5年级奥数讲义(最大公约数最小公倍数)
五年级奥数上册第四讲.最大公约数和最小公倍数

分类讨论
• • • • • • 如果d=1时: 由d(a1-b1)=4得a1-b1=4; 由d×da1b1=252可得a1b1=252 252=1×252=4×63=7×36=9×28 但此时都不满足a1-b1=4 所以d≠1
• • • • • • • • • • •
如果d=2时: 由d(a1-b1)=4得 a1-b1=2; 由d×da1b1=252可得 a1b1=63 63=1×63=7×9 此时63-1=62≠2不满足a1-b1=2 , 9-7=2满足a1-b1=2 所以d=2并且a1=9、b1=7 所以a=18、b=14 答:这两个数为18和14。
(二)已知最大公约数和最小公倍数求两个数
• 例2、已知两数的最大公约数是21,最小公倍数 是126。求着两个数的和是多少? • 分析:思路1,由最大公约数与最小公倍数的积等 于两个数的积可得到两个数的积为 • 21×126=2646, • 再利用分解质因数后重新组合即可 • 2646=2×3×3×3×7×7 • =(3×7×2)×(3×7×3)=42×63 • 或 =(3×7)×(3×7×2×3)=21×126
如果d =1则a1+b1=54 a1×b1-1=114 即a1×b1=115 115=1×115=5×23 但是1+115=116≠54 5+23=28≠54 d≠1 下面分别讨论d=2、3、6的情况得到: d=6是成立,此时a1=4,b1=5 a=6×4=24 b=6×5=30
• 例6、已知两个自然数的差为4,它们的最 大公约数与最小公倍数的积为252,求这两 个自然数 • 分析:差为4即a-b=4即d(a1-b1)=4 • 最大公约数与最小公倍数的积为252即 • d×da1b1=d×da1b1=252=2×2×3×3×7 • 所以d是6的约数,即d是4与6的公约数, d=1或2
五年级奥数归类详细讲解——最大公约数与最小公倍数

第1讲最大公约数与最小公倍数(一)如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a 的约数。
如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。
在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。
自然数a1,a2,…,a n的最大公约数通常用符号(a1,a2,…,a n)表示,例如,(8,12)=4,(6,9,15)=3。
如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。
在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。
自然数a1,a2,…,a n的最小公倍数通常用符号[a1,a2,…,a n]表示,例如[8,12]=24,[6,9,15]=90。
常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。
例1 用60元钱可以买一级茶叶144克,或买二级茶叶180克,或买三级茶叶240克。
现将这三种茶叶分别按整克数装袋,要求每袋的价格都相等,那么每袋的价格最低是多少元钱?分析与解:因为144克一级茶叶、180克二级茶叶、240克三级茶叶都是60元,分装后每袋的价格相等,所以144克一级茶叶、180克二级茶叶、240克三级茶叶,分装的袋数应相同,即分装的袋数应是144,180,240的公约数。
题目要求每袋的价格尽量低,所以分装的袋数应尽量多,应是144,180,240的最大公约数。
所以(144,180,240)=2×2×3=12,即每60元的茶叶分装成12袋,每袋的价格最低是60÷12=5(元)。
为节约篇幅,除必要时外,在求最大公约数和最小公倍数时,将不再写出短除式。
例2 用自然数a去除498,450,414,得到相同的余数,a最大是多少?分析与解:因为498,450,414除以a所得的余数相同,所以它们两两之差的公约数应能被a整除。
498-450=48,450-414=36,498-414=84。
五年级奥数-最大公因数和最小公倍数

