二氧化碳吸收与解吸实验说明书..
CO2吸收-解吸试验资料

附件6:CO 2吸收-解吸实验资料一、实验流程图本实验是在填料塔中用水吸收空气和CO 2混合气中的CO 2,和用空气解吸水中的CO 2以求取填料塔的吸收传质系数和解吸系数。
图1. 吸收与解吸实验流程图阀门:V A01—吸收液流量调节阀,V A02—吸收塔空气流量调节阀,V A03—解吸塔空气流量调节阀,V A04—解吸液流量调节阀,V A05—吸收塔CO 2流量调节阀,V A06—风机旁路调节阀,V A07—吸收泵放净阀,V A08—水箱放净阀,V A09—解吸液回流阀,V A10—吸收泵回流阀,AI01—吸收塔进气采样阀, AI02 —吸收塔排气采样阀, AI03—解吸塔进气采样阀, AI04—解吸塔排气采样阀,AI05—吸收塔塔顶液体采样阀,AI06—解吸塔塔顶液体采样阀,AI07—解吸塔塔底液体采样阀,V A11—吸收塔放净阀,V A12—解吸塔放净阀,V A13—缓冲罐放净阀风压6kPa,风量55m3/hCO2钢瓶温度:TI01—液相温度流量:FI01—吸收塔空气流量,FI02—吸收液流量,FI03—解吸塔空气流量,FI04—解吸液流量,FI05—CO2气体流量图2. CO2吸收‐解吸实验装置实物照片二、实验设备结构参数吸收塔:塔内径100 mm;填料层高550 mm;填料为陶瓷拉西环;丝网除沫解吸塔:塔内径100 mm;填料层高550 mm;填料为φ6不锈钢θ环;丝网除沫风机:旋涡气泵,6kPa,55m3/h;吸收泵:扬程12m,流量14L/min;解吸泵:扬程14m,流量3.6m3/h;饱和罐:PE,50L温度:Pt100传感器流量计:水涡轮流量计:200~1000L/h;气相质量流量计:0~1.2 m3/h;气相转子流量计:1~4 L/min;三、实验注意事项1.在实验中,两个水流量计的读数要尽量保持一致;2.测取液泛数据点时,等待时间不要过长,避免液泛过于强烈导致液体喷出塔外;3.调节解吸塔的空气流量时要求在不液泛的情况下,尽量维持在较大的气量;4.泵是机械密封,必须在泵有水时使用,若泵内无水空转,易造成机械密封件升温损坏而导致密封不严,严禁泵内无水空转;5.液相采样和滴定时,要保证规范操作,以免影响测定和数据分析;6.实验结束时,注意按顺序关闭风机、水泵和阀门等。
二氧化碳吸收与解吸

实验四二氧化碳吸收与解吸、实验目的1 •了解填料吸收塔的结构和流体力学性能。
2 •学习填料吸收塔传质能力和传质效率的测定方法。
、设备主要技术数据及附件1. 设备参数:⑴ 风机:XGB-12 型,550W;⑵ 填料塔:玻璃管内径 D = 0.1m,内装$ 10X 10mm鲍尔环,填料层高度Z= 1.2m;⑶ 填料塔:玻璃管内径 D = 0.1m,内装$ 10X 10mm鲍尔环,填料层高度Z= 1.2m;⑷二氧化碳钢瓶1个、减压阀1个(用户自备)。
2. 流量测量:⑴CO2转子流量计: :型号:LZB-6 ; 流量范围:0.06 〜0.6m3/h; 精度: 2.5%⑵空气转子流量计: 型号:LZB-10 ; 流量范围:0.25 〜2.5m3/ h; 精度: 2.5%⑶空气转子流量计: 型号:LZB-10 ; 流量范围:0 〜50m3/ h; 精度:2.5%⑷水转子流量计:型号:LZB-25 ; 流量范围:0 〜20m3/ h; 精度: 2.5%⑸ 解吸收塔水转子流量计:型号:LZB-6流量范围:60〜600L/h 精度:2.5%3. 浓度测量:吸收塔塔底液体浓度分析:定量化学分析仪一套4. 温度测量:PT100铜电阻,液温度。
三、实验装置图3图1二氧化碳吸收解吸实验装置流程1-水箱;2-解吸液泵;3-吸收液泵;4-风机;5-空气旁通阀;6-空气流量计;7-吸收液流量计;8-解吸塔;9-解吸收塔底取样阀;10、11-U 型管放;12-吸收塔;13-吸收塔底取样阀;14-解吸液流量计;15- CO2流量计;16-吸收用空气流量计解;17-吸收用空气泵;18- CO2钢瓶;19-水箱放水阀;20-减压阀;21-解吸液取样阀;22-吸收液取样阀吸收质(纯二氧化碳气体或与空气的混合气)由钢瓶经二次减压阀和转子流量计15,进入吸收塔塔底,气体由下向上经过填料层与液相水逆流接触,到塔顶经放空;吸收剂(纯水)经转子流量计7进入塔顶,再喷洒而下;吸收后溶液流入塔底液料罐中由解吸泵2经流量计14进入解吸塔,空气由6流量计控制流量进入解吸塔塔底由下向上经过填料层与液相逆流接触,对吸收液进行解吸,然后自塔顶放空,U形液柱压差计用以测量填料层的压强降。
吸收解吸实训说明书

吸收与解吸实训装置说明书天津大学化工基础实验中心2011.12一、吸收与解吸实训装置目的和功能:1.实训装置要求学生掌握吸收与解吸分离过程的原理和流程,吸收与解吸塔的操作及影响因素,填料塔的结构与附属设备,了解填料塔塔内压降、液泛等不正常情况。
2.实训装置能够承担化工工艺专业学生技能培训工作,要求根据国家职业标准完成化工总控工和吸收工初、中、高级的技能等级鉴定工作。
