高中数学必修2立体几何专题资料
高中数学 必修二-第一章 立体几何初步 知识点整理

底面为三角形、四边形、五边形„„的棱锥分别叫做三棱锥、四棱锥、五棱锥„„,
其中三棱锥又叫四面体。
4
必修二
正棱锥:如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心, 这样的棱锥叫做正棱锥。
正棱锥的性质: ①各侧棱相等,各侧面都是全等的等腰三角形; ②棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形,棱锥的高、侧棱和侧 棱在底面上的射影也组成一个直角三角形。 (4)棱台的结构特征 用一个平行于棱锥底面的平面去截棱 锥,底面与截面之间的部分叫做棱台。 原棱锥的底面和截面分别叫做棱台的 下底面和上底面;其它各面叫做棱台的侧 面;相邻侧面的公共边叫做棱台的侧棱; 底面与侧面的公共顶点叫做棱台的顶点; 当棱台的底面水平放置时,铅垂线与两底 面交点间的线段叫做棱台的高。 由正棱锥截得的棱台叫做正棱台。正棱台的性质: ①各侧棱相等,侧面是全等的等腰梯形;②两底面以及平行于底面的截面是相似多边 形;③两底面中心连线、相应的边心距和斜高组成一个直角梯形;④两底面中心连线、侧 棱和两底面外接圆相应半径组成一个直角梯形;⑤正棱台的上下底面中心的连线是棱台的 一条高;⑥正四棱台的对角面是等腰梯形。
8
必修二
②在已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x′轴或 y′ 轴的线段。
③在已知图形中平行于 x 轴的线段,在直观图中保持原长度不变,平行于 y 轴的线段, 长度变为原来的一半。
用斜二测法画直观图,关键是掌握水平放置的平面图形的直观图的画法,而画水平放 置的平面图形的关键是确定多边形的顶点。因为多边形顶点的位置一旦确定,依次连接这 些顶点就可画出多边形。
在一束平行光线照射下形成的投影,叫做平行投影。平行投影的投影线是平行的。在 平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。
(完整版)高中数学必修2立体几何知识点.docx

高中数学必修2知识点第一章空间几何体1.1 柱、锥、台、球的结构特征(略)棱柱:棱锥:棱台:圆柱:圆锥:圆台:球:1.2 空间几何体的三视图和直观图1三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下2画三视图的原则:长对齐、高对齐、宽相等3直观图:斜二测画法4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于 y 轴的线长度变半,平行于x,z 轴的线长度不变;(3).画法要写好。
5用斜二测画法画出长方体的步骤:(1)画轴( 2)画底面( 3)画侧棱( 4)成图1.3 空间几何体的表面积与体积(一)空间几何体的表面积1 棱柱、棱锥的表面积:各个面面积之和2圆柱的表面积4圆台的表面积S 2 rl2r 2 3 圆锥的表面积S rlr 2 S rl r 2Rl R2 5 球的表面积S 4R26扇形的面积公式S扇形n R21lr (其中l表示弧长,r表示半径)3602(二)空间几何体的体积1柱体的体积 V S底h 2 锥体的体积1S底h V33台体的体积V1S上h4 球体的体积V4R3(下下3S上 S S )3第二章直线与平面的位置关系2.1 空间点、直线、平面之间的位置关系2.1.11平面含义:平面是无限延展的 , 无大小,无厚薄。
2平面的画法及表示450,且横边画成邻边的(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成 2 倍长(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面 ABCD等。
3三个公理:(1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内A l符号表示为B ll AB公理 1 作用:判断直线是否在平面内(2)公理 2:过不在一条直线上的三点,有且只有一个平面。
符号表示为: A、B、C 三点不共线有且只有一个平面α,使A∈α、 B∈α、 C∈α。
高一数学必修2立体几何知识点详细总结

立体几何一、立体几何网络图:(1)线线平行的判断:⑴平行于同一直线的两直线平行。
⑶如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
⑹如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
⑿垂直于同一平面的两直线平行。
(2)线线垂直的判断:⑺在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
⑻在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。
