高中数学立体几何专项练习
高三立体几何专题练习(含答案)

立体几何专题练习卷一、填空题(本大题满分56分,每小题4分) 1.正方体DC B A ABCD 111-的棱长为a ,则异面直线1AB 与1BC 所成的角的大小是__________.2.已知某铅球的表面积是2484cm π,则该铅球的体积是___________2cm .3.若圆锥的侧面积为20π,且母线与底面所成的角为4arccos5,则该圆锥的体积为___________.4.在长方体1111ABCD A B C D -中,若12,1,3AB BC AA ===,则1BC 与平面11BB D D 所成的角θ可用反三角函数值表示为θ=____________.5.若取地球的半径为6371米,球面上两点A 位于东经O12127',北纬O 318',B 位于东经O12127',北纬O 255',则A B 、两点的球面距离为_____________千米(结果精确到1千米).6.已知圆锥的母线长为5cm ,侧面积为π15 2cm ,则此圆锥的体积为__________3cm .7.若圆锥的底面半径和高都是2,则圆锥的侧面积是_____________. 8.如图,是一个无盖正方体盒子的表面展开图,A B C 、、为其上的三个点,则在正方体盒子中,ABC ∠=____________.9.一个圆柱形容器的轴截面尺寸如右图所示,容器内有一个实心的球,球的直径恰等于圆柱的高.现用水将该容器注满,然后取出该球(假设球的密度大于水且操作过程中水量损失不计),则球取出后,容器中水面的高度为__________cm. (精确到0.1cm )10.如图,用铁皮制作一个无盖的圆锥形容器,已知该圆锥的母线与底面所在平面的夹角为45︒,容器的高为10cm .制作该容器需要铁皮面积为__________cm2.(衔接部分忽略不计,结果保留整第9题数)11.如图,圆锥的侧面展开图恰好是一个半圆,则该圆锥的母线与底面所成的角的大小是__________ .12.如右下图,ABC ∆中, 90=∠C ,30=∠A ,1=BC .在三角形内挖去半圆(圆心O 在边AC 上,半圆与BC 、AB 相切于点C 、M ,与AC 交于N ),则图中阴影部分绕直线AC 旋转一周所得旋转体的体积为__________ .13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥, 则该圆锥与圆柱等底等高。
高三数学立体几何专项练习题及答案

高三数学立体几何专项练习题及答案一、选择题1. 下列哪个几何体的所有面都是三角形?A. 正方体B. 圆柱体C. 正六面体D. 球体答案:C2. 一个有8个面的多面体,其中6个面是正方形,另外2个面是等边三角形,它的名字是?A. 正八面体B. 正十二面体C. 正二十面体D. 正二十四面体答案:C3. 空间中任意一点到四个角落连线的垂直距离相等的四棱锥称为?A. 正四棱锥B. 圆锥台C. 四棱锥D. 无法确定答案:C4. 任意多面体的面数与顶点数、棱数的关系是?A. 面数 + 顶点数 = 棱数 + 2B. 面数 + 棱数 = 顶点数 + 2C. 顶点数 + 棱数 = 面数 + 2D. 顶点数 + 面数 = 棱数 + 2答案:A5. 求下列多面体的棱数:(1)正六面体(2)正八面体(3)正十二面体答案:(1)正六面体的棱数为 12(2)正八面体的棱数为 24(3)正十二面体的棱数为 30二、填空题1. 下列说法正确的是:一棱锥没有底面时,它的底面是一个______。
答案:点2. 铅垂线是指从一个多面体的一个顶点到与它相对的棱上所作的垂线,它与该棱垂足的连线相交于该多面体的______上。
答案:中点3. 对正八面体,下列说法不正确的是:_____条对角线与_____两两垂直。
答案:六,相邻面三、计算题1. 一个棱锥的底面是一个边长为6cm的正三角形,其高为8cm。
求棱锥体积。
解答:底面积 S = (1/2) ×底边长 ×高 = (1/2) × 6 × 8 = 24 cm²棱锥体积 V = (1/3) × S ×高 = (1/3) × 24 × 8 = 64 cm³所以,棱锥的体积为64 cm³。
2. 一个正四棱锥的底面是一个边长为10cm的正方形,其高为12cm。
求四棱锥的体积。
解答:底面积 S = 边长² = 10² = 100 cm²四棱锥体积 V = (1/3) × S ×高 = (1/3) × 100 × 12 = 400 cm³所以,四棱锥的体积为400 cm³。
高中数学立体几何经典题型练习题集(附有答案)

高中数学立体几何经典题型练习题集学校:______姓名:_____班级:______考号:______一.单选题1.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为()A.B.C.D.2.在棱长为1的正方体ABCD-A1B1C1D1中,若E,F,G分别为C1D1,AA1,BB1的中点,则空间四边形EFBG在正方体下底面ABCD上的射影面积为()A.1B.C.D.3.一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱4、如图,P是正方体ABCD-A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是()A.B.C.D.5、如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O 所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是()A.1B.2C.3D.46、如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是棱A1B1、BB1、B1C1的中点,则下列结论中:①FG⊥BD;②B1D⊥面EFG;③面EFG∥面ACC1A1;④EF∥面CDD1C1.正确结论的序号是()A.①和②B.③和④C.①和③D.②和④7、三棱锥P-ABC,PC⊥面ABC,△PAC是等腰三角形,PA=4,AB⊥BC,CH⊥PB,垂足为H,D是PA的中点,则△CDH的面积最大时,CB的长是()A.B.C.D.8、正方体的直观图如图所示,则其展开图是()A.B.C.D.二.填空题(共__小题)9、如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四边形EFGH的面积为______.10、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD 与平面PAB所成角的余弦值为.其中正确的有______(把所有正确的序号都填上).11.如图所示,三棱锥M,PA⊥底面ABC,∠ABC=90°,则此三棱锥P-ABC中直角三角形有______个.12、如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1,有下述结论(1)AC1⊥BC;(2)=1;(3)二面角F-AC1-C的大小为90°;(4)三棱锥D-ACF的体积为.正确的有______.13.各棱长为a的正三棱柱的六个顶点都在同一个球面上,则此球的表面积为______.14.