五年级奥数-最大公因数和最小公倍数大,问最大能剪成多大的正方形?基本概念公约数和最大公约数是数学中常见的概念。
几个数公有的约数称为这几个数的公约数,其中最大的一个称为这几个数的最大公约数。
同样地,几个数公有的倍数称为这几个数的公倍数,其中最小的一个称为这几个数的最小公倍数。
如果两个数的最大公约数是1,那么这两个数就是互质数。
例题分析例1:求能整除30、60、75的最大正整数。
解:30=2×3×5,60=2×2×3×5,75=3×5×5,这三个数的公约数是3和5,所以它们的最大公约数是15.例2:求能被3、4、5整除的最小正整数。
解:3、4、5的最小公倍数是60,所以这个数是60的倍数,且它还要被3、4、5整除,所以这个数是120.例3:将120厘米、180厘米和300厘米的铁丝截成相等的小段,每根铁丝都不能有剩余,每小段最长多少厘米?一共可以截成多少段?解:这三根铁丝的最大公约数是60,所以每小段最长的长度是60厘米。
将每根铁丝都截成长度为60厘米的小段,可以得到2段、3段和5段,一共可以截成10段。
例4:加工某种机器零件需要三道工序,第一道工序每个工人每小时可完成3个零件,第二道工序每个工人每小时可完成10个零件,第三道工序每个工人每小时可完成5个零件,要使加工生产均衡,三道工序至少各分配几个工人?解:设第一道工序分配的工人数为x,第二道工序分配的工人数为y,第三道工序分配的工人数为z,则有3x=10y=5z。
因为要使加工生产均衡,所以x、y、z都要是正整数,且它们的比值要尽可能接近,所以x:y:z=10:3:6,所以至少要分配10个工人。
例5:一次会餐供有三种饮料,餐后统计,三种饮料共用了65瓶;平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料。
问参加会餐的人数是多少人?解:设A、B、C饮料分别用了a、b、c瓶,则有a+b+c=65.由题意可知,A饮料每2人饮用1瓶,所以a=2x;B饮料每3人饮用1瓶,所以b=3y;C饮料每4人饮用1瓶,所以c=4z。
五年级奥数第24讲——最大公因数与最小公倍数

学生课程讲义最大公因数与最小公倍数是小学数学的基本内容,求几个数的最大公因数或最小公倍数的基本方法有因数分解法、短除法、辗转相除法等,在课外活动及竞赛中经常出现这两个概念及用其求解方法处理的问题,a1,a2,...an这n个数的最大公因数用记号(a1,a2,...an)表示,最小公倍数用[a1,a2,...an]表示。
【例1】求2520,14850,819的最大公因数和最小公倍数。
随堂练习1求35,98,112的最大公因数和最小公倍数,(用因数分解法)【例2】求36,108,126的最大公因数和最小公倍数。
随堂练习2求403,527,713的最大公因数和最小公倍数。
【例3】夜里下了一场大雪,早上,小龙和爸爸一起步测花园里一条环形小路的长度,他们从同一点同向行走,小龙每步长54厘米,爸爸每步长72厘米,两人各走完一圈后又都回到出发点,这时雪地上只留下60个脚印,那么这条小路长()米。
随堂练习3甲、乙、丙三人到图书馆去借书,甲每6天去一次,乙每8天去一次,丙每9天去一次,如果3月5日他们三人在图书馆相遇,那么下一次都到图书馆是几月几日?【例4】a=36,b=54,证明(a,b)×[a,b]=a×b随堂练习4设a=108,b=720,验证:(a,b)×[a,b]=a×b 【例5】现有4个不同的自然数,它们的和是1111,如果要使这4个数的公因数尽可能大,那么,这4个数的公因数最大是()随堂练习5有很多方法可以将2001写成25个自然数(可以相同,也可以不同)的和,对于每一种分法,这25个自然数均有相应的最大公因数,那么这些最大公因数最大值是多少?【例6】某自然数,它可以表示成9个连续自然数的和,又可以表示成10个连续自然数的和,还可以。
北师大五年级奥数专题三《最大公约数和最小公倍数》精编

最大公约数和最小公倍数一、基本概念和知识1、公约数和最大公约数几个公有的因数叫这几个数的公因数,其中最大的一个公因数叫做这几个数的最大公因数。
我们可以把自然数a 、b 的最大公因数记作(a 、b ),如果(a 、b )=1,则a 、b 互质。
2、公倍数和最小公倍数几个数公有的倍数叫做这几个数的公倍数,其中最小的一个公倍数,叫做这几个数的最小公倍数。
