高三数学质量检测暨期末考试试题

合集下载

北京市房山区2023-2024学年高三上学期期末考试数学含答案解析

北京市房山区2023-2024学年高三上学期期末考试数学含答案解析

房山区2023-2024学年度第一学期期末检测试卷高三数学本试卷共6页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将答题卡交回,试卷自行保存.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}2,0,1,2A =-,{}10B x x =->,则A B = ()A.{}2 B.{}1,2 C.{}2,0- D.{}2,0,1,2-2.在复平面内,若复数z 对应的点为()1,1-,则()1i z --=()A.2B.2iC.2i- D.2-3.已知向量()2,0a = ,(),1b m = ,且a 与b 的夹角为π3,则m 的值为()A.33-B.33C. D.4.432x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项是()A.32- B.32C.23- D.235.已知a ,b 为非零实数,且a b >,则下列结论正确的是()A.22a b > B.11a b> C.b a a b> D.2211ab a b>6.已知直线:2l y x b =+与圆()()22:125C x y -++=相切,则实数b =()A.1或9B.1-或9C.1-或9- D.1或9-7.已知函数()f x 满足()()0f x f x --=,且在[0,)+∞上单调递减,对于实数a ,b ,则“22a b <”是“()()f a f b >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.保护环境功在当代,利在千秋,良好的生态环境既是自然财富,也是经济财富,关系社会发展的潜力和后劲.某工厂将生产产生的废气经过过滤后排放,已知过滤过程中的污染物的残留数量P (单位:毫米/升)与过滤时间t (单位:小时)之间的函数关系为0e(0)ktP P t -=⋅≥,其中k 为常数,0k >,0P 为原污染物数量.该工厂某次过滤废气时,若前9个小时废气中的污染物恰好被过滤掉80%,那么再继续过滤3小时,废气中污染物的残留量约为原污染物的(参考数据:1310.5855⎛⎫≈ ⎪⎝⎭)()A.12%B.10%C.9%D.6%9.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,P 为双曲线C 左支上一动点,Q 为双曲线C 的渐近线上一动点,且2PQ PF +最小时,1PF 与双曲线C 的另一条渐近线平行,则双曲线C 的方程可能是()A .2213y x -= B.2213x y -=C.22122x y -= D.2214x y -=10.数学家祖冲之曾给出圆周率π的两个近似值:“约率”227与“密率”355113.它们可用“调日法”得到:称小于3.1415926的近似值为弱率,大于3.1415927的近似值为强率.由于3141π<<,取3为弱率,4为强率,计算得1711234a ==++,故1a 为强率,与上一次的弱率3计算得23710123a +==+,故2a 为强率,继续计算,….若某次得到的近似值为强率,与上一次的弱率继续计算得到新的近似值;若某次得到的近似值为弱率,与上一次的强率继续计算得到新的近似值,依此类推.已知258m a =,则m =()A.8B.7C.6D.5第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数2ln(12)y x x=-+的定义域是______.12.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-,则n a =______.13.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2b c a C -=,则A ∠=______.14.已知平面直角坐标系中,动点M 到(0,2)F -的距离比M 到x 轴的距离大2,则M 的轨迹方程是______.15.如图,在棱长为a 的正方体1111ABCD A B C D -中,点P 是线段1B C 上的动点.给出下列结论:①1AP BD ⊥;②//AP 平面11AC D ;③直线AP 与直线11A D 所成角的范围是ππ,43⎡⎤⎢⎥⎣⎦;④点P 到平面11AC D 的距离是3a .其中所有正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在四棱锥P ABCD -中,PAD 为等腰三角形,PD AD ⊥,PA =,底面ABCD 是正方形,M ,N 分别为棱PD ,BC 的中点.(1)求证://MN 平面PAB ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求MN 与平面PBC 所成角的正弦值.条件①:CD PA ⊥;条件②:PB =.注:如果选择条件①和条件②分别解答,按第一个解答计分.17.已知函数()()π22f x x ϕϕ⎛⎫=+< ⎪⎝⎭的图象上所有点向右平移π8个单位长度,所得函数图象关于原点对称.(1)求ϕ的值;(2)设()()212cos 2g x f x x =-+,若()g x 在区间()0,m 上有且只有一个零点,求m 的取值范围.18.某移动通讯公司为答谢用户,在其APP 上设置了签到翻牌子赢流量活动.现收集了甲、乙、丙3位该公司用户2023年12月1日至7日获得的流量(单位:MB )数据,如图所示.(1)从2023年12月1日至7日中任选一天,求该天乙获得流量大于丙获得流量的概率;(2)从2023年12月1日至7日中任选两天,设X 是选出的两天中乙获得流量大于丙获得流量的天数,求X 的分布列及数学期望()E X ;(3)将甲、乙、丙3位该公司用户在2023年12月1日至7日获得流量的方差分别记为21s ,22s ,23s ,试比较21s ,22s ,23s 的大小(只需写出结论).19.设椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,右焦点为F ,已知13A F =,离心率为12.(1)求椭圆C 的标准方程;(2)已知点P 是椭圆C 上的一个动点(不与顶点重合),直线2A P 交y 轴于点Q ,若1A PQ △的面积是2A FP △面积的4倍,求直线2A P 的方程.20.已知函数()1e x f x a x ⎛⎫=+⋅⎪⎝⎭.(1)当0a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当1a =时,求函数()f x 的单调递增区间;(3)若函数()f x 在区间()0,1上只有一个极值点,求a 的取值范围.21.若无穷数列{}n a 满足:*m ∃∈N ,对于()*00n n n ∀≥∈N,都有n mna q a +=(其中q 为常数),则称{}n a 具有性质“()0,,Q m n q ”.(1)若{}n a 具有性质“(4,2,3)Q ”,且31a =,52a =,691120a a a ++=,求2a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为2的等比数列,234b c ==,112b c c +=,n n n a b c =+,判断{}n a 是否具有性质“(2,1,3)Q ”,并说明理由;(3)设{}n a 既具有性质“()1,1,Q i q ”,又具有性质“()2,1,Q j q ”,其中i ,*j ∈N ,i j <,求证:{}n a 具有性质“2,1,j ijQ j i i q -⎛⎫-+ ⎪ ⎪⎝⎭”.房山区2023-2024学年度第一学期期末检测试卷高三数学本试卷共6页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将答题卡交回,试卷自行保存.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}2,0,1,2A =-,{}10B x x =->,则A B = ()A.{}2 B.{}1,2 C.{}2,0- D.{}2,0,1,2-【答案】C 【解析】【分析】计算出集合B 后由交集定义运算可得.【详解】{}{}101B x x x x =->=<,故{}2,0A B ⋂=-.故选:C.2.在复平面内,若复数z 对应的点为()1,1-,则()1i z --=()A.2B.2iC.2i- D.2-【答案】A 【解析】【分析】利用复数的几何意义可得出复数z ,再利用复数的乘法可求得()1i z --的值.【详解】在复平面内,若复数z 对应的点为()1,1-,由复数的几何意义可得1i z =-+,因此,()()()1i 1i 1i 2z --=--⋅-+=.故选:A.3.已知向量()2,0a = ,(),1b m = ,且a 与b 的夹角为π3,则m 的值为()A.33-B.33C. D.