一四棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:4,则此截面把一条侧棱分成的两段之比为______.15、如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论①AC⊥BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A-BEF的体积为定值其中正确的结论有:______(写出所有正确结论的编号)三.简答题(共__小题)16、如图,立体图形A-BCD的四个面分别为△ABC、△ACD、△ADB和△BCD,E、F、G分别是线段AB、AC、AD上的点,且满足AE:AB=AF:AC=AG:AD,求证:△EFG∽△BCD.17、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC 的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.参考答案一.单选题(共__小题)1.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为()A.B.C.D.答案:D解析:解:在正三棱锥中,顶点P在底面的射影为底面正三角形的中心O,延长A0到E,则E为BC的中点,连结PE,则PE为正三棱锥的斜高.∵正三棱锥的底边长和高都是2,∴AB=PO=2,即AE=,OE=,∴斜高PE==,故选:D.2、在棱长为1的正方体ABCD-A1B1C1D1中,若E,F,G分别为C1D1,AA1,BB1的中点,则空间四边形EFBG在正方体下底面ABCD上的射影面积为()A.1B.C.D.答案:B解析:解:过E点做EH垂直CD于H,连接EH,易得H即为E在平面ABCD上的射影,连接AH,BH,如下图所示则AH,BH,AB分别为FE,EG,FB在平面ABCD上的射影,又由G在平面ABCD上的射影为B,故△ABH即为空间四边形EFBG在正方体下底面ABCD上的射影∵S△ABH=S ABCD=故选B3.一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱答案:C解析:解:上、下底面都是正方形,且侧棱垂直于底面的棱柱叫做正四棱柱.故A和B错在有可能是斜棱柱,D错在上下底面有可能不是正方形,底面是菱形,且有一个顶点处的三条棱两两垂直能保证上、下底面都是正方形,且侧棱垂直于底面.故选C.4、如图,P是正方体ABCD-A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是()A.B.C.D.答案:A解析:解:设正方体的棱长为1,连接AC交BD于O,连PO,则PO是等腰△PBD的高,故△PBD的面积为f(x)=BD×PO,在三角形PAO中,PO==,∴f(x)=××=,画出其图象,如图所示,对照选项,A正确.故选A.5、如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是()A.1B.2C.3D.4答案:D解析:证明:∵AB是圆O的直径∴∠ACB=90°即BC⊥AC,三角形ABC是直角三角形又∵PA⊥圆O所在平面,∴△PAC,△PAB是直角三角形.且BC在这个平面内∴PA⊥BC 因此BC垂直于平面PAC中两条相交直线,∴BC⊥平面PAC,∴△PBC是直角三角形.从而△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是,4.故选D.6、如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是棱A1B1、BB1、B1C1的中点,则下列结论中:①FG⊥BD;②B1D⊥面EFG;③面EFG∥面ACC1A1;④EF∥面CDD1C1.正确结论的序号是()A.①和②B.③和④C.①和③D.②和④答案:D解析:解:如图连接A1C1、A1B、BC1、BD、B1D,因为E、F、G分别是棱A1B1、BB1、B1C1的中点对于①因为FG∥BC1,△BDC1是正三角形,FG⊥BD,不正确.对于②因为平面A1C1B∥平面EFG,并且B1D⊥平面A1C1B,所以B1D⊥面EFG,正确.③面EFG∥面ACC1A1;显然不正确.④EF∥平面CDD1C1内的D1C,所以EF∥面CDD1C1.正确.故选D7、三棱锥P-ABC,PC⊥面ABC,△PAC是等腰三角形,PA=4,AB⊥BC,CH⊥PB,垂足为H,D是PA的中点,则△CDH的面积最大时,CB的长是()A.B.C.D.答案:D解析:解:三棱锥P-ABC中,PC⊥面ABC,AB⊂平面ABC,∴PC⊥AB;又AB⊥BC,BC∩PC=C,∴AB⊥平面PBC;又CH⊂平面PBC,∴AB⊥CH,又CH⊥PB,PB∩AB=B,∴CH⊥平面PAB,又DH⊂平面PAB,∴CH⊥DH;又△PAC是等腰直角三角形,且PA=4,D是PA的中点,∴CD=PA=2,设CH=a,DH=b,则a2+b2=CD2=4,∴4=a2+b2≥2ab,即ab≤1,当且仅当a=b=时,“=”成立,此时△CDH的面积最大;在Rt△PBC,设BC=x,则PB===,∴PC•BC=PB•CH,即2•x=•;解得x=,∴CB的长是.故选:D.8、正方体的直观图如图所示,则其展开图是()A.B.C.D.答案:D解析:解:根据题意,可得对于A,展开图中的上下两边的正方形的对边中点连线应该呈左右方向显现,故A的图形不符合题意;对于B,展开图中最右边的“日”字形正方形的对边中点连线应该是上下方向呈现,且应该在含有圆形的正方形的左边放置,故B的图形不符合题意;对于C,展开图中最右边的正方形应该与含有圆形的正方形相邻,故C的图形不符合题意;对于D,沿如图的红线将正方体的侧面剪裁,展开可得如D项图的形状,故D的图形符合题意故选:D二.填空题(共__小题)9、如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四边形EFGH的面积为______.答案:解析:解:由ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,可得四边形EFGH为矩形,且此矩形的长和宽分别为和,故四边形EFGH的面积为=,故答案为:.10、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD与平面PAB所成角的余弦值为.其中正确的有______(把所有正确的序号都填上).答案:①④⑤解析:解:对于①、由PA⊥平面ABC,AE⊂平面ABC,得PA⊥AE,又由正六边形的性质得AE⊥AB,PA∩AB=A,得AE⊥平面PAB,又PB⊂平面PAB,∴AE⊥PB,①正确;对于②、又平面PAB⊥平面ABC,所以平面ABC⊥平面PBC不成立,②错;对于③、由正六边形的性质得BC∥AD,又AD⊂平面PAD,∴BC∥平面PAD,∴直线BC∥平面PAE也不成立,③错;对于④、在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,∴④正确;对于⑤、由于DE∥AB,∴D到平面PAB的距离即为E到平面PAB的距离,即E到直线PA的距离,即EA,EA=AB,在Rt△PAD中,PA=AD=2AB,∴PD=2AB,∴直线PD与平面PAB所成角的正弦值为=,∴直线PD与平面PAB所成角的余弦值为=,∴⑤正确.故答案为:①④⑤.11.如图所示,三棱锥M,PA⊥底面ABC,∠ABC=90°,则此三棱锥P-ABC中直角三角形有______个.