自然数a 、b 的最小公倍数可以记作〔a 、b 〕,当(a 、b )=1时,〔a 、b 〕=a ×b 。
3、两个数的最大公因数和最小公倍数有着下列关系:最大公因数×最小公倍数=两数的积 即(a 、b )×〔a 、b 〕= a ×b二、方法篇短除法(最大公约数)(1)必须每次都用n 个数的公约数去除;(2)一直除到n 个数的商互质(但不一定两两互质);(3)n 个数的最大公约数即为短除式中所有除数的乘积。
短除法(最小公倍数)(1)必须先用(如果有)n 个数的公约数去除,除到n 个数没有除去1以外的公约数后,在用1n -个数的公约数去除,除到1n -个数没有除1以外的公约数后,再用2n -个数的公约数去除,如此继续下去,为保证这一条,每次所用的除数均可选质数;(2)只要有两个数(被除数)能被同一数整除,就要继续除,一定要除到n 个数的商两两互质为止;(3)n 个数的最小公倍数即为短除式中,所有除数和最后两两互质的商的乘积。
辗转相除法(最大公约数)设两数为a 、b(a>b ),求a 和b 最大公约数(a ,b )的步骤如下:用b 除a ,得a ÷b=q......r1(0≤r1)。
若r1=0,则(a ,b)=b ;若r1≠0,则再用r1除b ,得b ÷r1=q......r2 (0≤r2).若r2=0,则(a ,b)=r1,若r2≠0,则继续用r2除r1,……如此下去,直到能整除为止。
其最后一个非零除数即为(a ,b )。
五年级奥数第七讲公约数与公倍数

第七讲公约数与公倍数【知识提纲】如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。
如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。
公约数中最大的一个公约数,称为这若干个自然数的最大公约数。
自然数a1,a2,…,an的最大公约数通常用符号(a1,a2,…,an)表示,如(8,12)=4,(6,9,15)=3。
如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。
公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。
自然数a1,a2,…,an的最小公倍数通常用符号[a1,a2,…,an]表示,如 [8,12] =24,[6,9,15] =90。
常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。
【典型例题1】用60元钱可买一级茶叶144克,或买二级茶叶180克,或买三级茶叶240克。
现将这三种茶叶分别按整克数装袋,要求每袋的价格都相等,那么每袋的价格最低是多少元钱?【思路解析】:因为144克一级茶叶、180克二级茶叶、240克三级茶叶都是60元,分装后每袋的价格相等,所以144克一级茶叶、180克二级茶叶、240克三级茶叶,分装的袋数应相同,即分装的袋数应是144,180,240的公约数。
题目要求每袋的价格尽量低,所以分装的袋数应尽量多,应是144,180,240的最大公约数。
解:(144,180,240)=2×2×3=12 60÷12=5(元)答;每袋价格最低是5元。
为节约篇幅,除必要时外,在求最大公约数和最小公倍数时,将不再写出短除式。
【随堂练习1】(1)有一堆桔子,按每4个一堆分少1个,按每5个一堆分也少1个,按每6个一堆分还是少1个。
这堆桔子至少有多少个?(2)有三根铁丝,一佷长18米,一根长24米,一根长30米。
现在要把它们截成同样长的小段。
每段最长可以有几米?一共可以截成多少段?【典型例题2】用自然数a去除498,450,414,得到相同的余数,a最大是多少?【思路解析】:因为498,450,414除以a所得的余数相同,所以它们两两之差的公约数应能被a整除。
小学五年级奥数知识点 第四讲 最大公约数和最小公倍数
如果d=6,由d×(a1+b1)=54,有a1+b1=9;又由d×(a1b1-1)=114,有a1b1=20。
20表示成两个互质数的乘积有两种形式:20=1×20=4×5,虽然1+20=21≠9,但是有4+5=9,所以取d=6是合适的,并有a1=4,b1=5。