【答案】B 【解析】【分析】先表示出,,a b a b ⋅ ,然后根据πcos 3a b a b ⋅= 求解出m 的值.【详解】因为2a b m ⋅= ,2,a b ==所以πcos 3a b a b ⋅= ,所以1222m =,解得33m =或33m =-(舍去),故选:B.4.432x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项是()A.32-B.32C.23- D.23【答案】B 【解析】【分析】写出二项式展开式通项,令x 的指数为零,求出参数的值,代入通项即可得解.【详解】432x x ⎛⎫+ ⎪⎝⎭的展开式通项为()()431241442C C 20,1,2,3,4kk k kk k k T x x k x --+⎛⎫=⋅⋅=⋅⋅= ⎪⎝⎭,令1240k -=,可得3k =,因此,展开式中的常数项为3334C 24832T =⋅=⨯=.故选:B.5.已知a ,b 为非零实数,且a b >,则下列结论正确的是()A.22a b >B.11a b> C.b a a b > D.2211ab a b>【答案】D 【解析】【分析】对A 、B 、C 举反例即可得,对D 作差计算即可得.【详解】对A :若0a b >>,则22a b <,故错误;对B :若0a b >>,则11a b<,故错误;对C :若0a b >>,则22a b >,0ab >,左右同除ab ,有a bb a>,故错误;对D :由a b >且a ,b 为非零实数,则2222110a b ab a b a b --=>,即2211ab a b>,故正确.故选:D.6.已知直线:2l y x b =+与圆()()22:125C x y -++=相切,则实数b =()A.1或9 B.1-或9 C.1-或9- D.1或9-【答案】D 【解析】【分析】利用圆心到直线的距离等于圆的半径,可求得实数b 的值.【详解】圆C 的圆心为()1,2C -因为直线:20l x y b -+=与圆C=,即45b +=,解得1b =或9-.故选:D.7.已知函数()f x 满足()()0f x f x --=,且在[0,)+∞上单调递减,对于实数a ,b ,则“22a b <”是“()()f a f b >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据给定条件,可得函数()f x 是R 上的偶函数,利用充分条件、必要条件的定义,结合偶函数性质及单调性判断即得.【详解】由函数()f x 满足()()0f x f x --=,得函数()f x 是R 上的偶函数,而()f x 在[0,)+∞上单调递减,因此22()()(||)(||)||||f a f b f a f b a b a b >⇔>⇔<⇔<,所以“22a b <”是“()()f a f b >”的充要条件.故选:C8.保护环境功在当代,利在千秋,良好的生态环境既是自然财富,也是经济财富,关系社会发展的潜力和后劲.某工厂将生产产生的废气经过过滤后排放,已知过滤过程中的污染物的残留数量P (单位:毫米/升)与过滤时间t (单位:小时)之间的函数关系为0e(0)ktP P t -=⋅≥,其中k 为常数,0k >,0P 为原污染物数量.该工厂某次过滤废气时,若前9个小时废气中的污染物恰好被过滤掉80%,那么再继续过滤3小时,废气中污染物的残留量约为原污染物的(参考数据:1310.5855⎛⎫≈ ⎪⎝⎭)()A.12%B.10%C.9%D.6%【解析】【分析】根据题意可得9001e5kP P -⋅=,解得1331e 5k -⎛⎫= ⎪⎝⎭,从而求得关于残留数量与过滤时间的函数关系式,再将12t =代入即可求得答案.【详解】因为前9个小时废气中的污染物恰好被过滤掉80%,所以9001e5kP P -⋅=,即91e ,5k -=所以1331e 5k -⎛⎫= ⎪⎝⎭.再继续过滤3小时,废气中污染物的残留量约为()4341230000011ee0.58512%55kkP P P P P --⎛⎫⋅=⨯=⨯≈⨯≈ ⎪⎝⎭.故选:A.9.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,P 为双曲线C 左支上一动点,Q 为双曲线C 的渐近线上一动点,且2PQ PF +最小时,1PF 与双曲线C 的另一条渐近线平行,则双曲线C 的方程可能是()A.2213y x -= B.2213x y -=C.22122x y -= D.2214x y -=【答案】C 【解析】【分析】根据给定条件,利用双曲线定义确定2PQ PF +最小时,点Q 的位置,进而求出,a b 的关系即得.【详解】双曲线C :22221(0,0)x y a b a b-=>>的渐近线为0bx ay ±=,由对称性不妨令点P 在第二象限,由双曲线定义得211||||2||2PQ PF PQ PF a F Q a +=++≥+,当且仅当P 为线段1FQ 与双曲线的交点时因此2PQ PF +的最小值为1||F Q 的最小值与2a 的和,显然当1FQ 与渐近线0bx ay +=垂直时,1||F Q 取得最小值,而1PF 平行于渐近线0bx ay -=,于是双曲线的两条渐近线互相垂直,即1ba=,则双曲线22221x y a b -=的渐近线方程为0x y ±=,显然选项ABD 不满足,C 满足,所以双曲线C 的方程可能是22122x y -=.故选:C10.数学家祖冲之曾给出圆周率π的两个近似值:“约率”227与“密率”355113.它们可用“调日法”得到:称小于3.1415926的近似值为弱率,大于3.1415927的近似值为强率.由于3141π<<,取3为弱率,4为强率,计算得1711234a ==++,故1a 为强率,与上一次的弱率3计算得23710123a +==+,故2a 为强率,继续计算,….若某次得到的近似值为强率,与上一次的弱率继续计算得到新的近似值;若某次得到的近似值为弱率,与上一次的强率继续计算得到新的近似值,依此类推.已知258m a =,则m =()A.8B.7C.6D.5【答案】B 【解析】【分析】根据题意不断计算即可解出.【详解】因为2a 为强率,由310π13<<可得,373101331.31244159a +==>+,即3a 为强率;由313π14<<可得,473131631.41254159a +==>+,即4a 为强率;由316π15<<可得,573161931.51264159a +==>+,即5a 为强率;由319π16<<可得,673192231.61274159a +==>+,即6a 为强率;由322π17<<可得,763222531.1252183.41597a +===<+,即7a 为弱率,所以7m =,故选:B.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数2ln(12)y x x=-+的定义域是______.【答案】()1,00,2⎛⎫-∞⋃ ⎪⎝⎭【解析】【分析】由真数大于零及分母不等于零计算即可得.【详解】由题意可得120x ->、0x ≠,故12x <且0x ≠,故该函数定义域为()1,00,2⎛⎫-∞⋃ ⎪⎝⎭.故答案为:()1,00,2⎛⎫-∞⋃ ⎪⎝⎭.12.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-,则n a =______.【答案】29n -【解析】【分析】由等差数列及其前n 项和的性质计算即可得.【详解】设()()1171n a a n d n d =+-=-+-,则313321315S a d d =+=-+=-,即2d =,故()72129n a n n =-+-=-.故答案为:29n -.13.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2b c a C -=,则A ∠=______.【答案】π4【解析】【分析】根据给定条件,利用正弦定理边化角,再利用和角的正弦公式求解即得.【详解】在ABC 中,由2cos 2b c a C -=及正弦定理,得2sin sin sin cos 2B C A C -=,则sin()sin sin cos 2A C C A C +-=,整理得cos sin sin 2A C C =,而sin 0C >,因此2cos 2A =,又0πA <<,所以π4A =.故答案为:π414.已知平面直角坐标系中,动点M 到(0,2)F -的距离比M 到x 轴的距离大2,则M 的轨迹方程是______.【答案】28(0)x y y =-≤或0(0)x y =>【解析】【分析】设出点M 的坐标,利用已知列出方程化简即得.【详解】设点(,)M x y ,依题意,||||2MF y =+||2y =+,整理得24(||)x y y =-,所以M 的轨迹方程是28(0)x y y =-≤或0(0)x y =>.故答案为:28(0)x y y =-≤或0(0)x y =>15.如图,在棱长为a 的正方体1111ABCD A B C D -中,点P 是线段1B C 上的动点.