答案:4解析:解:由已知PA⊥底面ABC,∠ABC=90°,所以CB⊥PA,CB⊥AB,又PA∩AB=A,所以CB⊥平面PAB,所以CB⊥PB,所以此三棱锥P-ABC中直角三角形有△ABC,△ABP,△ACP,△PBC共有4个.故答案为:4.12、如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1,有下述结论(1)AC1⊥BC;(2)=1;(3)二面角F-AC1-C的大小为90°;(4)三棱锥D-ACF的体积为.正确的有______.答案:(2)(3)(4)解析:解:(1)连接AB1,则∠B1C1A即为BC和AC1所成的角,在三角形AB1C1中,B1C1=2,AB1=2,AC1=2,cos∠B1C1A==,故(1)错;(2)连接AF,C1F,则易得AF=FC1=,又FD⊥AC1,则AD=DC1,故(2)正确;(3)连接CD,则CD⊥AC1,且FD⊥AC1,则∠CDF为二面角F-AC1-C的平面角,CD=,CF=,DF===,即CD2+DF2=CF2,故二面角F-AC1-C的大小为90°,故(3)正确;(4)由于CD⊥AC1,且FD⊥AC1,则AD⊥平面CDF,则V D-ACF=V A-DCF=•AD•S△DCF=×××=.故(4)正确.故答案为:(2)(3)(4)13.各棱长为a的正三棱柱的六个顶点都在同一个球面上,则此球的表面积为______.答案:解析:解:∵正三棱柱的六个顶点都在同一个球面上,所以球心在上下底面中心的连线的中点上,AB=a,OA=R,在△OEA中,OE=,AE=,∵AO2=OE2+AE2,∴,∴球的表面积为4πR2=,故答案为.14.一四棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:4,则此截面把一条侧棱分成的两段之比为______.答案:1:1解析:解:根据题意,设截得小棱锥的侧棱长为l,原棱锥的侧棱长为L,∵截面与底面相似,且截面面积与底面面积之比为1:4,∴相似比为:==,∴截面把棱锥的一条侧棱分成的两段之比是l:(L-l)=1:1.故答案为:1:1.15、如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论①AC⊥BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A-BEF的体积为定值其中正确的结论有:______(写出所有正确结论的编号)答案:①②④⑤解析:解:①AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;②EF∥平面ABCD,由正方体ABCD-A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;③由图知,当F与B1重合时,令上底面顶点为O,则此时两异面直线所成的角是∠A1AO,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,此二角不相等,故异面直线AE、BF所成的角不为定值,故不正确.④A1点到面DD1B1B距离是定值,所以A1点到面BEF的距离为定值,正确;⑤三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A-BEF的体积为定值,此命题正确.故答案为:①②④⑤.三.简答题(共__小题)16、如图,立体图形A-BCD的四个面分别为△ABC、△ACD、△ADB和△BCD,E、F、G分别是线段AB、AC、AD上的点,且满足AE:AB=AF:AC=AG:AD,求证:△EFG∽△BCD.答案:证明:在△ABD中,∵AE:AB=AG:AD,∴EG∥BD.同理,GF∥DC,EF∥BC.又∠GEF与∠DBC方向相同.∴∠GEF=∠DBC.同理,∠EGF=∠BDC.∴△EFG∽△BCD.17、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.答案:解:(1)∵AB⊥平面BCD,∴AB⊥BC,AB⊥BD.∵△BCD是正三角形,且AB=BC=a,∴AD=AC=.设G为CD的中点,则CG=,AG=.∴,,.三棱锥D-ABC的表面积为.(2)取AC的中点H,∵AB=BC,∴BH⊥AC.∵AF=3FC,∴F为CH的中点.∵E为BC的中点,∴EF∥BH.则EF⊥AC.∵△BCD是正三角形,∴DE⊥BC.∵AB⊥平面BCD,∴AB⊥DE.∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.∵DE∩EF=E,∴AC⊥平面DEF.(3)存在这样的点N,当CN=时,MN∥平面DEF.连CM,设CM∩DE=O,连OF.由条件知,O为△BCD的重心,CO=CM.∴当CF=CN时,MN∥OF.∴CN=.。
新教材高二数学立体几何专项训练

立体几何高考试题专项训练1、(2020北京卷)如图,在正方体1111ABCD A B C D 中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.2、(2020山东卷)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.3、(2019全国理Ⅰ)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.4、(2020全国理Ⅰ)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE AD=.ABC是底面的内接正三角形,P为DO上一点,66PO DO=.(1)证明:PA⊥平面PBC;(2)求二面角B PC E--的余弦值.5、(2020全国Ⅲ)如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.6、(2020浙江卷)如图,三棱台DEF —ABC 中,面ADFC ⊥面ABC ,∠ACB =∠ACD =45°,DC =2BC . (I )证明:EF ⊥DB ;(II )求DF 与面DBC 所成角的正弦值.7、(2020天津卷)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且12,AD CE M ==为棱11A B 的中点. (Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.(2020全国Ⅱ)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F . (1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.。
高中数学立体几何测试题(10套)

∴ BD ∥平面 PMN ,
位置关系为
平行
。
∴ O 到平面 PMN 的距离即为 BD 到平面 PMN 的距离。
11 、a,b 为异面直线,且 a,b 所成角为 40 °,直线 c 与 a,b 均异面,且所成角均为
∵ BD ⊥ AC , MN ∥ BD
∵ PA⊥面 ABCD
θ,若这样的 c 共有四条,则 θ的范围为 (70 °, 90° ) 。
D
C
A
B
D1 A1
C1 B1
17 、 已知异面直线 a, b 的公垂线段 AB 的中点为 O,平面 满足 a∥ , b∥ , 且 O , M 、 N 是 a, b 上的任意两点, MN ∩ = P,求证: P 是 MN 的中
点
A aM
O
P
BN b
.