252表示成两个互质数的乘积有4种形式:252=1×252=4×63=7×36=9×28,但是252-1=251≠4,63-4=59≠4,36-7=29≠4,28-9=19≠4,所以d≠1。
如果d=2,由d×(a1-b1)=4,有a1-b1=2;又由d2×a1b1=252,有a1b1=63。
假设(a1,b1)≠1,可设(a1,b1)=m(m>1),于是有a1=a2m,b1=b2m.(a2,b2是整数)
所以a=a1d=a2md,b=b1d=b2md。
那么md是a、b的公约数。
又∵m>1,∵md>d。
这就与d是a、b的最大公约数相矛盾.因此,(a1,b1)≠1的假设是不正确的.所以只能是(a1,b1)=1,也就是(a÷d,b÷d)=1。
解:设这两个自然数分别为a与b,a<b.因为这两个自然数的最大公约数是5,故设a=5a1,b=5b1,且(a1,b1)=1,a1<b1。
因为 a+b=50, 所以有5a1+5b1=50,
a1+b1=10。
满足(a1,b1)=1,a1<b1的解有:
答:这两个数为5与45或15与35。
定理2 两个数的最小公倍数与最大公约数的乘积等于这两个数的乘积.(证明略)
定理3 两个数的公约数一定是这两个数的最大公约数的约数.(证明略)
五年级下册数学专项训练 奥数第四讲 最大公约数和最小公倍数 _ 全国版 (含答案)
第四讲最大公约数和最小公倍数本讲重点解决与最大公约数和最小公倍数有关的另一类问题——有关两个自然数.它们的最大公约数、最小公倍数之间的相互关系的问题。
定理1 两个自然数分别除以它们的最大公约数,所得的商互质.即如果(a,b)=d,那么(a÷d,b÷d)=1。
证明:设a÷d=a1,b÷d=b1,那么a=a1d,b=b1d。
假设(a1,b1)≠1,可设(a1,b1)=m(m>1),于是有a1=a2m,b1=b2m.(a2,b2是整数)所以a=a1d=a2md,b=b1d=b2md。
那么md是a、b的公约数。
又∵m>1,∵md>d。
这就与d是a、b的最大公约数相矛盾.因此,(a1,b1)≠1的假设是不正确的.所以只能是(a1,b1)=1,也就是(a÷d,b÷d)=1。
定理2 两个数的最小公倍数与最大公约数的乘积等于这两个数的乘积.(证明略)定理3 两个数的公约数一定是这两个数的最大公约数的约数.(证明略)下面我们就应用这些知识来解决一些具体的问题。
例1 甲数是36,甲、乙两数的最大公约数是4,最小公倍数是288,求乙数.解法1:由甲数×乙数=甲、乙两数的最大公约数×两数的最小公倍数,可得36×乙数=4×288,乙数=4×288÷36,解出乙数=32。
答:乙数是32。
解法2:因为甲、乙两数的最大公约数为4,则甲数=4×9,设乙数=4×b1,且(b1,9)=1。
因为甲、乙两数的最小公倍数是288,则288=4×9×b1,b1=288÷36,解出b1=8。
所以,乙数=4×8=32。
答:乙数是32。
例2 已知两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少?解:要求这两个数的和,我们可先求出这两个数各是多少.设这两个数为a、b,a<b。
五年级奥数-最大公约数与最小公倍数
1.五年一班去划船,他们算了一下,如果增加一条船,正好每船坐6个,如果减少一条船,正好每船坐9人,这个班有多少人?2.有一个电子表,每走9分钟这一次灯,每到整点响一次铃,中午12点整,电子表既响铃又灯,请问下一次既响铃又亮灯是几点钟?3.两个整数的最小公倍数为140,最大公约数为4,且小数不能整除大数,求这两个数。
4.一个数被2除余1,被3除余2,被4除余3,被5除余4,被6除余5,此数最小是几?5.一次会餐提供三种饮料,餐后统计,三种饮料共用65瓶,平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料,请问参加会餐的有多少人?6.已知A与B的最大公约数为6,最小公倍数为84,且A×B=42,求B。
7.两个数的最大公约数为12,最小公倍数为180,且较大数不能被较小数整除,求这两个数,8.甲乙两数的最大公约数为75,最小公倍数为450,当这两个数分别为何值时,它们差最小。
9.已知A和B的最大公约数是31,且A×B=5766,求A和B。