⑽若一直线垂直于一平面,这条直线垂直于平面内所有直线。
补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。
(3)线面平行的判断:⑵如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
⑸两个平面平行,其中一个平面内的直线必平行于另一个平面。
(4)线面垂直的判断:⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。
⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。
⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。
(5)面面平行的判断:⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。
⒀垂直于同一条直线的两个平面平行。
(6)面面垂直的判断:⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。
二、其他定理:(1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。
(完整word版)高中数学必修二立体几何知识点总结

第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积 rh S π2=圆柱侧 ()l r r S +=π2圆柱表rl S π=圆锥侧面积 ()l r r S +=π圆锥表 lR r S π)(+=圆台侧面积 ()22R Rl rl r S +++=π圆台表柱体、锥体、台体的体积公式 V Sh =柱13V Sh =锥'1()3V S S h =台 2V Sh r h π==圆柱h r V 231π=圆锥 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.11 2 三个公理:(1符号表示为A ∈LB ∈L => l α⊂ A ∈αB ∈α(2符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理(3公理 L A · α C · B · A · α2.1.2 空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。
2 公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
(完整版)必修2立体几何复习(知识点+经典习题)(可编辑修改word版)

必修二立体几何知识点与复习题一、判定两线平行的方法1、平行于同一直线的两条直线互相平行2、垂直于同一平面的两条直线互相平行3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行1、定义:两面成直二面角,则两面垂直2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面八、面面垂直的性质1、二面角的平面角为90︒2、在一个平面内垂直于交线的直线必垂直于另一个平面3、相交平面同垂直于第三个平面,则交线垂直于第三个平面九、各种角的范围4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行5、在同一平面内的两条直线,可依据平面几何的定理证明二、判定线面平行的方法1、据定义:如果一条直线和一个平面没有公共点2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行3、两面平行,则其中一个平面内的直线必平行于另一个平面1、异面直线所成的角的取值范围是:0︒<≤ 90︒2、直线与平面所成的角的取值范围是:0︒≤≤90︒3、斜线与平面所成的角的取值范围是:0︒<≤90︒(0︒,90︒][0︒,90︒](0︒,90︒]4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面三、判定面面平行的方法1、定义:没有公共点2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行3 垂直于同一直线的两个平面平行4、平行于同一平面的两个平面平行四、面面平行的性质1、两平行平面没有公共点2、两平面平行,则一个平面上的任一直线平行于另一平面3、两平行平面被第三个平面所截,则两交线平行4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面五、判定线面垂直的方法1、如果一条直线和一个平面内的两条相交线垂直,则线面垂直2、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面3、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面4、二面角的大小用它的平面角来度量;取值范围是:0︒<≤180︒十、三角形的心1、内心:内切圆的圆心,角平分线的交点2、外心:外接圆的圆心,垂直平分线的交点3、重心:中线的交点4、垂心:高的交点考点一,几何体的概念与性质【基础训练】1.判定下面的说法是否正确:(1)有两个面互相平行,其余各个面都是平行四边形的几何体叫棱柱.(2)有两个面平行,其余各面为梯形的几何体叫棱台.2.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形一定是平行四边形。