立几面测试 001
参考答 案
一、 1- 8 ACDDBDBA
2、已知 m, n 为异面直线, m∥平面 , n∥平面 , ∩ =l ,则 l( ) ( A)与 m, n 都相交 ( B)与 m,n 中至少一条相交 ( C)与 m, n 都不相交 ( D )与 m, n 中一条相交
3、已知 a, b 是两条相交直线, a∥ ,则 b 与 的位置关系是 ( )
A 、 b∥
PAM
∵ AB=2 , BM=1 , CM=1
∴ AM= 5 ,
P
A H
O
.
B
F M
B
D N C
立几面测试 003
一、选择题
1.异面直线是指
(A) 在空间内不能相交的两条直线
(B) 分别位于两个不同平面的两条直线
(C) 某一个平面内的一条直线和这个平面外的一条直线
高中数学立体几何专项练习题及答案

高中数学立体几何专项练习题及答案一、选择题1. 下面哪个选项不是描述柱体的特点?A. 体积恒定B. 底面形状不限C. 侧面是矩形D. 顶面和底面平行答案:A2. 如果一个四面体的一个顶点的对边垂直于底面,那么这个四面体是什么类型?A. 正方形四面体B. 倒立四面体C. 锥体D. 正方锥体答案:C3. 以下哪个选项正确描述了一个正方体的特点?A. 全部面都是正方形B. 12 条棱长度相同C. 8 个顶点D. 6 个面都是正方形答案:D4. 若长方体的高度是 6cm,底面积是 5cm²,底面对角线长为 a cm,那么 a 的值为多少?A. √11B. √29C. √31D. √41答案:C二、填空题1. 一个正方体的棱长为 4cm,它的体积是多少?答案:64cm³2. 一个球的表面积是100π cm²,那么它的半径是多少?答案:5cm3. 一个圆柱体的底面半径为 3cm,高度为 8cm,它的体积是多少?答案:72π cm³4. 一个圆锥的底面半径为 6cm,高度为 10cm,它的体积是多少?答案:120π cm³三、计算题1. 一个四棱锥的底面是边长为 5cm 的正方形,高度为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:5cm * 5cm = 25cm²再计算体积:25cm² * 8cm / 3 = 200cm³2. 一个圆柱体的底面直径为 12cm,高度为 15cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面半径:12cm / 2 = 6cm再计算底面积:π * 6cm * 6cm = 36π cm²最后计算体积:36π cm² * 15cm = 540π cm³3. 一个球的直径为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算半径:8cm / 2 = 4cm再计算体积:4/3 * π * 4cm * 4cm * 4cm = 268.08π cm³4. 一个圆锥的底面半径为 10cm,高度为 20cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:π * 10cm * 10cm = 100π cm²最后计算体积:100π cm² * 20cm / 3 = 2000π cm³四、解答题1. 若一个长方体的长度、宽度、高度分别为 a、b、c,它的表面积为多少?答案:单位为 cm²,计算过程如下:首先计算侧面积:2 * (a * b + a * c + b * c)再计算底面积:a * b最后计算表面积:2 * (a * b + a * c + b * c) + a * b2. 一个四棱锥的底面为边长为 a 的正三角形,高度为 h,求这个四棱锥的体积。
高中立体几何专题训练

2023届高考数学一轮复习立体几何专练1.如图,ABC △和BCD △都是边长为2的正三角形,且它们所在平面互相垂直.DE ⊥平面BCD ,且AE =.(1)设P 是DE 的中点,求证://AP 平面BCD .(2)求二面角B AE C --的正弦值.2.如图,直三棱柱111ABC A B C -的体积为4,1A BC △的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.3.如图,在三棱台111ABC A B C -中,底面ABC △是边长为2的正三角形,侧面11ACC A 为等腰梯形,且1111A C AA ==,D 为11A C 的中点.(1)证明:AC BD ⊥;(2)记二面角1A AC B --的大小为θ,π2π,33θ⎡⎤∈⎢⎥⎣⎦时,求直线1AA 与平面11BB C C 所成角的正弦值的取值范围.4.如图,在棱柱1111ABCD A B C D -中,1AA ⊥平面ABCD ,四边形ABCD 是菱形,60ABC ∠=︒,点N 为AD 的中点,且14,2AA AB ==.(1)设M 是线段1BD 上一点,且1BMMD λ=.试问:是否存在点M ,使得直线1//AA 平面MNC ?若存在,请证明1//AA 平面MNC ,并求出λ的值;若不存在,请说明理由;(2)求二面角1N CD D --的余弦值.5.已知四棱柱1111ABCD A B C D -的底面为菱形,1π2,,,3AB AA BAD AC BD O AO ==∠=⋂=⊥平面111,A BD A B A D =.(1)证明:1B C P 平面1A BD ;(2)求二面角1B AA D --的余弦值.6.如图,在四棱锥P ABCD -中,AP ⊥平面ABCD ,底面ABCD 是边长为2的正方形,AP AB =,M 为线段PC 上一点.(1)若平面MAB⋂平面PCD l=,证明://l CD;(2)若二面角D AM B--的平面角为2π3,求三棱锥P AMD-的体积.7.如图,在多面体ABCDEF中,四边形BCEF是矩形,//,AD BC BC CD⊥,1,2,2BC CD AD FA FB CM ME======.