给出下列结论:①1AP BD ⊥;②//AP 平面11AC D ;③直线AP 与直线11A D 所成角的范围是ππ,43⎡⎤⎢⎥⎣⎦;④点P 到平面11AC D 的距离是3a .其中所有正确结论的序号是______.【答案】①②④【解析】【分析】建立空间直角坐标系后逐个分析即可得.【详解】以D 为原点,建立如图所示空间直角坐标系,则有()0,0,0D 、(),0,0A a 、()1,0,A a a 、(),,0B a a 、()10,0,D a 、()1,,B a a a 、()0,,0C a 、()10,,C a a ,则()1,0,B C a a =-- 、()1,,BD a a a =-- 、()11,,0A C a a =- 、()1,0,A D a a =-- 、()10,,AB a a = 、()11,0,0A D a =- 、()10,0,AA a = ,设11B P B C λ= ,[]0,1λ∈,则()11,,AP AB B P a a a a λλ=+=-- ,222210AP BD a a a a λλ⋅=-+-= ,故1AP BD ⊥,故①正确;设平面11AC D 的法向量为(),,n x y z =,则有11100A C n A D n ⎧⋅=⎪⎨⋅=⎪⎩ ,即00ax ay ax az -+=⎧⎨--=⎩,取1x =,则()1,1,1n =- ,有0AP n a a a λλ⋅=-+-+= ,故AP n ⊥ ,又AP ⊄平面11A C D ,则//AP 平面11A C D ,故②正确;当0λ=时,有()0,,AP a a = ,此时110000A A P D =+⋅+= ,即11AP A D ⊥,即此时直线AP 与直线11A D 所成角为π2,故③错误;由()1,1,1n =- ,()11,,PA AA AP a a a λλ=-=- ,则133PA n d n ⋅== ,故④正确.故答案为:①②④.【点睛】关键点睛:对空间中线上动点问题,可设出未知数表示该动点分线段所得比例,从而用未知数的变化来体现动点的变化.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在四棱锥P ABCD -中,PAD 为等腰三角形,PD AD ⊥,PA =,底面ABCD 是正方形,M ,N 分别为棱PD ,BC 的中点.(1)求证://MN 平面PAB ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求MN 与平面PBC 所成角的正弦值.条件①:CD PA ⊥;条件②:PB =.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)证明见解析(2)6【解析】【分析】(1)由线面平行的判定定理即可得;(2)选①,由题意及CD PA ⊥去推导得到PD 、CD 、AD 两两垂直,即可建立空间直角坐标系解决问题;选②,由题意及PB =结合勾股定理的逆定理去推导得到PD 、CD 、AD 两两垂直,即可建立空间直角坐标系解决问题.【小问1详解】连接点B 与AP 中点E 、连接ME ,又M ,N 分别为棱PD ,BC 的中点,故//ME AD 、12ME AD =,又底面ABCD 是正方形,故//BN AD 、12=BN AD ,故//ME BN 且ME BN =,故四边形MEBN 为平行四边形,故//MN EB ,又EB ⊂平面PAB ,MN ⊄平面PAB ,故//MN 平面PAB ;【小问2详解】选条件①:CD PA ⊥,由PD AD ⊥且PAD 为等腰三角形,故PD AD =,又PA =,故222PD AD ==⨯=,有2PD AD AB BC CD =====,由CD PA ⊥,CD AD ⊥,PA 、AD ⊂平面PAD ,PA AD A ⋂=,故CD ⊥平面PAD ,又PD ⊂平面PAD ,故CD PD ⊥,故PD 、CD 、AD 两两垂直,故可以D 为原点,建立如图所示空间直角坐标系,有()0,0,0D 、()002P ,,、()2,2,0B 、()0,2,0C 、()0,0,1M 、()1,2,0N ,则()1,2,1MN =- 、()2,2,2PB =- 、()0,2,2PC =- ,令平面PBC 的法向量为(),,n x y z = ,则有00PB n PC n ⎧⋅=⎪⎨⋅=⎪⎩ ,即2220220x y z y z +-=⎧⎨-=⎩,令1y =,则()0,1,1n = ,则3cos ,6MN n MN n MN n⋅== ,故MN 与平面PBC所成角的正弦值为6.条件②:PB =,由PD AD ⊥且PAD 为等腰三角形,故PD AD =,又PA =,故222PD AD ==⨯=,有2PD AD AB BC CD =====,由PB =,则222PB PA AB =+,故PA AB ⊥,又//AB CD ,故CD PA ⊥,又CD AD ⊥,PA 、AD ⊂平面PAD ,PA AD A ⋂=,故CD ⊥平面PAD ,又PD ⊂平面PAD ,故CD PD ⊥,故PD 、CD 、AD 两两垂直,故可以D 为原点,建立如图所示空间直角坐标系,有()0,0,0D 、()002P ,,、()2,2,0B 、()0,2,0C 、()0,0,1M 、()1,2,0N ,则()1,2,1MN =- 、()2,2,2PB =- 、()0,2,2PC =- ,令平面PBC 的法向量为(),,n x y z = ,则有00PB n PC n ⎧⋅=⎪⎨⋅=⎪⎩ ,即2220220x y z y z +-=⎧⎨-=⎩,令1y =,则()0,1,1n = ,则3cos ,6MN n MN n MN n⋅== ,故MN 与平面PBC所成角的正弦值为6.17.已知函数()()π22f x x ϕϕ⎛⎫=+< ⎪⎝⎭的图象上所有点向右平移π8个单位长度,所得函数图象关于原点对称.(1)求ϕ的值;(2)设()()212cos 2g x f x x =-+,若()g x 在区间()0,m 上有且只有一个零点,求m 的取值范围.【答案】(1)π4ϕ=(2)π5π,1212⎛⎤ ⎥⎝⎦【解析】【分析】(1)求出平移后所得函数的解析式,根据正弦型函数的奇偶性,结合ϕ的取值范围可求得ϕ的值;(2)利用三角恒等变换化简得出()1sin 22g x x =-,由0x m <<可得022x m <<,结合题意可得出关于m 的不等式,解之即可.【小问1详解】解:将函数()()π22f x x ϕϕ⎛⎫=+< ⎪⎝⎭的图象上所有点向右平移π8个单位长度,可得到函数ππ2284y x x ϕϕ⎡⎤⎛⎫⎛⎫=-+=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由题意可知,函数π24y x ϕ⎛⎫=+- ⎪⎝⎭为奇函数,则()ππ4k k ϕ-=∈Z ,可得()ππ4k k ϕ=+∈Z ,又因为π2ϕ<,则π4ϕ=.【小问2详解】解:由(1)可知,()π2sin 2cos 24f x x x x ⎛⎫=+=+ ⎪⎝⎭,则()()()21112cos sin 2cos 21cos 2sin 2222g x f x x x x x x =-+=+-++=-,因为0x m <<,则022x m <<,由()0g x =,可得1sin 22x =,因为()g x 在区间()0,m 上有且只有一个零点,则π5π266m <≤,解得π5π1212m <≤.因此,实数m 的取值范围是π5π,1212⎛⎤ ⎥⎝⎦.18.某移动通讯公司为答谢用户,在其APP 上设置了签到翻牌子赢流量活动.现收集了甲、乙、丙3位该公司用户2023年12月1日至7日获得的流量(单位:MB )数据,如图所示.(1)从2023年12月1日至7日中任选一天,求该天乙获得流量大于丙获得流量的概率;(2)从2023年12月1日至7日中任选两天,设X 是选出的两天中乙获得流量大于丙获得流量的天数,求X 的分布列及数学期望()E X ;(3)将甲、乙、丙3位该公司用户在2023年12月1日至7日获得流量的方差分别记为21s ,22s ,23s ,试比较21s ,22s ,23s 的大小(只需写出结论).【答案】(1)27(2)X 的分布列见解析,()47E x =(3)23s >2212s s =【解析】【分析】(1)利用古典概型计算公式进行求解即可;(2)利用古典概型计算公式,结合数学期望公式进行求解即可.(3)根据数据的集中趋势进行判断即可.【小问1详解】由图可知,七天中只有1日、2日乙获得流量大于丙获得流量,所以该天乙获得流量大于丙获得流量的概率为27;【小问2详解】由(1)可知七天中只有1日、2日乙获得流量大于丙获得流量,因此0,1,2X =,()2527C 100C 21P X ===,()2227C 12C 21P X ===,()1011011212121P X ==--=,所以X 的分布列如下图所示:X012P 10211021121()1010140122121217E X =⨯+⨯+⨯=;【小问3详解】根据图中数据信息,甲、乙七天的数据相同,都是1个50,2个30,1个10,3个5;而且丙的的数据最分散,所以,23s >2212s s =.19.设椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,右焦点为F ,已知13A F =,离心率为12.(1)求椭圆C 的标准方程;(2)已知点P 是椭圆C 上的一个动点(不与顶点重合),直线2A P 交y 轴于点Q ,若1A PQ △的面积是2A FP △面积的4倍,求直线2A P 的方程.【答案】19.22143x y +=20.3260x y ±-=【解析】【分析】(1)由题意计算即可得;(2)设出直线,联立曲线,得到P 、Q 两点的纵坐标,结合面积公式计算即可得.【小问1详解】由13A F a c =+=,12c e a ==,解得2a =,1c =,故3b ==,即椭圆C 的标准方程为22143x y +=;【小问2详解】由椭圆C 的标准方程为22143x y +=,则()12,0A -、()22,0A 、()1,0F ,由题意可得直线2A P 斜率存在且不为0,设2:2A P l x my =+,令0x =,则2y m =-,故20,Q m ⎛⎫- ⎪⎝⎭,联立222143x my x y =+⎧⎪⎨+=⎪⎩,消去x 得()2234120m y my ++=,即()234120m y m y ⎡⎤++=⎣⎦,故0y =或21234m y m -=+,由()22,0A ,故21234P m y m -=+,则112121144222A PQ A A Q A A P Q P Q P S S S y y y y =-=⨯-⨯=- ,又()212122P A FP P y S y =⨯-=,即2422P Q P P y y y y -=⨯=,即Q P P y y y -=,若Q P y y >,则2Q P y y =,即2122234m m m -=⨯+,即223412m m +=,即249m =,则23m =±,若Q P y y <,则P Q P y y y -=,即0Q y =,不符,故舍去,即23m =±,故22:23A P l x y =±+,即直线2A P 的方程为3260x y ±-=.20.已知函数()1e x f x a x ⎛⎫=+⋅ ⎪⎝⎭.(1)当0a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当1a =时,求函数()f x 的单调递增区间;(3)若函数()f x 在区间()0,1上只有一个极值点,求a 的取值范围.【答案】(1)ey =(2)15,2⎛⎫+-∞- ⎪ ⎪⎝⎭、51,2⎛⎫+∞ ⎪ ⎪⎝⎭(3)()0,∞+【解析】【分析】(1)当0a =时,求出()1f 、()1f '的值,利用导数的几何意义可求得所求切线的方程;(2)当1a =时,求出()f x ',利用函数的单调性与导数的关系可求得函数()f x 的单调递增区间;(3)令()21g x ax x =+-,分析可知,函数()g x 在()0,1上有且只有一个异号零点,对实数a 的取值进行分类讨论,结合题意可得出关于实数a 的不等式,综合可得出实数a 的取值范围.【小问1详解】解:当0a =时,()e xf x x =,则()()2e 1x x f x x-'=,所以,()1e f =,()10f '=,故当0a =时,曲线()y f x =在点()()1,1f 处的切线方程为e 0y -=,即e y =.【小问2详解】解:当1a =时,()()1e 11e x x x f x x x +⎛⎫=+= ⎪⎝⎭,该函数的定义域为{}0x x ≠,()()()()2221e 2e 1e x x x x x x x x f x x x +-+-+'==,由()0f x ¢>,即210x x +->,解得152x +<-或512x ->,因此,当1a =时,函数()f x的单调递增区间为1,2⎛+-∞- ⎪⎝⎭、⎫+∞⎪⎪⎝⎭.【小问3详解】解:因为()1e x f x a x ⎛⎫=+⋅ ⎪⎝⎭,则()()2221e 11e x x ax x f x a xx x +-⎛⎫'=+-= ⎪⎝⎭,令()21g x ax x =+-,因为函数()f x 在()0,1上有且只有一个极值点,则函数()g x 在()0,1上有一个异号零点,当0a =时,对任意的()0,1x ∈,()10g x x =-<,不合乎题意;当0a >时,函数()21g x ax x =+-在()0,1上单调递增,因为()010g =-<,只需()10g a =>,合乎题意;当a<0时,函数()g x 的图象开口向下,对称轴为直线102x a=->,因为()010g =-<,只需()10g a =>,不合乎题意,舍去.综上所述,实数a 的取值范围是()0,∞+.21.若无穷数列{}n a 满足:*m ∃∈N ,对于()*00n n n ∀≥∈N ,都有n m na q a +=(其中q 为常数),则称{}n a 具有性质“()0,,Q m n q ”.(1)若{}n a 具有性质“(4,2,3)Q ”,且31a =,52a =,691120a a a ++=,求2a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为2的等比数列,234b c ==,112b c c +=,n n n a b c =+,判断{}n a 是否具有性质“(2,1,3)Q ”,并说明理由;(3)设{}n a 既具有性质“()1,1,Q i q ”,又具有性质“()2,1,Q j q ”,其中i ,*j ∈N ,i j <,求证:{}n a 具有性质“2,1,j i j Q j i i q -⎛⎫-+ ⎪ ⎪⎝⎭”.【答案】(1)53(2){}n a 不具有性质“(2,1,3)Q ”,理由见解析(3)证明见解析【解析】【分析】(1)由{}n a 具有性质“(4,2,3)Q ”,可得当2n ≥时,43n n a a +=,结合题意计算即可得;(2)由题意计算出n a 通项公式后,检验2n na a +是否恒等于3即可得;(3)借助{}n a 既具有性质“()1,1,Q i q ”,又具有性质“()2,1,Q j q ”,则当1n ≥时,有1n i n a q a +=,2n j n a q a +=,则有12112j i j i i j a a a q a a a +++⨯⨯⨯= ,12212j j i j i ia a a q a a a +++⨯⨯⨯= ,通过运算得到12j i q q =,从而可验证对任意的1n i ≥+时,是否有2j i n j ij n a q a -+-=即可得.【小问1详解】由{}n a 具有性质“(4,2,3)Q ”,则当2n ≥时,43n na a +=,故623a a =,953a a =,117339a a a ==,又31a =,52a =,故691125323393329120a a a a a a a ++=++=+⨯+⨯=,即253a =;【小问2详解】{}n a 不具有性质“(2,1,3)Q ”,理由如下:设()11n b b n d =+-,112n n c c -=⋅,由234b c ==,112b c c +=,即有11111442b d c b c c +==⎧⎨+=⎩,解得1113b c d ==⎧⎨=⎩,故32n b n =-,12n n c -=,则1232n n n n a b c n -=+=+-,有()21122322234n n n a n n +-++=++-=++,则121234232n n n n a n a n ++-++=+-,不恒等于3,故{}n a 不具有性质“(2,1,3)Q ”;【小问3详解】由{}n a 既具有性质“()1,1,Q i q ”,又具有性质“()2,1,Q j q ”,即当1n ≥时,有1n i n a q a +=,2n j na q a +=,则有12112j i j i i j a a a q a a a +++⨯⨯⨯= ,12212j j i j i ia a a q a a a +++⨯⨯⨯= ,由i j <,故121212112212121j ii i j j i i j i j j i j i i j ia a a a a a a a a q a a a q a a a a a a ++++++++++⨯⨯⨯===⨯⨯⨯ ,故12j i q q =,即12i j q q =,由1n i n a q a +=,2n j n a q a +=,则21n j n i a q a q ++=,当1n i ≥+,即1n i -≥时,有22212j i n i j n j i j i n i in j a a q q q a a q q --++--+====,即对任意的1n i ≥+时,有2j i n j ij n a q a -+-=,即{}n a 具有性质“2,1,j i j Q j i i q -⎛⎫-+ ⎪ ⎪⎝⎭”.【点睛】关键点睛:本题关键点在于通过对数列新定义的分析,从而得到1n i n a q a +=,2n j na q a +=,并由此得到12112j i j i i j a a a q a a a +++⨯⨯⨯= ,12212j j i j i i a a a q a a a +++⨯⨯⨯= ,从而得出12j i q q =.。