3.实训装置要求承担化工企业操作工的技能培训、完成化工总控工和吸收工高级工、技师、高级技师的技能培训和技能鉴定工作。
4.能够熟练运用基本技能完成工业吸收与解吸操作,独立处理吸收与解吸操作中出现的问题,解决本吸收与解吸操作中的工艺难题。
在工艺革新和技术改革方面有一定的资源分配能力。
5.实训装置要求具有模拟实际生产过程容易出现故障的功能,从而为训练学生判断故障名称、分析故障原因以及确定排除故障方法,到最终动手排除故障,都提供了真实可信的平台。
6.实训装置要求实训物系为二氧化碳-水体系,要求学生选择适宜的吸收液流量、温度,通过实际操作完成指标。
7.实训装置要求完成解吸塔内上升气体流量自动控制,吸收与解吸塔内液体流量自动控制,意外事故出现时,实训装置具有自锁和联动功能。
二、实训内容:1.工艺文件准备:能识记吸收、解吸生产过程工艺文件,能识读吸收岗位的工艺流程图、实训设备示意图、实训设备的平面和立面布置图,能绘制工艺配管简图,能实读仪表联锁图。
熟悉吸收塔、解吸塔、填料及附属设备的结构和布置。
2.开车前动、静设备检查训练(检查吸收塔、解吸塔、管件、仪表、离心泵、漩涡气泵等是否完好,检查阀门、测量点、分析取样点是否灵活好用):(1)开车前检查T101吸收塔、T102解吸塔的玻璃段完好情况有无破损;(2)开车前检查各个管件有无破损;(3)开车前检查仪表,检查办法:打开吸收与解吸实训装置的控制柜上总电源开关,仪表全亮并无异常现象(如不断闪烁为异常现象),说明仪表能正常工作;(4)检查离心泵P102、P103的叶轮是否能转动自如;(5)检查漩涡气泵P104的叶轮能否转动自如;(6)检查所有阀门能否开关,保证灵活好用;(7)检查测量点、分析取样点能否正常取样分析。
二氧化碳吸收与解吸实验

二氧化碳吸收与解吸实验一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。
2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。
二、实验内容1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。
2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。
3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。
三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。
压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图一所示:123L 3L 2L 1L 0 =>>0图一 填料层的P ∆~u 关系当液体喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。
ΔP , k P a当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。
这两个转折点将P ∆~u 关系分为三个区段:既恒持液量区、载液区及液泛区。
传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。
对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。
1.二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ;A C —液侧A 组分的平均浓度,3-⋅m kmol Ai C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ;l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。
二氧化碳吸收与解吸实验说明书

实用文档二氧化碳吸收与解吸实验装置说明书仁爱化工基础实验中心王立轩2014.05一、实验目的:1.了解填料吸收塔的结构和流体力学性能。
2.学习填料吸收塔传质能力和传质效率的测定方法。
二、实验内容1. 测定填料层压强降与操作气速的关系,确定填料塔在一定液体喷淋量下的液泛气速。
2. 固定液相流量和入塔混合气氨的浓度,在液泛速度以下取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。
3. 采用纯水吸收二氧化碳、空气解吸水中二氧化碳,测定填料塔的液侧传质膜系数和总传质系数。
三、实验原理1.气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。
压强降与气、液流量有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图1-1所示:图1-1 填料层的P ∆~u 关系当无液体喷淋即喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。