(1)证明:FA CD⊥;(2)求直线AF与平面MBD所成角的正弦值.8.如图,在四棱锥P ABCD-中,底面ABCD是边长为1的菱形,60BCD∠=︒,E为AD的中点,PE⊥平面ABCD,F为PC上的一点,且12PF FC=uu u r uu u r.(1)证明://PA平面BEF;(2)若二面角P BE F--的平面角为30°,求四棱锥P ABCD-的体积.9.如图,在平面五边形ABCDE中ADE△是边长为2的等边三角形,四边形ABCD是直角梯形,其中//,,1,⊥==.将ADEAD BC AD DC BC CD△沿AD折起,使得点E到达点M的位置,且使BM=.(1)求证:平面MAD⊥平面ABCD;(2)设点P为棱CM上靠近点C的三等分点,求平面PBD与平面MAD所成的二面角的正弦值.10.如图,四棱锥P ABCD△是边长为2的等边-的底面为矩形,平面PCD⊥平面ABCD,PCD三角形,BC=,点E为CD的中点,点M为PE上一点(与点,P E不重合).(1)证明:AM BD⊥.(2)当AM为何值时,直线AM与平面BDM所成的角最大?答案以及解析1.答案:(1)见解析解析:(1)证明:取BC 的中点O ,连接,,AO DO AD .ABC ∴△是正三角形,OA BC ∴⊥.∵平面ABC ⊥平面BCD ,平面ABC I 平面BCD BC =,OA ∴⊥平面BCD .OD ⊂Q 平面BCD ,AO OD ∴⊥.在Rt AOD △中,2sin 60AO DO ===o ,AD ∴==.又AE =,ADE ∴△为等腰三角形.P Q 是DE 的中点,AP DE ∴⊥.DE ⊥Q 平面BCD ,//,//,AO DE AP AO AP OD ∴∴⊥∴.OD ⊂Q 平面,BCD AP ⊄平面BCD ,//AP ∴平面BCD .(2)由(1)知,,////OA DP AP OD ,∴四边形APDO 为平行四边形,PD OA ∴==,DE ∴=.以点O 为坐标原点,以,,OD OC OA uuu r uuu r uu r的方向分别为x 轴、y 轴、z 轴的正方向,建立如图的空间直角坐标系O xyz -,则(0,1,0)A B-,(0,1,0), C E,(0,1,BA AE AC∴===-uu r uu u r uuu r.设平面ABE的法向量为(,,)x y z=m,则0,0,BAAE⎧⋅=⎪⎨⋅=⎪⎩uu ruu u rmm即0,0.y⎧=⎪+=令y=,则1,1x z==-,1)∴=-m.设平面ACE的法向量为(,,)a b c=n,则0,0,AEAC⎧⋅=⎪⎨⋅=⎪⎩uu u ruuu rnn即0,0.b+==⎪⎩令1a=-,则1b c==,(∴=-n.1cos,||||5⋅∴==m nm nm n.sin,∴=m n∴二面角B AE C--的正弦值为265.2.答案:(1(2解析:(1)设点A到平面1A BC的距离为h,因为直三棱柱111ABC A B C-的体积为4,所以11111114333A A BC ABC ABC ABC V S AA V --=⨯==△,又1A BC △的面积为11114333A A BC A BC V S h -==⨯=△,所以h =,即点A 到平面1A BC.(2)取1A B 的中点E ,连接AE ,则1AE A B ⊥,因为平面1A BC ⊥平面11ABB A ,平面1A BC 平面111ABB A A B =,所以AE ⊥平面1A BC ,所以AE BC ⊥,又1AA ⊥平面ABC ,所以1AA BC ⊥,因为1AA AE A = ,所以BC ⊥平面11ABB A ,所以BC AB ⊥.以B 为坐标原点,分别以BC,BA,1BB的方向为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系B xyz -,由(1)知,AE =12AA AB ==,1A B =,因为1A BC △的面积为112A B BC =⨯⨯,所以2BC =,所以(0,2,0)A ,(0,0,0)B ,(2,0,0)C ,1(0,2,2)A ,(1,1,1)D ,(0,1,1)E ,则(1,1,1)BD = ,(0,2,0)BA =,设平面ABD 的法向量为(,,)x y z =n ,则0,0,BD BA ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x y z y ++=⎧⎨=⎩令1x =,得(1,0,1)=-n ,又平面BDC 的一个法向量为(0,1,1)AE =-,所以1cos ,2||||AE AE AE ⋅〈〉==-⋅nn n ,设二面角A BD C --的平面角为θ,则sin θ==,所以二面角A BD C --的正弦值为32.3.答案:(1)见解析(2)7⎣⎦解析:(1)如图,取AC 的中点M ,连接DM ,BM ,在等腰梯形11ACC A 中,D ,M 分别为11A C ,AC 的中点,AC DM ∴⊥.在正三角形ABC 中,M 为AC 的中点,AC BM ∴⊥.DM BM M ⋂= ,DM ,BM ⊂平面BDM ,AC ∴⊥平面BDM .又BD ⊂平面BDM ,AC BD ∴⊥.(2)DM AC ⊥ ,BM AC ⊥,DMB ∴∠为二面角1A AC B --的平面角,即DMB θ∠=.AC ⊥ 平面BDM ,∴在平面BDM 内作Mz BM ⊥,以M 为坐标原点,以MA ,MB ,Mz的方向分别为x ,y ,z 轴正方向,建立如图所示空间直角坐标系,则(1,0,0)A,B,(1,0,0)C-,22Dθθ⎛⎫⎪⎪⎝⎭,11222Cθθ⎛⎫- ⎪⎪⎝⎭,112Aθθ⎛⎫⎪⎪⎝⎭,则CB=,1133222CCθθ⎛⎫= ⎪⎪⎝⎭.设平面11BB C C的法向量为(,,)x y z=n,则有10,0,CBCC⎧⋅=⎪⎨⋅=⎪⎩nn即0,1cos0,222xx y zθθ⎧+=⎪⎨+⋅+⋅=⎪⎩令x=1y=,1cossinzθθ-=,则1cossinθθ-⎛⎫= ⎪⎝⎭n.