一种具有特殊性质的四边形,其性质包括以下几个方面:1. 对角线性质:平行四边形的对角线互相等分且互相垂直。
解析:已知平行四边形ABCD,连接AC、BD两条对角线,根据平行四边形的定义,得到AB∥CD和AD∥BC。
根据对角线分割平行四边形的性质,可以得到AC=BD且AC⊥BD。
2. 相邻角性质:平行四边形的相邻内角互补,相邻外角互补。
解析:相邻内角指的是由两条边和它们的公共点组成的两个角,相邻外角指的是由两条边和它们的非公共点组成的两个角。
对于平行四边形ABCD,可以得到∠DAB+∠ABC=180°,∠BAD+∠ADC=180°。
而∠ABC和∠ADC是相邻内角,根据补角定理得知它们的和为180°;同理,∠DAB和∠BAD是相邻外角,也满足互补的关系。
3. 底角性质:平行四边形的底角互相相等。
解析:底角指的是平行四边形的一对相对边上的内角,如∠ABD和∠BCA是平行四边形ABCD的底角。
由平行线的性质可知,平行四边形的底角是对应角,因此它们是相等的。
二、立体几何的球的性质球是最简单的立体几何体之一,在高中数学中也有一些与球相关的性质需要掌握。
1. 球的体积和表面积:已知球的半径r,其体积和表面积分别为:V=4/3πr³,A=4πr²。
解析:球的体积公式可以通过利用球的密实性进行推导,具体的推导过程这里不再展开。
而球的表面积公式可以通过将球切成无数个互相接近的小面元,并累加它们的表面积而得到。
2. 球的切线性质:过外点与球切线的关系。
解析:已知球的半径r和球心O,对于球外一点P,若OP⊥切线,那么OP是球心O与点P的连线与切线的交线。
高中数学中的立体几何知识点总结

高中数学中的立体几何知识点总结立体几何是高中数学中一个重要的分支,它研究的是三维空间中的物体形状、大小以及它们之间的相互关系。
本文将对高中数学中的立体几何知识点进行总结,帮助同学们梳理和复习相关内容。
一、点、线、面的关系1. 点:点是空间中最基本的概念,没有大小和形状,只有位置坐标。
2. 线:两个点确定一条线段,线段有长度,可以延伸成直线。
3. 面:三个或三个以上的点确定一个面,面有面积,可以延伸成平面。
二、多面体1. 三棱锥:底面为三角形,侧面为三角形的四面体。
2. 四棱锥:底面为四边形,侧面为三角形的五面体。
3. 五棱锥:底面为五边形,侧面为三角形的六面体。
4. 正棱锥:底面为正多边形,侧面为等边三角形的多面体。
5. 正方体:六个面都是正方形的多面体。
6. 正四面体:四个面都是正三角形的多面体。
7. 正六面体:六个面都是正方形的多面体。
三、平面图形与立体图形1. 投影:图形在投影面上的图象。
2. 平行投影:平行于投影面的投影方式,不改变图形的形状和面积。
3. 斜投影:不平行于投影面的投影方式,改变图形的形状和面积。
4. 立体图形的展开图:将立体图形展开成平面图,便于计算和分析。
5. 空间几何体的视图:主视图、俯视图和侧视图,用来描述一个立体图形。
四、平行与垂直1. 平行关系:两条直线在同一个平面上,且永远不相交。
2. 垂直关系:两条直线在同一个平面上,且相交成直角。
五、角与平面的关系1. 角:由两条射线共同确定的图形,可以是平面角或空间角。
2. 平面角:两个相交的平面所夹的角,范围为0到180度。
3. 相对角:两个相交直线上相对的两个角。
六、面积与体积1. 面积:平面图形所占的面积,常见的有三角形、四边形、圆形的计算公式。
2. 体积:三维物体所占的空间大小,常见的有长方体、正方体、棱柱、棱锥、球体的计算公式。
七、相交与相切1. 相交:两个或多个图形交叠在一起。
2. 相切:两个或多个图形只有一个点是共同的。
高中数学立体几何知识点总结(全)

高中数学立体几何知识点总结(全)垂直直线:两条直线的夹角为90度。
XXX.三.点与平面的位置关系点在平面上:点在平面内部;点在平面外:点在平面的一侧;点在平面上方或下方:需要指定一个方向向量,点在平面的哪一侧就取决于该方向向量与平面法向量的夹角。
四.直线与平面的位置关系直线在平面上:直线的每一点都在平面上;直线在平面内部:直线与平面没有交点;直线与平面相交:直线与平面有且只有一个交点;直线平行于平面:直线与平面没有交点,且方向向量与平面法向量垂直。
改写后:一、空间几何体的三视图空间几何体的三视图包括正视图、侧视图和俯视图。