当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。
这两个转折点将P ∆~u关系分为三个区段:恒持液量区、载液区与液泛区。
2. 传质性能:吸收系数是决定吸收过程速率高低的重要参数,而实验测定是获取吸收系数的根本途径。
对于相同的物系及一定的设备(填料类型与尺寸),吸收系数将随着操作条件及气液接触状况的不同而变化。
(1)二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为气膜 )(Ai A g A p p A k G -= (1-1)液膜 )(A Ai l A C C A k G -= (1-2)式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ;Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-⋅m kmolAi C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ;l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。
吸收与解吸实验装置---使用说明书

一、实验目的1、了解吸收与解吸装置的设备结构、流程和操作;234二、实验原理1、吸收实验根据传质速率方程,在假定Kxa浓、难溶等)条件下推导得出吸收速率方程:Ga=Kxa·V·ΔXm则:Kxa=Ga/(V·ΔXm)式中:Kxa——体积传质系数[kmolCO2/m3·h]Ga——填料塔的吸收量[kmol CO2/h]V——填料层的体积[m3]ΔXm——填料塔的平均推动力⑴、Ga的计算已知可测出:由涡轮流量计和质量流量计分别测得水流量Ls[m3/h]、空气流量V B[m3/h](显示流量为20℃,101.325KPa标准状态流量);Ls(kmol/h)=Vs×ρ水/M水B 0B V G M •ρ=空气标准状态下ρ0=1.205,M 空气=29 因此可计算出L S 、G B 。
又由全塔物料衡算:Ga=Ls(X 1-X 2)=G B (Y 1-Y 2)22211111y y Y y y Y -=-=认为吸收剂自来水中不含CO 2,则X 2=0,则可计算出Ga 和X 1 ⑵、ΔX m 的计算根据测出的水温可插值求出亨利常数E(atm),本实验为P=1(atm) 则m=E/P22222212111111ln e e m e e Y X X X X X X m X X X X X Y X X m=∆=-∆-∆∆=∆∆=-=∆ 1y Y y Y y=-根据公式将换算成附: 不同温度下CO 2—H 2O 的相平衡常数2、解吸实验根据传质速率方程,在假定K Ya 为常数、等温、低解吸率(或低浓、难溶等)条件下推导得出解吸速率方程:Ga=K Ya ·V·ΔYm则: K Ya =Ga/(V·ΔYm)式中:KYa ——体积解吸系数 [kmol CO 2/m 3·h] Ga ——填料塔的解吸量 [kmol CO 2/h] V ——填料层的体积 [m 3] ΔYm——填料塔的平均推动力y1y 212Δy 11x2Δy 22x 1=0⑴、Ga 的计算已知可测出:由流量计测得Vs[m 3/h]、V B [m 3/h], 图2.解吸流程图 y1及y2(体积浓度,可由二氧化碳分析仪直接读出)Ls(kmol/h)=Vs×ρ水/M 水B 0B V G M •ρ=空气标准状态下ρ0=1.205 因此可计算出L S 、G B 。
二氧化碳吸收与解吸实验

二氧化碳吸收与解吸实验一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。
2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。
二、实验内容1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。
2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。
3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。
三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。
压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图一所示:图一 填料层的P ∆~u 关系当液体喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。
当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。
这两个转折点将P ∆~u 关系分为三个区段:既恒持液量区、载液区及液泛区。