(完整版)高中数学必修二立体几何知识点梳理.docx

立体几何初步1、柱、锥、台、球的结构特征( 1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱ABCDE A' B' C ' D ' E '或用对角线的端点字母,如五棱柱AD '几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
( 2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥P A' B' C ' D ' E '几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
( 3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台P A' B' C ' D ' E '几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点( 4)圆柱:定义:以矩形的一边所在的直线为轴旋转, 其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
( 5)圆锥:定义:以直角三角形的一条直角边为旋转轴, 旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
高中数学必修2立体几何专题

专题一浅析中心投影与平行投影中心投影与平行投影是画空间几何体的三视图和直观图的基础,弄清楚中心投影与平行投影能使我们更好地掌握三视图和直观图,平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.下表简单归纳了中心投影与平行投影,结合实例让我们进一步了解平行投影和中心投影.投影定义特征分类光由一点向外散射形成投影线交于一点中心投影的投影在一束平行光线照射下投影线互相平行平行投影正投影和斜投影形成的投影例1 如何才能使如图所示的两棵树在同一时刻的影长分别与它们的原长相等?解析:方法一:可在同一方向上画出与原长相等的影长,分别连结它们影子顶点与树的顶点,此时为平行投影.方法二:可在两树外侧不同方向上画出与原长相等的影子,连结影子顶点与树的顶点相交于P,此时为中心投影,P 为光源位置.点评:这是一道平行投影和中心投影相结合的题目,答案不唯一. 连结物体顶点与其影子顶点,如果得到的是平行线,即为平行投影;如果得到的是相交线,则为中心投影,这是判断平行投影与中心投影的方法,也是确定中心投影光源位置的基本作法,还应注意,若中心投影光源在两树同侧时,图中的两棵树的影子不可能与原长相等.例2 如图所示,点O 为正方体ABCD -A′B′C′D′的中心,点E 为面B′BCC′的中心,点F 为B′C′的中点,则空间四边形D′OEF 在该正方体的面上的正投影可能是________( 填出所有可能的序号).1解析:在下底面ABCD 上的投影为③,在右侧面B′BCC′上的投影为②,在后侧面D′DCC′上的投影为①.答案:①②③点评:画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得此图形在该平面上的投影.专题二不规则几何体体积的求法当所给几何体形状不规则时,无法直接利用体积公式求解,可尝试用以下几种常用的方法求出原几何体的体积,下面逐一介绍,供同学们参考.一、等积转换法当所给几何体的体积不能直接套用公式或套用公式时某一量(底面积或高)不易求出时,可以转换一下几何体中有关元素的相对位置进行计算求解,该方法尤其适用于求三棱锥的体积.例1 在边长为 a 的正方体ABCD—A1B1C1D1 中,M,N, P分别是棱A1B1,A1D1,A1A 上的点,且满足A1M = 12A1B1,A1N=2 ND1,A1P= 34A1A(如图1),试求三棱锥A1—MNP 的体积.分析:若用公式V= 11—MNP 的体积,则3 Sh 直接计算三棱锥 A需要求出△MNP 的面积和该三棱锥的高,这两者显然都不易求出,但若将三棱锥A1—MNP 的顶点和底面转换一下,变为求三棱锥P—A1MN 的体积,便能很容易的求出其高和底面△A1MN 的面积,从而代入公式求解.