设直线1AA与平面11BB C C所成角为α,又1133222AAθθ⎛⎫=-⎪⎪⎝⎭,1sin cos,AAα∴===n.π2π,33θ⎡⎤∈⎢⎥⎣⎦,11cos,22θ⎡⎤∴∈-⎢⎥⎣⎦,sin713α∴∈⎣⎦.4.答案:(1)存在,2λ=.(2)余弦值为17.解析:(1)取11A D的中点P,连接CP交1BD于点M,点M即为所求.证明:连接PN,因为N是AD的中点,P是11A D的中点,所以1//PN AA,又PN⊂平面MNC,1AA⊂/平面MNC,所以直线1//AA平面MNC.因为11//,//A D AD AD BC ,所以1// PD BC .所以112BM CBMD PD λ===.(2)连接AC .由(1)知1//AA PN .又1AA ⊥平面ABCD ,所以PN ⊥平面ABCD .因为60ADC ABC ∠=∠=︒,四边形ABCD 是菱形,所以ADC △为正三角形,所以NC AD ⊥.以N 为坐标原点,NC ,ND ,NP 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系N xyz -.又14,2AA AB ==,所以1NC ND ==,所以点1(0,0,0),(0,1,0),(0,1,4)N C D D ,则111(0,1,4),1,4),(0,0,4)ND D C DD ==--=uuur uuu r uuu u r.设平面1ND C 的法向量()111,,x y z =m ,则110,0,ND D C ⎧⋅=⎪⎨⋅=⎪⎩m m uuur uuu r即1111140,40,y z y z +=⎧⎪--=令11z =,得(0,4,1)=-m .设平面1CDD 的法向量()222,,x y z =n ,则110,0,DD D C ⎧⋅=⎪⎨⋅=⎪⎩n n uuu u ruuu r即222240,40,z y z =⎧⎪--=令21x =,得=n ,所以cos ,||||17⋅〈〉===⋅m n m n m n ,由图易得二面角1N CD D --为锐角,所以二面角1N CD D --的余弦值为25117.5.答案:(1)见解析(2)17-解析:(1)连接1AB 交1A B 于点 Q ,连接OQ ,易知 Q 为1AB 的中点,O 为AC 的中点,∴在1AB C V 中,112OQ B C P,OQ ⊂Q 平面11,A BD B C ⊂/平面1A BD ,1B C ∴P 平面1A BD .(2)连接1,A O AO ⊥Q 平面11,A BD AO A O ∴⊥,11A B A D =Q 且O 为BD 的中点,1A O BD ∴⊥,,AO BD ⊂Q 平面ABCD 且AO BD O ⋂=,1A O ∴⊥平面ABCD .如图,以O 为坐标原点,1,,OA OB OA 所在直线分别为,,x y z 轴,建立空间直角坐标系O xyz -.易得1(0,1,0),(0,1,0),(0,0,1)A B D A -,1((AA AB ∴==uuu r uu u r,设平面1A AB 的法向量为(,,)x y z =n ,则10,0,AA AB ⎧⋅=⎪⎨⋅=⎪⎩n n uuu r uu ur 0,0,z y ⎧+=⎪∴⎨+=⎪⎩令1x =,得y z ==,∴=n .同理可得平面1A AD的一个法向量为(1,=m ,1cos ,||||7⋅∴〈〉==m n m n m n ,结合图形知,二面角1B AA D --为钝二面角,∴二面角1B AA D --的余弦值为17-.6.答案:(1)见解析.(2)见解析.解析:(1)因为底面ABCD 是正方形,所以//CD AB .又因为AB ⊂/平面,PCD CD ⊂平面PCD ,所以//AB 平面PCD .又平面PCD ⋂平面MAB l =,所以//AB l .又因为//CD AB ,所以//CD l .(2)由题易知AD ,AB ,AP 两两垂直.以A 为坐标原点,AD 为x 轴,AB 为y 轴,AP 为z 轴建立如图所示的空间直角坐标系,则(0,0,0),(0,2,0),(2,2,0),(2,0,0),(0,0,2)A B C D P ,设(01)PM PC λλ=≤≤uuu ruu u r,则(2,2,22)M λλλ-+,则(2,2,22),(0,2,0),(2,0,0)AM AB AD λλλ=-+==uuu r uu u r uuu r.设平面AMB 的法向量为()111,,x y z =m ,则00AM AB ⎧⋅=⎪⎨⋅=⎪⎩m m uuu ruu u r,即111122(22)020x y z y λλλ++-+=⎧⎨=⎩,令11x =,则1,0,1λλ⎛⎫= ⎪-⎝⎭m .设平面AMD 的法向量为()222,,x y z =n ,则00AM AD ⎧⋅=⎪⎨⋅=⎪⎩n n uuu ruuu r,即222222(22)020x y z x λλλ++-+=⎧⎨=⎩,令21y =,则0,1,1λλ⎛⎫= ⎪-⎝⎭n ,因为二面角D AM B --的平面角为2π3,是钝角,所以222||111|cos ,|||||211λλλλλ⎛⎫⎛⎫ ⎪ ⎪⋅-⎝⎭〈〉==⎛⎫+ ⎪-⎝⎭m n m n m n ,解得12λ=,则(1,1,1)M ,所以M 为线段PC 的中点,点M 到平面PAD 的距离为1,所以112221323P AMD M APD V V --==⨯⨯⨯⨯=.7.答案:(1)证明过程见解析.(2)解析:(1)如图,取AD 的中点O ,连接OB ,OF ,则1OA OD BC CD ====.因为//,BC AD BC CD ⊥,所以CD AD ⊥,所以四边形OBCD 是正方形,OB BC ⊥.因为四边形BCEF 是矩形,所以BC BF ⊥.因为OB BF B ⋂=,所以BC ⊥平面OBF ,又OF ⊂平面OBF ,所以BC OF ⊥,所以AD OF ⊥.