四川省成都第七中学2024学年数学高三第一学期期末质量检测试题含解析

四川省成都第七中学2024学年数学高三第一学期期末质量检测试题含解析

四川省成都第七中学2024学年数学高三第一学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知抛物线24x y =上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为( )A .2B .3C .4D .5 2.复数5i 12i +的虚部是 ( ) A .i B .i - C .1 D .1-3.已知正四面体的内切球体积为v ,外接球的体积为V ,则V v =( ) A .4 B .8 C .9 D .274.根据散点图,对两个具有非线性关系的相关变量x ,y 进行回归分析,设u = lny ,v =(x -4)2,利用最小二乘法,得到线性回归方程为ˆu=-0.5v +2,则变量y 的最大值的估计值是( ) A .e B .e 2 C .ln 2 D .2ln 25.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于( )cm 3A .243π+B .342π+ C .263π+ D .362π+ 6.已知直线l 320x y ++=与圆O :224x y +=交于A ,B 两点,与l 平行的直线1l 与圆O 交于M ,N 两点,且OAB 与OMN 的面积相等,给出下列直线1l 330x y +-=320x y +-=,③320x -+=,330x y ++=.其中满足条件的所有直线1l 的编号有( )A .①②B .①④C .②③D .①②④7.已知i 是虚数单位,若1z ai =+,2zz =,则实数a =( )A .2-或2B .-1或1C .1D .28.设实数满足条件则的最大值为( ) A .1 B .2 C .3 D .49.已知函数13log ,0()1,03x x x f x a x >⎧⎪⎪=⎨⎛⎫⎪⋅≤ ⎪⎪⎝⎭⎩,若关于x 的方程[()]0f f x =有且只有一个实数根,则实数a 的取值范围是( ) A .(,0)(0,1)-∞ B .(,0)(1,)-∞⋃+∞ C .(,0)-∞ D .(0,1)(1,)⋃+∞10.设双曲线22:1916x y C -=的右顶点为A ,右焦点为F ,过点F 作平行C 的一条渐近线的直线与C 交于点B ,则AFB △的面积为( )A .3215B .6415C .5D .611.某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( ).A .22S ,且3SB .22S ,且23SC .22S ,且3SD .22S ,且23S12.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右两个焦点分别为1F ,2F ,若存在点P 满足1212::4:6:5PF PF F F =,则该双曲线的离心率为( )A .2B .52C .53D .5二、填空题:本题共4小题,每小题5分,共20分。