解:V A1-MNP =V A1—MNP = 13·S△A1MN ·h =131×·A1M1·A1N·A1P=2131××21 2a·2 3a·34a=1243.a评注:转换顶点和底面是求三棱锥体积的一种常用方法,也是以后学习求点到平面距离的一个理论依据.二、分割法分割法也是体积计算中的一种常用方法,在求一些不规则的几何体的体积以及求两个几何体的体积之比时经常要用到分割法.例2 如图2,在三棱柱ABC—A1B1C1 中,E, F 分别为AB, AC 的中点,平面EB1C1F将三棱柱分成两部分,求这两部分的体积之比.分析:截面EB1C1F 将三棱柱分成两部分,一部分是三棱台AEF—A1B1C1;另一部分是一个不规则几何体,其体积可以利用棱柱的体积减去棱台的体积求得.解:设棱柱的底面积为S,高为h,其体积V=Sh.2则三角形 AEF 的面积为1 4S .1 3 由于 V AEF-A1B 1C 1= s ·h ·( 4 s +S+ 2 )= 7 12Sh,则剩余不规则几何体的体积为 V ′=V - V AEF-A 1B 1C 1=Sh- 7 12 Sh = 5 12 Sh , 所以两部分的体积之比为V AEF- A 1B 1C 1:V ′=7:5.评注: 在求一个几何体被分成的两部分体积之比时, 若有一部分为不规则几何体,则可用整个几何体的体积减去规则几何体的体积求出其体积,再进行计算.三、补形法某些空间几何体是某一个几何体的一部分, 在解题时, 把这个几何体通过“补形”补成 完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积问题,这是一种重要的解题策略 —— 补形法.常见的补形法有对称补形、联系补形与还原补形 . 对于还原补形,主要涉及台体中“还台为锥”问题.例 3 已知某几何体的三视图如图所示,则该几何体的体积为______.分析: 由三视图画出直观图,补一个大小相同的几何体,构成一个圆柱即可求其体积 .解: 由三视图可知,此几何体是底面半径为 1,高为 4 的圆柱被从母线的中点处截去了圆柱的1 32,根据对称性,可补全此圆柱如图,故体积 V =×4=3π.44× π× 1评注:“对称”是数学中的一种重要关系,在解决空间几何体中的问题时善于发现对称 关系对空间想象能力的提高很有帮助.专题三处理球的内切与外接问题与球有关的组合体问题, 一种是内切, 一种是外接。
高中数学必修二立体几何笔记整理

高中数学必修二立体几何笔记整理一、空间几何体。
1. 棱柱。
- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的多面体。
- 分类:- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。
- 特殊的四棱柱:- 平行六面体:底面是平行四边形的四棱柱。
- 直平行六面体:侧棱垂直于底面的平行六面体。
- 长方体:底面是矩形的直平行六面体。
- 正方体:棱长都相等的长方体。
- 性质:- 侧棱都平行且相等。
- 两个底面与平行于底面的截面是全等的多边形。
- 过不相邻的两条侧棱的截面是平行四边形。
2. 棱锥。
- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形的多面体。
- 分类:- 按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。
- 正棱锥:底面是正多边形,并且顶点在底面的射影是底面中心的棱锥。
- 性质:- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。
3. 棱台。
- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
- 分类:- 按底面多边形的边数分为三棱台、四棱台、五棱台等。
- 性质:- 棱台的各侧棱延长后交于一点。
- 棱台的上下底面是相似多边形。
4. 圆柱。
- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
- 性质:- 圆柱的轴截面是全等的矩形。
- 圆柱的侧面展开图是矩形,其长为底面圆的周长,宽为圆柱的高。
5. 圆锥。
- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体。
- 性质:- 圆锥的轴截面是等腰三角形。
- 圆锥的侧面展开图是扇形,扇形的弧长等于底面圆的周长,半径等于圆锥的母线长。
6. 圆台。
- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
- 性质:- 圆台的轴截面是等腰梯形。
- 圆台的侧面展开图是扇环。
7. 球。