传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。
对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。
1.二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ;Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-⋅m kmolAi C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。
二氧化碳吸收与解吸试验

氧化碳吸收与解吸实验、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。
2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。
二、实验内容1.测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。
2.固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。
3.进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传填料层的压强降P与气速u的关系如图一所示:质系数。
实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。
压强降与气、液流量均有关,不同液体喷淋量下当液体喷淋量L o 0时,干填料的P〜u的关系是直线,如图中的直线0当有一定的喷淋量时, P 称为“载点”,上转折点称为“泛点” 。
这两个转折点将 u 的关系变成折线,并存在两个转折点,下转折点 P 〜u 关系分为三个区段:既恒持液量区、载液区及液泛区。
传质性能:吸收系数是决定吸收过程速率高低的重要参数, 实验测定可获取吸收 系数。
对于相同的物系及一定的设备(填料类型与尺寸) ,吸收系数随着操作条 件及气液接触状况的不同而变化。
1.二氧化碳吸收 -解吸实验 气膜 G A k g A(P A P Ai ) (1) 液膜 G A k l A (C AiC A )(2)式中: G A — A 组分的传质速率,1kmoI s ;A —两相接触面积, m 2;根据双膜模型的基本假设, 气侧和液侧的吸收质 A 的传质速率方程可分别表达为 P A —气侧A 组分的平均分压,Pa ;卩知一相界面上A 组分的平均分压,Pa ; C A —液侧A 组分的平均浓度,kmol m 3C Ai —相界面上A 组分的浓度kmol m 3 k g —以分压表达推动力的气侧传质膜系数, kmol Pak l —以物质的量浓度表达推动力的液侧传质膜系数,以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表 达为: G A K G A(P A P A ) 3) G A K L A(C A C A ) 4)式中:P A —液相中A 组分的实际浓度所要求的气相平衡分压, Pa;C A —气相中A 组分的实际分压所要求的液相平衡浓度, kmol m 3 ;K G —以气相分压表示推动力的总传质系数或简称为气相传质总系数, 2 1 1kmol m s Pa ;1K L -以气相分压表示推动力的总传质系数,或简称为液相传质总系数,若气液相平衡关系遵循享利定律: C A HP A ,则:1 1K G k ;1 HK T k g1HK ^1 k(5)(6)P A +d P A1当气膜阻力远大于液膜阻力时,则相际传质过程式受气膜传质速率控制, 此 时,K G k g ;反之,当液膜阻力远大于气膜阻力时,则相际传质过程受液膜传 质速率控制,此时,K L k l o如图三所示,在逆流接触的填料层内,任意载取一微分段,并以此为衡算系统, 则由吸收质A 的物料衡算可得:式中:F L ——液相摩尔流率,kmol s 1 ;图二双膜模型的浓度分布图P 1=P A 1 C A1, F L图三 填料塔的物料衡算图dG AF LdC A(7a )(12)L ---- 液相摩尔密度,kmol m 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二氧化碳吸收与解吸实验装置说明书仁爱化工基础实验中心王立轩2014.05一、实验目的:1.了解填料吸收塔的结构和流体力学性能。
2.学习填料吸收塔传质能力和传质效率的测定方法。
二、实验内容1. 测定填料层压强降与操作气速的关系,确定填料塔在一定液体喷淋量下的液泛气速。
2. 固定液相流量和入塔混合气氨的浓度,在液泛速度以下取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。
3. 采用纯水吸收二氧化碳、空气解吸水中二氧化碳,测定填料塔的液侧传质膜系数和总传质系数。