因为,,FA FB OA OB OF OF ===,所以OAF OBF ≅△△.因为OA OF ⊥,所以OB OF ⊥,所以CD OF ⊥.又,CD AD OF AD O ⊥⋂=,所以CD ⊥平面ADEF ,又AF ⊂平面ADEF ,所以CD AF ⊥.(2)以O 为坐标原点,OA ,OB ,OF 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(1,0,0),(0,1,0),(1,1,0),(1,0,0),(1,0,A B C D E F ---.所以(1,1,0),(1,0,(0,1,BD FA EC =--==uu u r uu r uu u r,由2CM ME =,得1130,,333EM EC ⎛⎫==- ⎪ ⎪⎝⎭uuu r uu u r ,所以1231,,33M ⎛- ⎝⎭,所以21,,33BM ⎛⎫=-- ⎪ ⎪⎝⎭uuu r .设平面MBD 的法向量(,,)x y z =m ,则00BD BM ⎧⋅=⎪⎨⋅=⎪⎩m m uu u r uuu r ,所以0223033x y x y z --=⎧⎪⎨--+=⎪⎩,令3x =,则3332x y z =⎧⎪=-⎪⎨⎪=⎪⎩,所以3,⎛=- ⎝⎭m .设直线AF 与平面MBD 所成的角为θ,则3||2sin |cos ,|53||||2FA FA FA θ⋅=〈〉==m m m uu r uu r uu r.直线AF 与平面MBD所成角的正弦值为10.8.答案:(1)见解析.(2)体积为14.解析:(1)证明:如图,连接AC 交BE 于G ,连接FG .因为底面ABCD 是菱形,所以//,AD BC AD BC =.又E 为AD 的中点,所以12AE BC =,所以12AG AE GC BC ==.因为12PF FC =uu u r uu u r ,即12PF FC =,所以AG PF GC FC=,所以//PA FG .又FG ⊂平面BEF ,PA ⊂/平面BEF ,所以//PA 平面BEF .(2)在ABE △中,1||1,||,602AB AE BAE ==∠=︒,所以由余弦定理得2221113||||||2||||cos 601214224BE AE AB AE AB =+-⋅⋅-⨯⨯︒=+⨯=,即2BE =,所以222||||||AB AE BE =+,所以AE BE ⊥.如图,以E 为坐标原点,EA 所在直线为x 轴,EB 所在直线为y 轴,EP 所在直线为z 轴,建立空间直角坐标系.令||(0)PE a a =>,则13(0,0,0),,0,0,,(0,,)22E A B P a ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,所以10,,0,,0,22EB PA a ⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭uu r uu r .因为,,AE PE AE BE PE BE E ⊥⊥⋂=,所以AE ⊥平面PBE ,所以平面PBE 的一个法向量为(1,0,0)=m .设平面BEF 的法向量为(,,)x y z =n ,由EB ⊥n uur,可得0y =.因为,//FG PA FG ⊥n uu u r ,所以PA ⊥n uu r,即有1002x y az +⨯-=,令1z =,则2x a =,所以(2,0,1)a =n .由二面角P BE F --的平面角为30°,得||cos30||||⋅=︒=m n m n=,解得a 负值舍去),所以||PE =,所以1111||||||||13334P ABCD ABCD V S PE AD BE PE -=⨯=⨯⨯=⨯⨯四棱锥菱形.9.答案:(1)见解析.(2)正弦值为5.解析:如图,取AD 的中点N ,连接MN ,BN .因为MAD △是等边三角形,所以MN AD ⊥,且sin 60MN AM =︒=,在直角梯形ABCD 中,因为1,//,DN BC DN BC AD DC ==⊥,所以四边形BCDN 是矩形,所以BN AD ⊥,且BN CD ==所以2226BN MN BM +==,即BN MN ⊥,又AD MN N ⋂=,所以BN ⊥平面MAD .因为BN ⊂平面ABCD ,所以平面MAD ⊥平面ABCD .(2)由(1)知NA ,NB ,NM 两两互相垂直,以N 为坐标原点,直线NA 为x 轴、NB 为y 轴、NM 为z 轴建立如图所示的空间直角坐标系,根据题意,(0,0,0),(1,0,0),(1,(0,0,(1,0,0),N A B C M D DB --=uu u r,由P 是棱CM 的靠近点C的三等分点得,11233(1,0,0)(1,,33333BP BC CM ⎛⎫=+=-+=- ⎪ ⎪⎝⎭uu r uu u r uuu r ,设平面PBD 的一个法向量为(,,)x y z =n ,则0,0,BP DB ⎧⋅=⎪⎨⋅=⎪⎩n n uu r uu u r即2330,3330,x y x ⎧--+=⎪⎨⎪+=⎩令1y =,则1x z ==-,故平面BDP的一个法向量为(1)=-n .而平面MAD的一个法向量为NB =uu u r,设平面PBD 与平面MAD 所成的二面角的平面角为θ,则|||cos ||cos ,|5||||NB NB NB θ⋅=〈〉===n n n uu u ruu u r uu u r ,所以sin θ=,所以平面PBD 与平面MAD.10.答案:(1)见解析(2)30°解析:(1)证明:如图,连接AE ,交BD 于点F 因为四边形ABCD 为矩形,2,CD BC ==,点E 为CD 的中点,所以tan 2DE DAE AD ∠==,tan 2BC BDC CD ∠==,所以tan tan DAE BDC ∠=∠,则DAE BDC ∠=∠.