- 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一浅析中心投影与平行投影中心投影与平行投影是画空间几何体的三视图和直观图的基础,弄清楚中心投影与平行投影能使我们更好地掌握三视图和直观图,平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.下表简单归纳了中心投影与平行投影,结合实例让我们进一步了解平行投影和中心投影.例1如何才能使如图所示的两棵树在同一时刻的影长分别与它们的原长相等?解析:方法一:可在同一方向上画出与原长相等的影长,分别连结它们影子顶点与树的顶点,此时为平行投影.方法二:可在两树外侧不同方向上画出与原长相等的影子,连结影子顶点与树的顶点相交于P,此时为中心投影,P为光源位置.点评:这是一道平行投影和中心投影相结合的题目,答案不唯一.连结物体顶点与其影子顶点,如果得到的是平行线,即为平行投影;如果得到的是相交线,则为中心投影,这是判断平行投影与中心投影的方法,也是确定中心投影光源位置的基本作法,还应注意,若中心投影光源在两树同侧时,图中的两棵树的影子不可能与原长相等.例2 如图所示,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是________(填出所有可能的序号).解析:在下底面ABCD上的投影为③,在右侧面B′BCC′上的投影为②,在后侧面D′DCC′上的投影为①.答案:①②③点评:画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得此图形在该平面上的投影.专题二不规则几何体体积的求法当所给几何体形状不规则时,无法直接利用体积公式求解,可尝试用以下几种常用的方法求出原几何体的体积,下面逐一介绍,供同学们参考.一、等积转换法当所给几何体的体积不能直接套用公式或套用公式时某一量(底面积或高)不易求出时,可以转换一下几何体中有关元素的相对位置进行计算求解,该方法尤其适用于求三棱锥的体积.例1在边长为a的正方体ABCD—A1B1C1D1中,M,N,P分别是棱A1B1,A1D1,A1A上的点,且满足A1M = 12A1B1,A1N=2ND1,A1P= 34A1A(如图1),试求三棱锥A1—MNP的体积.分析:若用公式V= 13Sh直接计算三棱锥A1—MNP的体积,则需要求出△MNP的面积和该三棱锥的高,这两者显然都不易求出,但若将三棱锥A1—MNP的顶点和底面转换一下,变为求三棱锥P—A1MN的体积,便能很容易的求出其高和底面△A1MN的面积,从而代入公式求解.解:V A1-MNP =V A1—MNP =13·S△A1MN·h =13×12·A1M1·A1N·A1P=13×12×12a·23a·34a=124a3.评注:转换顶点和底面是求三棱锥体积的一种常用方法,也是以后学习求点到平面距离的一个理论依据.二、分割法分割法也是体积计算中的一种常用方法,在求一些不规则的几何体的体积以及求两个几何体的体积之比时经常要用到分割法.例2如图2,在三棱柱ABC—A1B1C1中,E,F分别为AB,AC的中点,平面EB1C1F将三棱柱分成两部分,求这两部分的体积之比.分析:截面EB1C1F将三棱柱分成两部分,一部分是三棱台AEF—A1B1C1;另一部分是一个不规则几何体,其体积可以利用棱柱的体积减去棱台的体积求得.解:设棱柱的底面积为S,高为h,其体积V=Sh.则三角形AEF的面积为1 4S.由于V AEF-A1B1C1=13·h·(s4+S+s2)=712Sh,则剩余不规则几何体的体积为V ́́′=V-V AEF-A1B1C1=Sh -712Sh =512Sh,所以两部分的体积之比为V AEF-A1B1C1:V ́́′=7:5.评注:在求一个几何体被分成的两部分体积之比时,若有一部分为不规则几何体,则可用整个几何体的体积减去规则几何体的体积求出其体积,再进行计算.三、补形法某些空间几何体是某一个几何体的一部分,在解题时,把这个几何体通过“补形”补成完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积问题,这是一种重要的解题策略——补形法.常见的补形法有对称补形、联系补形与还原补形.对于还原补形,主要涉及台体中“还台为锥”问题.例3 已知某几何体的三视图如图所示,则该几何体的体积为______.分析:由三视图画出直观图,补一个大小相同的几何体,构成一个圆柱即可求其体积.解:由三视图可知,此几何体是底面半径为1,高为4的圆柱被从母线的中点处截去了圆柱的14,根据对称性,可补全此圆柱如图,故体积V =34×π×12×4=3π.评注:“对称”是数学中的一种重要关系,在解决空间几何体中的问题时善于发现对称关系对空间想象能力的提高很有帮助.专题三 处理球的内切与外接问题与球有关的组合体问题,一种是内切,一种是外接。
作为这种特殊的位置关系在高考中也是考查的重点,但同学们又因缺乏较强的空间想象能力而感到模糊。
解决这类题目时要认真分析图形,明确切点和接点的位置及球心的位置,画好截面图可使这类问题迎刃而解。