10.有一盘水果,3个3个地数余2个,4个4个数余3,5个5个数余4个,问这个盘子里最少有多少个水果?11.有一个自然数,被6除余1,被5除余1,被4除余1,这个自然数最小是几?12.一盒钢笔可以平均分给2、3、4、5、6个同学,这盒钢笔最小有多少枝?13.把长120厘米,宽80厘米的铁板裁成面积相等,最大的正方形而且没有剩余,可以裁成多少块?14.把长132厘米,宽60厘米,厚36厘米的木料锯成尽可能大的,同样大小的正方体木块,锯后不能有剩余,能锯成多少块?15.用96朵红花和72朵白花做成花束,如果各花束里红花的朵数相同,白花的朵数也相同,每束花里最少有几朵花?16.从小明家到学校原来每隔50米安装一根电线杆,加上两端的两根一共是55根电线杆,现在改成每隔60米安装一根电线杆,除两端的两根不用移动外,中途还有多少根不必移动?17.在一根长100厘米的木棍上,自左到右每隔6厘米染一个红点,同时自右到左每隔5厘米染一个红点,染后沿红点将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?18.每筐梨,按每份两个梨分多1个,每份3个梨分多2个,每份5个梨分4个,则筐里至少有多少个梨?19.现在有香蕉42千克,苹果112千克,桔子70千克,平均分给幼儿园的几个班,每班分到的这三种水果的数量分别相等,那么最多分给了多少个班?每个班至少分到了三种水果各多少千克?20.有三根铁丝,一根长54米,一根长72米,一根长36米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?21.有一个商店今年7月1日开业,有三个批发商从这个商店批货,甲每隔6天来一次,乙每隔8天来一次,丙每隔9天来一次,问这三个批发商在7月1日在碰面后,再过多少天他们还在这家商店碰面?到明年7月1日,他们一共碰面多少次?五年级奥数-最大公约数与最小公倍数(3)1.两个自然数的最大公约数是6,最小公倍数是72。
11北京版小五奥数教材课程十一、最大公约数和最小公倍数
课程十一最大公约数和最小公倍数1.倍数与约数的特性2.倍与倍数的特性3.分解质因数法4.短除法5.辗转相除法1.几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做 这几个数的最大公约数。
2.几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做 这几个数的最小公倍数。
1.两个数的最大公约数的约数,都是这两个数的公约数。
2.两个数分别除以它们的最大公约数,所得的商一定是互质的。
3.两个自然数的最大公约数与最小公倍数的乘积等于这两个数的乘积。
4.两数互质,最大公约数是1,最小公倍数是两数之积。
5.两数成倍数关系,最大公约数是较小数,最小公倍数是较大数。
学习目标重 点总 结引 入家见面,那么下一次三人都在这个老师家见面的时间是几月几日? 叫做这几个数的最大公约数。
例如:12,16的公约数有1,2,4,其中最大 的一个是4,4是12与16的最大公约数,一般记为(12,16)=4。
12,15,18 的最大公约数是3,记为(12,15,18)=3。
几个自然数公有的倍数,叫做这几个数的公倍数,其中最小的一个, 叫做这几数的最小公倍数。
例如:4的倍数有4,8,12,16,…,6的倍数 有6,12,18,24,…,4和6的公倍数有12,24,…,其中最小的是12, 一般记为[4,6]=12。
12,15,18的最小公倍数是180。
记为[12,15,18]=180。
分解质因子法把每个数分别分解质因子,再把各数中的全部公有质因子提取出来连乘,所得的积就是这几个数的最大公约数。
例如:求24和60的最大公约数,先分解质因子,得24=2×2×3,12 15 18 4 5 632 2 53 60=2×2×3×5,24与60的全部公有的质因子是2,2,3它们的积是2×2×3=12,所以,(24,60)=12。
把几个数先分别分解质因子,再把各数中的全部公有的质因子和独有的质因子提取出来连乘,所得的积就是这几个数的最小公倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五讲
最大公因数与最小公倍数 (教师版)
例1、437与323的最大公约数是多少?