因为90DAE AED ∠+∠=o ,所以90BDC AED ∠+∠=︒,所以90DFE ∠=︒,则BD AE ⊥.因为PCD V 是边长为2的等边三角形,点E 为CD 的中点,所以PE CD ⊥.因为平面PCD ⊥平面ABCD ,平面PCD I 平面ABCD CD =,所以PE ⊥平面ABCD .又BD ⊂平面ABCD ,所以PE BD ⊥.因为PE AE E =I ,所以BD ⊥平面APE .因为AM ⊂平面APE ,所以BD AM ⊥.(2)取AB 的中点H ,连接EH ,则EH CD ⊥.以E 为坐标原点,,,EH EC EP 所在的直线分别为x 轴、y 轴、z 轴建立如图的空间直角坐标系,由已知条件可知,1,0),(0,1,0),A D B --,PE =设(0,0,)(0M m m <<,则(),(2,0),(0,1,)AM m BD DM m ==-=uuu r uu u r uuu u r.设平面BDM 的一个法向量为(,,)x y z =n ,则0,0,BD DM ⎧⋅=⎪⎨⋅=⎪⎩uu u r uuu u r n n即20,0.y y mz ⎧-=⎪⎨+=⎪⎩令1z =,则,y m x =-=,所以,,1)m =-n .设直线AM 与平面BDM 所成的角为θ,则||sin |cos ,|||||AM AM AM θ⋅====uuur uuur uuur n nn 12≤=,当且仅当2233m m=,即1m =时,等号成立.uuu r.所以直线AM与平面BDM所成的角的最大值为30°,此时||2==AM AM。
高中数学立体几何小题100题(含答案与解析)

立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何简答题练习
1、正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ。
求证:PQ∥平面BCE.(用两种方法证明)
2、如图所示,P是平行四边形ABCD所在平面外一点,E、F分别在PA、BD上,且PE:EA=BF:FD,求证:EF∥平面PBC.
3、如图,E,F,G,H分别是正方体ABCD-A
1B
1
C
1
D
1
的棱BC,CC
1
,C
1
D
1
,AA
1
的中点。
求证:(1)EG∥平面BB
1D
1 D;
(2)平面BDF∥平面B
1D
1 H.
4、如图所示,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别为AB 、PC 的中点,平面PAD ∩平面PBC =l. (1)求证:l ∥BC ;
(2)MN 与平面PAD 是否平行?试证明你的结论。
5、如图,在四棱锥S-ABCD 中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA=SB ,点M 是SD 的中点,AN ⊥SC ,且交SC 于点N 。
(1)求证:SB ∥平面ACM ;
(2)求证:平面SAC ⊥平面AMN ; (3)求二面角D-AC-M 的余弦值。
6、如图,在四棱锥P-ABCD 中,底面ABCD 是边长为2的正方形,侧面PAD ⊥底面ABCD,且PA=PD=
2
2
AD,E 、F 分别为PC 、BD 的中点. 求证:(1) 求证:EF ∥平面PAD; (2) 求证:平面PAB ⊥平面PDC;
(3) 在线段AB 上是否存在点G,使得二面角C-PD-G 的余弦值为3
1
?说明理由.
7、如图,在四棱柱ABCD-A
1B
1
C
1
D
1
中,底面ABCD是等腰梯形,∠
DAB=60°,AB=2CD=2,M是线段AB的中点。
(1)求证:C
1M∥平面A
1
ADD
1
;
(2)若CD
1垂直于平面ABCD且CD
1
=3,求平面C
1
D
1
M和平面ABCD所成的角(锐角)
的余弦值。
8、如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点.
(1)证明:PA∥平面EDB;
(2)证明:BC⊥DE.
9、三棱柱ABC﹣A1B1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分别是AB,A1C的中点.
(Ⅰ)求证:MN||平面BCC1B1;
(Ⅰ)求证:平面AMN⊥平面A1B1C.
10、如图,在三棱锥P﹣ABC中,PA⊥PC,AB=PB,E,F分别是PA,AC的中点.求证:
(1)EF∥平面PBC;
(2)平面BEF⊥平面PAB.
11、如图所示,四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,点M,N分别是AB,PC的中点,且PA=AD
(1)求证:MN∥平面PAD
(2)求证:平面PMC⊥平面PCD.
12、如图,在直三棱柱ABC﹣A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.
(1)求证:B1C1∥平面A1DE;
(2)求证:平面A1DE⊥平面ACC1A1.
8、如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是∠DAB=60°且边长为a的菱形.△PAD为正三角形,其所在平面垂直于底面ABCD.若G为AD 边的中点,
求证:平面PBG⊥平面PAD;
9、如图所示,在四棱柱P-ABCD中,底面ABCD是边长为a菱形,且∠DAB=60°,侧面PAD为正三角形,其所在平面垂直于底面ABCD。
(1)若G为AD边的中点,求证:BG⊥平面PAD;
(2)求证:AD⊥PB;
(3)若E为BC的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,
并证明你的结论.
10、如图,AB为⊙O的直径,C为⊙O上一点,DA⊥平面ABC,AE⊥BD于E,AF ⊥CD于点F.求证:BD⊥平面AEF.。