一、棱锥的内切、外接球问题例1 已知正四面体的棱长为a ,外接球半径为R ,内接球半径为r ,则R 和r 的关系为_______.解:如图1所示,设点O 是内切球的球心,由图形的对称性知,点O 也是外接球的球心.设内切球半径为r ,外接球半径为R .正四面体的表面积S 表=4×3 4a 2= 3 a 2. 体积V A -BCD = 13 ×3 4 a 2×AE = 3 12 a 2AB 2-BE 2= 3 12a 2a 2-13 a 2 = 212a 3. ∵13 S 表·r =V A -BCD , ∴r = 3V A -BCD S 表 =3×212 a 33 a 2= 612 a .在Rt △BEO 中,BO 2 =BE 2+EO 2,即R 2=( 3 3 a )2+r 2,解得R = 64 a .∴R=3r .图1点评:由正四面体本身的对称性可知,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即内切球的半径为h 4 ( h为正四面体的高),且外接球的半径3h4 ,从而可以通过截面图中Rt △OBE 建立棱长与半径之间的关系。
二、球与棱柱的组合体问题1.正方体的内切球:球与正方体的每个面都相切,切点为每个面的中心,显然球心为正方体的中心.设正方体的棱长为a ,球半径为R .如图2,截面图为正方形EFGH 的内切圆,得R =a2;2.与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图3作截面图,圆O 为正方形EFGH 的外接圆,易得R = 22a ;3.正方体的外接球:正方体的八个顶点都在球面上,如图4,以对角面AC 1作截面图得,圆O 为矩形AA 1C 1C 的外接圆,易得R =A 1O =32a .例2 在球面上有四个点P ,A ,B ,C .如果PA ,PB ,PC 两两互相垂直,且PA =PB =PC =a ,那么这个球的表面积是______.解:由已知可得PA ,PB ,PC 实际上就是球内接正方体中交于一点的三条棱,正方体的对角线长就是球的直径,容易求得对角线的长为 3 a ,∴S 表面积=4π( 32a )2 =3πa 2.点评:求解球与多面体的组合问题时,其关键是确定球心的位置,通过作出辅助线或辅助平面确定球的半径和多面体中各个几何元素的关系,达到求解解题需要的几何量的目的. 三.构造直三角形,巧解正棱柱与球的组合问题正棱柱的外接球,其球心定在上下底面中心连线的中点处,由球心、底面中心及底面一顶点构成的直角三角形便可得球半径。
例3 已知三棱柱ABC-A 1B 1C 1的六个顶点在球O 1上,又知球O 2与此正三棱柱的5个面都相切,求球O 1与球O 2的表面积之比与体积之比.解:如图5,由题意得两球心O 1,O 2是重合的,过正三棱柱的一条侧棱 AA 1和它们的球心作截面,设正三棱柱图2图3图4底面边长为a,则R2=36a,正三棱柱的高为h=2R2=33a.在Rt△A1D1O中,由勾股定理得R12 =(33a)2+R22 =(33a)2+(36a)2 =512a2,∴R1=512a,∴S1:S2=R12 :R22=5:1,V1:V2=5 5 :1.点评:内切和外接等有关问题,首先要弄清几何体之间的相互关系,主要是指特殊的点、线、面之间关系,然后把相关的元素放到这些关系中解决问题,作出合适的截面图来确定有关元素间的数量关系,是解决这类问题的最佳途径。
专题四直线、平面平行的判定及其性质错解分析同学们在学习直线、平面平行的判定及其性质时,经常遇到困难,下面就同学们在解题中容易出现的错误分析如下,供大家参考.一、未理解平行的意义例1给出下面说法:(1)如果一条直线和一个平面平行,那么它就和这个平面内的任何直线平行;(2)如果一条直线和另一条直线平行,那么它就和经过另一条直线的任何平面平行;(3)平行于同一个平面的两条直线平行.其中正确的个数是()A .0 B.1 C.2 D.3错解:D分析:对直线和平面平行的定义、判定和性质不理解,造成错误.(1)正方体的上底面的一条棱平行于下底面,显然下底面存在直线与这条棱是异面直线;(2)存在平面同时经过这两条直线;(3)平行于同一平面的两条直线可能平行、异面、相交.正解:A二、思维定势例2已知直线a 、b,有a∥b,b∥平面α,a ⊄α.求证:a∥平面α.错解: 如图,在α内任取一点A,在α内过A点作直线c,使c∥b.a b因为a ∥b ,所以a ∥c .又a ⊄α,c ⊂α,所以a ∥平面α.分析:错解中“在α内任取一点A ,在α内过A 点作直线c ,使c ∥b ”这一作图不符合立体几何作图的要求,错因是想当然地把平面几何的有关知识迁移到立体几何中造成的.正解: 如图,过b 作平面β交平面于直线c .由b ∥平面α,b ⊂β,α∩β=c ,得b ∥c . 又因为a ∥b ,所以a ∥c . 而a ⊄α,c ⊂α,所以a ∥平面α. 三、未平行的性质例3 已知AB ,CD 为夹在两个平行平面α,β之间的异面线段,M ,N 分别为AB ,CD 的中点.求证:MN ∥α,MN ∥.β.错解:如图,因为α∥β,所以AC ∥BD 。
又M ,N 分别为AB ,CD 的中点, 所以MN ∥BD ,MN ∥AC 。