其中,正视图是指从几何体的前面向后面正投影得到的投影图,反映了物体的高度和长度;侧视图是指从几何体的左面向右面正投影得到的投影图,反映了物体的高度和宽度;俯视图是指从几何体的上面向下面正投影得到的投影图,反映了物体的长度和宽度。
在三视图中,长对正,高平齐,宽相等是反映长、宽、高特点的简洁表述。
二、空间几何体的直观图斜二测画法是一种用于绘制空间几何体直观图的方法。
基本步骤包括建立适当的直角坐标系xOy,建立斜坐标系x'O'y',并画出对应图形。
在直观图中,已知图形平行于X轴的线段画成平行于X'轴,长度不变;已知图形平行于Y轴的线段画成平行于Y'轴,长度变为原来的一半。
直观图与原图形的面积关系是直观图面积为原图形面积的四分之一。
三、空间几何体的表面积与体积圆柱、圆锥、圆台的侧面积分别为2πrl、πrl和πr(l+R),其中r表示底面半径,l表示母线长度,R表示上底面半径。
圆柱、圆锥、圆台的体积分别为Sh、S/3h和S(h/3),其中S为底面积,h为高度。
球的表面积和体积分别为4πR²和(4/3)πR³。
四、点、直线、平面之间的位置关系平面的基本性质包括三条公理,分别是公理1、公理2和公理3.直线与直线的位置关系有相交、平行和垂直;点与平面的位置关系有在平面上、在平面内部、在平面外部、在平面上方或下方;直线与平面的位置关系有在平面上、在平面内部、相交和平行。
高中数学立体几何知识点总结

立体几何知识点总结1、 多面体(棱柱、棱锥)的结构特征(1)棱柱:①定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
棱柱斜棱柱直棱柱正棱柱;四棱柱平行六面体直平行六面体长方体正四棱柱正方体。
②性质:Ⅰ、侧面都是平行四边形; Ⅱ、两底面是全等多边形;Ⅲ、平行于底面的截面和底面全等;对角面是平行四边形;Ⅳ、长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和。
(2)棱锥:①定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面围成的几何体叫做棱锥;正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心,这样的棱锥叫做正棱锥; ②性质:Ⅰ、平行于底面的截面和底面相似,截面的边长和底面的对应边边长的比等于截得的棱锥的高与原棱锥的高的比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、正棱锥性质:各侧面都是全等的等腰三角形;通过四个直角三角形POH Rt ∆,POB Rt ∆,PBH Rt ∆,BOH Rt ∆实现边,高,斜高间的换算棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是正多边形侧棱垂直于底面侧棱不垂直于底面AB CD OHP2、旋转体(圆柱、圆锥、球)的结构特征(2)性质:① 任意截面是圆面(经过球心的平面,截得的圆叫大圆,不经过球心的平面截得的圆叫 小圆)② 球心和截面圆心的连线垂直于截面,并且22d R r -=,其中R 为球半径,r 为截面半径,d 为球心的到截面的距离。
3、柱体、锥体、球体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(C 底为底面周长,h 为高,h '为棱锥的斜高或圆锥的母线)直棱柱、圆柱的侧面积 S C h =⋅侧底;正棱锥、圆锥的侧面积12S C h '=⋅侧底 (3)柱体、锥体的体积公式V S h =⋅柱底, 13V S h =⋅锥底(4)球体的表面积和体积公式:34=3V R π球 ; 24S R π=球面(5)球面距离(注意识别经度和纬度)球面上,A B 两点的球面距离AB R α=⋅,其中α为劣弧AB 所对的球心角AOB ∠的弧度数.4、空间几何体的三视图空间中的点、直线、平面之间的关系(一)、立体几何网络图:(1)、平行于同一直线的两直线平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直 线面垂直”)
直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.