三、实验原理1.气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。
压强降与气、液流量有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图1-1所示:图1-1 填料层的P ∆~u 关系当无液体喷淋即喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。
当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。
这两个转折点将P ∆~u关系分为三个区段:恒持液量区、载液区与液泛区。
2. 传质性能:吸收系数是决定吸收过程速率高低的重要参数,而实验测定是获取吸收系数的根本途径。
对于相同的物系及一定的设备(填料类型与尺寸),吸收系数将随着操作条件及气液接触状况的不同而变化。
(1)二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为气膜 )(Ai A g A p p A k G -= (1-1)液膜 )(A Ai l A C C A k G -= (1-2)式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ;Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-⋅m kmolAi C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ;l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。
以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为:)(*-=A A G A p p A K G (1-3))(A A L A C C A K G -=* (1-4)式中:*A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ;*A C —气相中A 组分的实际分压所要求的液相平衡浓度,3-⋅m kmol ;G K —以气相分压表示推动力的总传质系数或简称为气相传质总系数,112---⋅⋅⋅Pa s m kmol ;L K -以气相分压表示推动力的总传质系数,或简称为液相传质总系数,1-⋅s m 。
P2=P L AP A +d P A C A +dC AP 1=P A1 C A1,F L图1-2双膜模型的浓度分布图 图1-3 填料塔的物料衡算图若气液相平衡关系遵循享利定律:A A Hp C =,则:lg G HK k K 111+= (1-5) lg L k k H K 11+= (1-6) 当气膜阻力远大于液膜阻力时,则相际传质过程式受气膜传质速率控制,此时,g G k K =;反之,当液膜阻力远大于气膜阻力时,则相际传质过程受液膜传质速率控制,此时,l L k K =。
如图1-3所示,在逆流接触的填料层内,任意载取一微分段,并以此为衡算系统,则由吸收质A 的物料衡算可得:A L LA dC F dG ρ= (1-7a )式中:L F ——液相摩尔流率,1-⋅s kmol ;L ρ——液相摩尔密度,3-⋅m kmol 。
根据传质速率基本方程式,可写出该微分段的传质速率微分方程:aSdh C C K dG A A L A )(-=* (1-7b )联立上两式可得:AA A L L L C C dC aS K F dh -⋅=*ρ (1-8) 式中:a ——气液两相接触的比表面积, m 2·m -1;S ——填料塔的横载面积,m 2。
本实验采用水吸收纯二氧化碳,且已知二氧化碳在常温常压下溶解度较小,因此,液相摩尔流率L F 和摩尔密度L ρ的比值,亦即液相体积流率L s V )(可视为定值,且设总传质系数K L 和两相接触比表面积a ,在整个填料层内为一定值,则按下列边值条件积分式(1-8c ),可得填料层高度的计算公式:0=h ,2.A A C C = h h = , 1A A C C =⎰-⋅=*12A A C C AA A L sL C C dC aS K V h (1-9) 令 aSK V H L sL L = ,且称H L 为液相传质单元高度(HTU ); ⎰-=*12A A C C A A A L C C dC N ,且称N L 为液相传质单元数(NTU )。
因此,填料层高度为传质单元高度与传质单元数之乘积,即L L N H h ⨯= (1-10)若气液平衡关系遵循享利定律,即平衡曲线为直线,则式(1-9)为可用解析法解得填料层高度的计算式,亦即可采用下列平均推动力法计算填料层的高度或液相传质单元高度:Am A A L sL C C C aS K V h ∆-⋅=21 (1-11) SK V h H h N L sL L L α== (1-12) 式中m A C .∆为液相平均推动力,即2211221121.21ln )()(A A A A A A A A A A A A Am C C C C C C C C C C In C C C -----==∆∆∆-∆=∆**** (1-13) 其中:1110A A C Hp Hy p *==, 2220A A C Hp Hy p *==,0P 为大气压。