2024年山东省枣庄市高三上学期期末考试数学试题试题及答案

2024年山东省枣庄市高三上学期期末考试数学试题试题及答案

( ) ON ⊥ l 于点 N ,直线 MF 与 ON 交于点 A ,点 B 5, 0 ,则 AB 的取值范围是__________.
四、解答题:本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.
17.(10 分)
已知数列 an 中, a1 = 1, n2an+1 = (n +1)2 an .
22.(12 分)
已知双曲线 C 的渐近线方程为 3x y = 0 ,过右焦点 F (2, 0) 且斜率为 k 的直线 l 与 C 相交于 A, B 两点.
(1)求 C 的方程; (2)①若 B 点关于 x 轴的对称点为 E ,求证直线 AE 恒过定点 M ,并求出点 M 的坐标; ②若 k…3,求 AEF 面积的最大值.
比( ) A.极差变小
B.平均数变大
C.方差变小
D.第 25 百分位数变小
10.设 m = (−1,3), n = (1, 2) ,则( )
A. m − 2n = 10
B. (m − 2n) ⊥ m C.若 (m − 2n) ∥ (km + n) ,则 k = − 1
2 D. n 在 m 上的投影向量为 1 m
A1

ABD
外接球的表面积最小值为
100π 3
12.已知定义在 R 上的连续函数
f
( x) ,其导函数为
f ( x) ,且
f
(0) = e,
f
1 2
=
1
பைடு நூலகம்,函数
y
=
f
x
+
1 2

奇函数,当 x 1 时 f ( x) f ( x) ,则( )
2

山东省青岛市2023-2024学年高三上学期期末学业水平检测数学试题

山东省青岛市2023-2024学年高三上学期期末学业水平检测数学试题

2023-2024学年度第一学期期末学业水平检测高三数学试题本试卷共4页,22题.全卷满分150分,考试用时120分钟. 注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上,并将条形码粘贴在答题卡指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,请将答题卡上交。

一、单项选择题:本大题共8小题。

每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合()1,3A =-,}0{|B x x a =+≥,若{}1|A B x x =>-,则实数a 的取值范围是( )A .[]3,1-B .(]3,1-C .[)3,1-D .()3,1-2.复数z a i =+(a R ∈,i 为虚数单位),z 是z 的共轭复数,若()()111z z ++=,则a =( ) A .2-B .1-C .1D .23.在四边形ABCD 中,四个顶点A ,B ,C ,D 的坐标分别是()2,0-,()1,3-,()3,4,()2,3,E ,F 分别为AB ,CD 的中点,则EF AB ⋅=( ) A .10B .12C .14D .164.2023年是共建“一带一路”倡议提出十周年.而今“一带一路”已成为当今世界最受欢迎的国际公共产晶和最大规模的国际合作平台。

树人中学历史学科组近期开展了“回望丝路”系列主题活动,组织“一带一路”知识竞赛,并对学生成绩进行了汇总整理,形成以下直方图。

该校学生“一带一路”知识竞赛成绩的第60百分位数大约为( )A .72B .76C .78D .855.已知等差数列{}n a 各项均为正整数,11123a a a a =++,210a <,则其公差d 为( )A .0B .1C .2D .46.已知点F 是抛物线()2:20E y px p =>的焦点,过点()的直线l 与曲线E 交于点A ,B ,若2AF BF +的最小值为14,则E 的准线方程为( )A .4y =-B .2y =-C .4x =-D .2x =-7.已知正方体1111ABCD A B C D -,E ,F 是线段AC 上的点,且1AE EF FC ==,分别过点E ,F 作与直线1AC 垂直的平面α、β,则正方体夹在平面α与β之间的部分的体积占整个正方体体积的( ) A .13B .12C .23D .348.已知O 为坐标原点,双曲线2222:1(0,0)x y E a b a b-=>>的左,右焦点依次为12,F F ,过点1F 的直线与E在第一象限交于点P ,若122PF PF =,OP =,则E 的渐近线方程为( )A .y =B .y =C .y x =±D .2y x =±二、多项选择题:本大题共4小题.每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求。