基本概念:
1、公约数和最大公约数 几个数公有的约数........,叫做这几个数的公约数..........;其中最大的一个.......,叫做这几个数的最大公约数............。
例如:12的约数有1,2,3,4,6,12;30的约数有1,2,3,5,6,10,15,30。
12和30的公约数有1,2,3,6,其中6是12和30的最大公约数。
一般地我们用(a,b )表示a,b 这两个自然数的最大公约数,如(12,30)=6。
如果(a,b )=1,则a,b 两个数是互质数。
2、公倍数和最小公倍数
几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
例如:12的倍数有12,24,36,48,60,72,… 18的倍数有18,36,72,90,…
12和18的公倍数有:36,72…其中36是12和 18的最小公倍数。
一般地,我们用[a,b]表示自然数,a,b 的最小公倍数,如[12,18]=36。
3、最大公约数与最小公倍数的求法
A .最大公约数
求两个数的最大公约数一般有以下几种方法 (1)分解质因数法 (2)短除法 (3)辗转相除法 (4)小数缩倍法 (5)公式法
前两种方法在数学课本中已经学过,在这里我们主要介绍辗转相除法。
当两个整数不容易看出公约数时(一般是数字比较大),我们可以合用辗转相除法。
B .最小公倍数
求几个数的最小公倍数的方法也有以下几种方法: (1)分解质因数法 (2)短除法 (3)大数翻倍法
(4)a×b =(a,b )×[a,b]
上面的公式表示:两个数的乘积等于这两个数的最大公约数和最小公倍数的乘积。
例2、24871和3468的最小公倍数是多少?
练习
25421
6933
的最简分数是多少?
例3、把一块长90厘米,宽42厘米的长方形铁板剪成边长都是整厘米,面积都相等的小正方形铁板,恰无剩余。
至少能剪块。
(北京市第一届迎春杯数学竞赛刊赛试题)
【分析】:根据题意,剪得的小正形的边长必须是90和42的最大公约6。
所以原长方形的长要分90÷6=15段,宽要分42÷6=7段,至少能剪17×7=105(块)
解:(1)求90和42的最大公约数
2 90 42
3 45 21
15 7
(90,42)=60
(2)求至少剪多少块正方形铁板
90÷6=15
45÷6 =7
15×7=105(块)
答:至少可以剪105块正方形铁板。
说明:用短除法求小数的最大公约数比较容易。
练习
用96朵红花和72朵白花做成花束,如果每束花里红花的朵数相同,白花的朵数也相同,每束花里最少有几朵花?2、38支钢笔,41只计算器,平均奖给四、五年级评比的优秀学生,结果钢笔多出2支,计算器差1只。
问:评出的优秀学生最多有几人?
例4、10个自然数之和等于1001,求这十个自然数的最大公约数可能取的最大值是多少?
练习
1、66个自然数的和是6666,这66个数的最大公约数最大能是多少?
2、3个数的和是1111,这3个数的最大公约数可能是多少?
例5、甲、乙、丙三人定期向王老师求教。
甲每隔6天去一次,乙每隔8天去一次,丙每隔9天去一次。
如果6月17日他们三人都在王老师家见面,那么下一次三人都在王老师家见面的时间是几月几日?
例6、有甲、乙两个互相衔接的齿轮,甲轮有437齿,乙轮有323齿,甲的某一齿与乙的某一齿从第一次接触到第二次接触,需要各转几周?
例7、加工一种零件有三道工序,第一道工序每个工人每小时可完成48个,第二道工序每个工人每小时可完成32个,第三道工序每个工人每小时可完成28个。
在每道工序至少安排多少工人,才能搭配合适,使每道工序不产生积压或停工待料。
例8、有一堆苹果共五千多个,按10个装一袋,装到最后少一个;9个装一带,最后还少1个;按8个,7个,…,2个装一袋,总是少1个。
这堆苹果到底有多少个?
例9、能同时被2,3,4,5,6,7,8,9,10这九个数整除的最大六位数是多少?
例10、三个连续的自然数的最小公倍数是168,那么这三个自然数的和等于。
(1998年小学数学奥林匹克预赛B卷第4题)
解: 168=23×3×7,因此这三个连续自然数是6,7,8。
和为6+7+8=21.
练习:
1、用长5厘米、宽3厘米的长方形铁片,摆成一个正方形(中间没有空隙),至少要用多少块这种长方形铁片?
2、有一些糖果平均分成若干包,每包10粒余9粒,每包12粒余11粒,每包15粒余14粒。
这些糖果最少有多少粒?
3、有一种自然数,它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数。
则这种自然数中除1以外,最小数是多少?