性质:如果两条直线同垂直于一个平面,那么这两条直线平行.
成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条.
成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.
5.棱柱.棱锥
(1)棱柱
a. 直棱柱侧面积: ( 为底面周长, 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.
斜棱住侧面积: ( 是斜棱柱直截面周长, 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.
[注]: 是异面直线,则过 外一点P,过点P且与 都平行平面有一个或没有,但与 距离相等的点在同一平面内.( 或 在这个做出的平面内不能叫 与 平行的平面)
3.直线与平面平行、直线与平面垂直
(1)空间直线与平面位置分三种:相交、平行、在平面内.
(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行 线面平行”)
推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.
简证:如图,在平面内过O作OA、OB分别垂直于 ,
因为 则 .所以结论成立
b.最小角定理的应用(∠PBN为最小角)
简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.
成角比交线夹角一半大,又比交线夹角补角小,一定有2条.
答案:由题意: ,
∴ ,
∴ ,即 ,
所以,点 与 共面.
点评:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.
2.如图,已知矩形 和矩形 所在平面互相垂直,点 , 分别在对角线 , 上,且 , .求证: 平面 .
解析:要证明 平面 ,只要证明向量 可以用平面 内的两个不共线的向量 和 线性表示.
(4两个平面垂直判定一:两个平面所成的二面角是直二面角,则两个平面垂直.
两个平面垂直判定二:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直 面面垂直”)
注:如果两个二面角的平面分别对应互相垂直,则两个二面角没有什么关系.
(5)两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.
其中Q是△BCD的重心,
则向量 用 即证.
对空间任一点O和不共线的三点A、B、C,满足 ,
则四点P、A、B、C是共面
(3)a.空间向量的坐标:空间直角坐标系的x轴是横轴(对应为横坐标),y轴是纵轴(对应为纵坐标),z轴是竖轴(对应为竖坐标).
①令 =(a1,a2,a3), ,则
,
,
,
∥
.
(向量模与向量之间的转化: )
空间两个向量的夹角公式
(a= ,b= ).
空间两点的距离公式: .
b.法向量:若向量 所在直线垂直于平面 ,则称这个向量垂直于平面 ,记作 ,如果 那么向量 叫做平面 的法向量.
c.向量的常用方法:
利用法向量求点到面的距离定理:如图,设n是平面 的法向量,AB是平面 的一条射线,其中 ,则点B到平面 的距离为 .
(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行 线线平行”)
(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.
若 ⊥ , ⊥ ,得 ⊥ (三垂线定理),
b.共线向量定理:对空间任意两个向量 , ∥ 的充要条件是存在实数 (具有唯一性),使 .
c.共面向量:若向量 使之平行于平面 或 在 内,则 与 的关系是平行,记作 ∥ .
d.①共面向量定理:如果两个向量 不共线,则向量 与向量 共面的充要条件是存在实数对x、y使 .
②空间任一点O和不共线三点A、B、C,则 是PABC四点共面的充要条件.
②圆锥体积: ( 为半径, 为高)
锥体体积: ( 为底面积, 为高)
(1). 内切球:当四面体为正四面体时,设边长为a, , , ,得 .