安徽省六安市2024届高三上学期期末教学质量检测数学试题含答案

安徽省六安市2024届高三上学期期末教学质量检测数学试题含答案

六安市2024年高三教学质量检测数学试题(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2log 1,A x x x =≤∈Z,{}220B x xx =+-<,则A B = ()A.{}0,1 B.{}2,1-- C.{}1,0- D.{}1-【答案】D 【解析】【分析】解出对数不等式和一元二次不等式,再根据交集含义即可.【详解】2log ||1x ≤,即22log ||log 2x ≤,则22x -≤≤且0x ≠,则{}2,1,1,2A =--,{}21B x x =-<<,所以{}1A B ⋂=-.故选:D .2.已知复数z 的共轭复数在复平面内对应的点为()2,2-,则复数1z的虚部为()A.1-B.i- C.14-D.1i 4-【答案】C 【解析】【分析】得到22i z =+,利用复数除法法则得到111i 44z =-,求出虚部.【详解】由已知得22i z =+,()()122i 1i 11i 22i 22i 444z --===-+-,则复数1z 的虚部为14-.故选:C3.已知向量a =,向量(1,b =- ,则a 与b 的夹角大小为()A.30︒B.60︒C.120︒D.150︒【答案】D 【解析】【分析】根据给定条件,利用向量夹角的坐标表示求解即得.【详解】向量a =,(1,b =-,则cos ,222a b 〈〉==-⨯ ,而0,180a b ︒≤〈〉≤︒ ,所以a,b的夹角为150︒.故选:D4.等差数列{}n a 的公差不为0,其前n 项和为n S ,若()83124m S a a a =++,则m =()A.11B.12C.13D.14【答案】C 【解析】【分析】由等差数列的前n 项和公式与通项公式转化为基本量计算即可.【详解】设等差数列{}n a 的公差为d ,所以81828S a d =+,则有()11118282214a d a d a m d a +=+++-+⎡⎤⎣⎦,即()141d m d =+,又0d ≠,所以114m +=,所以13m =.故选:C.5.函数()e 4,1ln ,1x x x f x x x ⎧+-<=⎨≥⎩,若()()()21105f a f a f +≤--,则实数a 的取值范围是()A.{}1- B.(],1-∞-C.[)1,-+∞ D.11,e⎡⎫--⎪⎢⎣⎭【答案】A 【解析】【分析】原不等式变形为()()25110f a f a ⎡⎤+≤-⎣⎦,再利用分段函数的单调性即可得到不等式,解出即可.【详解】当1x <时,()e 4xf x x =+-,因为e ,4x y y x ==-在(),1∞-上单调递增,此时()f x 单调递增,当1x ≥时,易知()ln f x x =单调递增,且当1x =时,1e 14e 30ln1+-=-<=,则()f x 在R 上单调递增,因为211a +≥,则()()()()()222215ln 1ln5ln5151f a f a a f a ⎡⎤++=++=+=+⎣⎦,所以由()()()21105f a f a f +≤--得()()25110f a f a ⎡⎤+≤-⎣⎦,所以()25110a a +≤-,解得1a =-.故选:A .6.已知ππcos 2cos 63αα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,则2πsin 23α⎛⎫+= ⎪⎝⎭()A.35 B.45C.45-D.35-【答案】B 【解析】【分析】根据诱导公式结合二倍角公式,利用齐次式计算可得.【详解】因为πππ632αα⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭,所以ππcos sin 63αα⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,则ππsin 2cos 33αα⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,即πtan 23α⎛⎫+= ⎪⎝⎭,所以222πππ2sin cos 2tan 2πππ4333sin 22sin cos πππ3335sin cos tan 1333ααααααααα⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭+=++=== ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:B.7.圆()222:0O x y r r +=>上一点1,22A r r ⎛⎫⎪⎝⎭关于x 轴的对称点为B ,点E ,F 为圆O 上的两点,且满足EAB FAB ∠=∠,则直线EF 的斜率为()A.B.3C.3D.13【答案】B 【解析】【分析】根据圆的性质以及斜率乘积与直线垂直的关系即可.【详解】由EAB FAB ∠=∠知BOE BOF ∠=∠,所以OB EF ⊥,而212OB OArk k r =-=-=,∴3EF k =.故选:B.8.某种生命体M 在生长一天后会分裂成2个生命体M 和1个生命体N ,1个生命体N 生长一天后可以分裂成2个生命体N 和1个生命体M ,每个新生命体都可以持续生长并发生分裂.假设从某个生命体M 的生长开始计算,记n a 表示第n 天生命体M 的个数,n b 表示第n 天生命体N 的个数,则11a =,10b =,则下列结论中正确的是()A.413a = B.数列{}nnb a 为递增数列C.5163ni b==∑ D.若{}n n a b λ+为等比数列,则1λ=【答案】B 【解析】【分析】根据给定条件,求出递推公式,进而求出数列{},{}n n a b 的通项公式,再逐项分析判断即得.【详解】依题意,12n n n a a b +=+,12n n n b b a +=+,则113()n n n n a b a b +++=+,而111a b +=,因此数列{}n n a b +是首项为1,公比为3的等比数列,13n n n a b -+=,又11n n n n a b a b ++=--,因此111n n a a b b -=-=,于是1312n n a -+=,1312n n b --=,对于A ,3431142a +==,A 错误;对于B ,11131213131n n n n n b a ----==-++,显然数列12{}31n -+是递减数列,因此{}n n b a 为递增数列,B 正确;对于C ,51014134058ni b==++++=∑,C 错误;对于D ,1122331,2,54a b a b a b λλλλλ==+=++++,由{}n n a b λ+为等比数列,得2(2)54λλ+=+,解得1λ=或1λ=-,当1λ=时,13n n n b a λ-+=,显然数列{}n n a b λ+是等比数列,当1λ=-时,1n n a b λ+=,显然数列{}n n a b λ+是等比数列,因此当数列{}n n a b λ+是等比数列时,1λ=或1λ=-,D 错误.故选:B【点睛】思路点睛:涉及求数列单调性问题,可以借助作差或作商的方法判断单调性作答,也可以借助函数单调性进行判断.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列函数中,既是偶函数,又在区间()0,∞+上单调递增的是()A.ln y x =B.ln y x= C.2y x -= D.e e x xy -=+【答案】AD 【解析】【分析】A 选项,根据函数奇偶性得到()ln f x x =为偶函数,且在()0,∞+单调递增,A 正确;B 不满足奇偶性,C 不满足单调性;D 选项,满足为偶函数,且求导得到函数在()0,x ∈+∞上单调递增,得到答案.【详解】A 选项,()ln f x x =定义域为()(),00,x ∈-∞⋃+∞,且()()ln ln f x x x f x -=-==,故()ln f x x =为偶函数,且()0,x ∈+∞时,ln y x =单调递增,故A 正确;B 选项,ln y x =的定义域为()0,∞+,故不是偶函数,故B 项错误;C 选项,()0,x ∈+∞时,2y x -=单调递减,故C 项错误;D 选项,()e exxg x -=+的定义域为R ,且()()e e x xg x g x --=+=,故()e exxg x -=+是偶函数,且()0,x ∈+∞时,()e e0xxg x -'=->,函数单调递增,故D 项正确.故选:AD10.地震释放的能量E 与地震震级M 之间的关系式为lg 4.8 1.5E M =+,2022年9月18日我国台湾地区发生的6.9级地震释放的能量为1E ,2023年1月28日伊朗西北发生的5.9级地震释放的能量为2E ,2023年2月6日土耳其卡赫拉曼马拉什省发生的7.7级地震释放的能量为3E ,下列说法正确的是()A.1E 约为2E 的10倍B.3E 超过2E 的100倍C.3E 超过1E 的10倍D.3E 低于1E 的10倍【答案】BC 【解析】【分析】根据题意,结合对数运算公式,即可判断.【详解】A.()12lg lg 1.5 6.9 5.9E E -=⨯-,所以 1.51210E E =,故A 错误;B.()32lg lg 1.57.7 5.9E E -=⨯-, 2.73210100E E =>,故B 正确;C.