4、同时能被3,5,7和13除余1的最小五位数是多少?
5、求被4除余1,被5除余2,被6除余3的最小自然数。
6、小明的储蓄罐里存有2分和5分的硬币,他把这些硬币倒出来,估计有五六元钱,小明把这些硬币分成钱数相等的两堆,第一堆2分和5分的硬币个数相等;第二堆2分和5分的钱数相等。
你知道小明存了多少钱吗?
7、一次会餐,每两人合用一只饭碗,三人合用一只菜碗,四人合用一只汤碗。
会餐共用了65只碗,问:参加会餐的人数是多少?
8、在一条长96米的路两侧,计划每隔4米栽一棵树。
画好“记号”后发现距离过近,改为每隔6米栽一棵树,还要重新做多少个“记号”?
9、把一批苹果分给幼儿园大小两个班,平均每人可分得6个。
如果只分给大班,每人可分得10个,如果只分给小班,每人可分得几个苹果?例11、甲数是24,甲、乙两数的最小公倍数是168 ,最大公约数是4,求乙数。
例12、已知甲、乙两数的最大公约数是6,最小公倍数是36,求甲、乙两数。
练习
1、两个数的最大公约数为12 ,最小公倍数为180,且大数不是小数的倍数,求这两个数。
2、已知甲、乙两数的比为5:3,并且它们的最大公约数与最小公倍数的和是1040。
求甲数和乙数。
例13、求
289,3512,56
15的最大公约数。
例14、求
289,3512,56
15的最小公倍数.
例15、三条圆形跑道,圆心都在操场中心的旗杆处,甲、乙、丙三人分别在里圈、中圈、外圈跑道上沿同样的方向跑步。
开始时三人都在旗杆的正东方向。
里圈、中圈、外圈跑道分别长51
公里,41公里,8
3公里。
甲、乙丙三人的速度每小时分别为3
2
1
公里,4公里,5公里。
三人同时出发后,几小时第一次同时回到出发点?
53,27和42三个数被同一个数除,所得商的和为9,余数和为14,求各自的商及余数。
1、动物园的饲养员给三群猴子分花生,如果只分给第一群,则每只猴子可得12粒;如果只分给第二群,则每只猴子可得15粒;如果只分给第三群,则每只猴子可得20粒。
那么把花生同时分给三群猴子,平均每只猴子可得多少粒?
2、两个数的积是5766,它们的最大公约数是31,这两个数是几?
3、四个连续自然数的最小公倍数是5460,这四个数和是()。
(北京市第十一届迎春杯数学竞赛刊赛试题)
答:54600=22×3×5×7×13
12+13+14+15=54
★
1、工人加工零件,第一批毛坯1788个,第二批毛坯1680个,第三批毛坯2098个。
现平均分给工人,分别剩下7个、3个、5个。
问:加工的工人最多有多少?
2、排练团体操时,要求队伍变成10行、15行、18行、24行时,队形都能成为长方形,最少需要多少人参加团体操的排练?
3、两个数的最大公约数是20,最小公倍数是560,符合条件的两个数中差最小的两个数各是多少?
4、苹果每个重
28
3
千克,梨每个重
24
5
千克,橘子每个重
21
2
千克。
如果苹果、梨、橘子的总重量都相等,苹果、梨、橘子最少各有多少个?
★★
5、大雪后的一天,大亮和爸爸共同步测一个圆形花圃的周长,他俩的起点和走的方向完全相同。
大亮每步场54厘米,爸爸每步长72厘米,由于两人脚印有重合的,所以各走完一圈后雪地上只留下60个脚印,求花圃的周长。
6、爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。
”你知道爷爷和小明现在的年龄吗?
7、七个不同的三位数的最大公约数中,最大的是几?
★★★
8、在一根长棍上,有三种刻度线,第一种刻度线将木棍分成10等份;第二种木棍分成12等份;第三种将木棍分成15等份。
如果沿每条刻度线将木棍锯断,木棍总和被锯成多少段?9、老师在黑板上写下三个数:108,396,A,让同学们求它们的最小公倍数。
小马虎误将108当作180进行计算,结果竟然与正确答案一致。
A最小等于几?。