注:球内切于四面体: .
外接球:球外接于正四面体,可如图建立关系式.
6.空间向量
(1)a.共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.
答案:证明:如图,因为 在 上,且 ,
所以 .同理 ,
又 ቤተ መጻሕፍቲ ባይዱ所以
.
又 与 不共线,根据共面向量定理,可知 , , 共面.
由于 不在平面 内,所以 平面 .
点评:空间任意的两向量都是共面的.与空间的任两条直线不一定共面要区别开.
考点二证明空间线面平行与垂直
3.如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点,(I)求证:AC⊥BC1;( )求证:AC1//平面CDB1;
等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图).
(直线与直线所成角 )
(向量与向量所成角
推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.
(3)两异面直线的距离:公垂线段的长度.
空间两条直线垂直的情况:相交(共面)垂直和异面垂直.
三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.
三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.
每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;
每个四面体都有内切球,球心 是四面体各个二面角的平分面的交点,到各面的距离等于半径.
(3)球:
a.球的截面是一个圆面.
(2)棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.
[注]:①一个三棱锥四个面可以都为直角三角形.
②一个棱柱可以分成等体积的三个三棱锥;所以 .
a.①正棱锥定义:底面是正多边形;顶点在底面的射影为底面正多边形的中心.
[注]: .正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)
解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行.
答案:解法一:( )直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4AB=5,
∴AC⊥BC,且BC1在平面ABC内的射影为BC,∴AC⊥BC1;
(简证: P、A、B、C四点共面)
注:①②是证明四点共面的常用方法.
(2)空间向量基本定理:如果三个向量 不共面,那么对空间任一向量 ,存在一个唯一的有序实数组x、y、z,使 .
推论:设O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的有序实数组x、y、z使 (这里隐含x+y+z≠1).
注:设四面体ABCD的三条棱,
①球的表面积公式: .②球的体积公式: .
b.纬度、经度:
①纬度:地球上一点 的纬度是指经过 点的球半径与赤道面所成的角的度数.
②经度:地球上 两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点 的经线是本初子午线时,这个二面角的度数就是 点的经度.
附:①圆柱体积: ( 为半径, 为高)
则 , , 得 .
注:S为任意多边形的面积(可分别求多个三角形面积和的方法).
b.棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).
②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.
d.证直线和平面平行定理:已知直线 平面 , ,且C、D、E三点不共线,则a∥ 的充要条件是存在有序实数对 使 .(常设 求解 若 存在即证毕,若 不存在,则直线AB与平面相交).
二、经典例题
考点一空间向量及其运算
1.已知 三点不共线,对平面外任一点,满足条件 ,
试判断:点 与 是否一定共面?
解析:要判断点 与 是否一定共面,即是要判断是否存在有序实数对 使 或对空间任一点 ,有 .
异面直线间的距离 ( 是两异面直线,其公垂向量为 , 分别是 上任一点, 为 间的距离).
直线 与平面所成角的正弦值 ( 为平面 的法向量).
利用法向量求二面角的平面角定理:设 分别是二面角 中平面 的法向量,则 所成的角就是所求二面角的平面角或其补角大小( 方向相同,则为补角, 反方,则为其夹角).
( )设CB1与C1B的交点为E,连结DE,∵ D是AB的中点,E是BC1的中点,
∴ DE//AC1,∵ DE 平面CDB1,AC1 平面CDB1,
∴AC1//平面CDB1;
解法二:∵直三棱柱ABC-A1B1C1底面三边长AC=3,BC=4,AB=5,∴AC、BC、C1C两两垂直,如图,以C为坐标原点,直线CA、CB、C1C分别为x轴、y轴、z轴,建立空间直角坐标系,则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4),D( ,2,0)
c.特殊棱锥的顶点在底面的射影位置:
棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.
棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.
棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.
棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.