二氧化碳的溶解度常数:EM H w w1⋅=ρ 13--⋅⋅Pa m koml (1-14) 式中:w ρ——水的密度, ;3-⋅m kg w M ——水的摩尔质量, 1-⋅kmol kg ;E ——二氧化碳在水中的享利系数(见化工原理下册第78页),Pa 。
因本实验采用的物系不仅遵循亨利定律,而且气膜阻力可以不计,在此情况下,整个传质过程阻力都集中于液膜,即属液膜控制过程,则液膜体积吸收系数等于液相总体积吸收系数,亦即AmA A sL L l C C C hS V a K a k ∆-⋅==21 (1-15) 四、实验装置1、实验装置主要参数:吸收塔:第一套玻璃管内径 D =0.050m ; 内装φ10×10mm 瓷拉西环;第二套玻璃管内径 D =0.050m ; 内装第三套玻璃管内径 D =0.050m ; 内装第四套玻璃管内径 D =0.050m φ10×10mm 不锈钢θ环解吸塔:璃管内径 D =0.050m ; 内装φ10×10mm 瓷拉西环;填料层高 度Z =0.80m ; 风机:XGB-12型,550W ;二氧化碳钢瓶1; 减压阀1个(用户自备)。
流量测量仪表:CO 2转子流量计: 型号LZB-6 流量范围0.06~0.6m 3/h ;空气转子流量计:型号LZB-10 流量范围0.25~2.5m 3/h ;水转子流量计: 型号LZB-10 流量范围16~160 L /h ;解吸收塔水转子流量计:型号LZB-6 流量范围6~60 L /h浓度测量:吸收塔塔底液体浓度分析准备定量化学分析仪器一套;温度测量:PT100铂电阻,用于测定测气相、液相温度。
2、二氧化碳吸收与解吸实验装置流程示意图(见图1-4):图1-4二氧化碳吸收与解吸实验装置流程示意图1- CO2流量计;2- CO2瓶减压阀;3- CO2钢瓶;4-吸收用空气流量计5- 吸收用气泵;6- 放水阀;7、19- 水箱放水阀;8- 回水阀9- 解吸塔;10- 解吸塔塔底取样阀;11- 解吸液储槽;12、15- U型管液柱压强计;13- 吸收液流量计;14- 吸收液液泵;16- 吸收液储槽;17- 吸收塔;18- 吸收塔塔底取样阀;20- 解吸液流量计;21- 解吸液液泵;22- 空气流量计;23- 空气旁通阀;24- 解析气风机3、二氧化碳吸收与解吸实验装置面板图(见图1-5)图1-5 实验装置面板图五、实验操作:实验前,往水槽中加入蒸馏水,检查各流量计调节阀,以及二氧化化碳的减压阀是否均已关严。
1.解吸塔中流体力学实验操作(1)开启实验装置的总电源,开动泵21,调节水流量计20,对填料塔润湿10~20分钟。
然后把水流量调节到指定流量(一般为100L/h);(2)开动风机24,从小到大调节空气流量,观察填料塔中液体流动状况,并记下空气流量、塔压降和流动状况,液泛前记录七个数据点,液泛以后,至少记录三个数据点;(3)关闭水和空气流量计,停止水泵和漩涡气泵。
2. 二氧化碳吸收-解吸传质系数的测定(水流量控制在60L/h)(1)打开阀门23,关闭阀门10、18。
(2)启动吸收液泵14,将水经流量计13打入吸收塔中,将流量调到指定流量。
启动解吸液泵21,将解吸液经流量计20打入解吸塔中,同时启动风机24,利用阀门23 调节空气流量(液泛流量以下)。
(3)实验中注意吸收液流量计13和解吸液流量计20数值要一致,并注意吸收液储槽的液位,如果过高,需开大解吸液流量计20,两个流量计要及时调节,以保证实验时操作条件不变。
(4)打开气泵5,调节流量为0.7m 3/h ;然后打开二氧化碳钢瓶顶上的针阀2,向吸收塔内通入二氧化碳气体(二氧化碳气体流量计1的阀门要全开),流量大小由流量计读出,控制在0.3m 3/h 左右。
(5)操作达到稳定状态之后(约20分钟),测量吸收塔塔底的水温,同时取样测定吸收塔塔顶、塔底溶液中二氧化碳的含量。
3.二氧化碳含量测定用移液管吸取0.1mol/L 的Ba (OH )2溶液10mL ,放入三角瓶中,并从塔底附设的取样口处接收塔底溶液20 mL ,用胶塞塞好振荡。
溶液中加入2~3滴甲酚红指示剂摇匀,用0.1mol/的盐酸滴定到粉红色消失即为终点。
按下式计算得出溶液中二氧化碳浓度:溶液-V V C V C C HCl HCl OH Ba OH Ba CO 222)()(22= 1-⋅L mol六、注意事项:1.开启二氧化碳总阀前,要先关闭二氧化碳自动减压阀和二氧化碳氨流量调节阀。
开启时开度不宜过大2.塔下部液封面的高度必须维持在空气进口管的下面,并接近进口管。
3.滴定水中二氧化碳时,要求滴定同时不停振荡。
4.分析CO 2浓度操作时动作要迅速,以免CO 2从液体中溢出导致结果不准确。