()31lg lg 1.57.7 6.9E E -=⨯-, 1.2311010E E =>,故C 项正确,D 项错误.故选:BC11.已知函数()f x 的导函数为()f x ',对任意的正数x ,都满足()()()22f x xf x f x x <<-',则下列结论正确的是()A.()1122f f ⎛⎫< ⎪⎝⎭B.()()1122f f <C.()11422f f ⎛⎫<- ⎪⎝⎭D.()()11214f f <+【答案】BC 【解析】【分析】设()()()0f x g x x x=>,利用导数求出()g x 的单调性,据此即可判断A 和B 选项,设()()()220f x x h x x x-=>,根据导数求出()h x 的单调性,据此即可求解C 和D 选项.【详解】设()()()0f x g x x x=>,则()()()20xf x f x g x x'-='>,所以()g x 在()0,∞+上单调递增,由()112g g ⎛⎫>⎪⎝⎭得()1122f f ⎛⎫> ⎪⎝⎭,故A 项错误;由()()12g g <得()()1122f f <,故B 项正确;设()()()220f x x h x x x-=>,则()()()()()()()()243222220f x x f x x x xf x f x x h x x x ---⋅--=''=<',所以()h x 在()0,∞+上单调递减,由()112h h ⎛⎫<⎪⎝⎭得()11422f f ⎛⎫<- ⎪⎝⎭,故C 项正确:由()()12h h >得()()11214f f >+,故D 项错误.故选:BC.12.在棱长为1的正方体1111ABCD A B C D -中,P 为棱上一点,满足1PA PC d +=(d 为定值),记P 点的个数为n ,则下列说法正确的是()A.当d =2n =B.1d <<+时,6n =C.当d =时,15n =D.n 的最大值为18【答案】AD 【解析】【分析】由点P 的位置进行分类讨论判断求解即可.【详解】当点P 位于A 或1C 处时,d当P 在AB 棱上由A 到B 移动时,d 1,当P 在AD ,1AA ,1C C ,11C B ,11C D 等棱上移动时,d 1+当P 在1BB 棱上由B 到1B 移动时,d 由11+;当P 在BC ,DC ,1D D ,11A B ,11A D 等棱上移动时,d 也是由1+再由增大到1+.故选:AD.三、填空题:本题共4小题,每小题5分,共20分.13.抛物线24y x =的焦点F 与x 轴上一点A 的连线的中点P 恰在抛物线上,则线段AF 的长为______.【答案】316##0.1875【解析】【分析】根据题意求线段AF 的中点坐标,结合抛物线的定义分析求解.【详解】因为24y x =,即214x y =,可知抛物线的焦点10,16F ⎛⎫⎪⎝⎭,准线为116y =-,设(),0A a ,则线段AF的中点为1,232a ⎛⎫⎪⎝⎭,则113321632PF =+=,所以3216AF PF ==.故答案为:316.14.如图,在四边形ABCD 中,AD AB ⊥,120ADC ∠=︒,AB =,1AD =,2CD =,求四边形ABCD 绕直线AD 旋转一周所成几何体的表面积为______.【答案】(12π+【解析】【分析】作出辅助线,求出各边长度,求出以AB 为半径的圆的面积,以CD 为母线和CE 为半径的圆锥的侧面积,以BC 为母线的圆台的面积,相加后得到答案.【详解】作CE AD ⊥,CFAB ⊥,E ,F 为垂足,因为120ADC ∠=︒,所以60EDC ∠=︒,因为2CD =,所以1DE =,CE =,故==AF CE ,又AB =1AD =,故2CF AE AD DE ==+=,BF AB AF =-=,由勾股定理得CB ==,四边形ABCD 绕直线AD 旋转一周所成几何体的表面积分为三部分,以AB 为半径的圆的面积(2π12π=,以CD 为母线和CE 为半径的圆锥的侧面积πrl =,以BC 为母线的圆台的侧面积+=所以该几何体的表面积为(12π+.故答案为:(12π+15.已知函数()()()22cos0f x x ωω=>的最小正周期为π,将函数()y f x =的图象上的所有点向右平移π6个单位长度,再将所得的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到()y g x =的图象,则()y g x =在ππ,124⎡⎤⎢⎥⎣⎦上的值域为______.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】【分析】化简()f x 的解析式,根据()f x 的最小正周期求得ω,根据三角函数图象变换的知识求得()g x ,进而求得()g x 在ππ,124⎡⎤⎢⎣⎦上的值域.【详解】()cos21f x x ω=+,2ππ2ω=,22ω=,()cos21f x x =+,将函数()y f x =的图象上的所有点向右平移π6个单位长度,得到ππcos 21cos 2163y x x ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,再将所得的图象上各点的横坐标缩短为原来的12,得到()πcos 413g x x ⎛⎫=-+ ⎪⎝⎭,因为ππ,124x ⎡⎤∈⎢⎥⎣⎦,所以π2π40,33x ⎡⎤-∈⎢⎥⎣⎦,所以π1cos 4,132x ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以()y g x =在ππ,124⎡⎤⎢⎣⎦上的值域为1,22⎡⎤⎢⎥⎣⎦.故答案为:1,22⎡⎤⎢⎥⎣⎦16.已知2F 是双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,圆222:O x y a +=与双曲线C 的渐近线在第一象限交于点A ,点B 在双曲线C 上,222BF F A =-,则双曲线C 的渐近线方程为______.【答案】2y x =±【解析】【分析】求出点A 的坐标及2AF 长,由222BF F A =-可得点A 为2BF 的中点,再结合双曲线定义求解即得.【详解】由222BF F A =-,得点A 为2BF 的中点,记1F 为C 的左焦点,连接1BF ,令半焦距为c ,则122BF OA a ==,由222b y x ax y a ⎧=⎪⎨⎪+=⎩,解得2a x cab y c ⎧=⎪⎪⎨⎪=⎪⎩,即2(,)a ab A c c ,而2(,0)F c ,因此2222()()a ab AF c b c c=-+=,由双曲线定义得222b a a -=,即2b a =,所以双曲线C 的渐近线方程为2y x =±.故答案为:2y x=±四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为n S ,()()140n n S a λλλ-=->.(1)求证:数列{}n a 为等比数列;(2)当2λ=时,设1221log log n n n a n a n b a a ++++=+,求数列{}n b 的前n 项和n T .【答案】(1)证明见解析(2)261939n n nT n +=+【解析】【分析】(1)根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩作差得到1n n a a λ+=,即可得证;(2)由(1)可得12n n a +=,则321122323n n n b n n n n ++=+=+-++++,再利用裂项相消法计算可得.【小问1详解】证明:因为()()140n n S a λλλ-=->,当1n =时,()1114S a λλ-=-,解得14a =,由()14n n S a λλ-=-得()1114n n S a λλ++-=-,两式作差得()()()111144n n n n S S a a λλλλ++---=---,即()111n n n a a a λλλ++-=-,则1n n a a λ+=,又0λ>,所以数列{}n a 是首项为4,公比为λ的等比数列.【小问2详解】当2λ=时,由(1)得11422n n n a -+=⨯=,又223121322232log log log log 2322n n n n n n n a n a n n n b a a n n ++++++++++=+=+=+++,所以322131112232323n n n n n b n n n n n n +++++-=+=+=+-++++++,所以1111112344523n T n n n ⎛⎫⎛⎫⎛⎫=+-+-+⋅⋅⋅+-⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭1111112344523n n n ⎛⎫=+-+-+⋅⋅⋅+- ⎪++⎝⎭21161923339n n n n n +⎛⎫=+-=⎪++⎝⎭.18.在ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c .(1)若12b a =,6sin sin B A -=,求角A 的值;(2)若π3A =,且b 是a 和3c 的等差中项,求cos B 的值.【答案】(1)π3A =或2π3(2)1cos 7B =-【解析】【分析】(1)根据题意利用正弦定理边化角即可得结果;(2)由等差中项可得23a b c =-,结合余弦定理解得83b c =,73a c =,代入余弦定理即可得结果.【小问1详解】因为12b a =,由正弦定理sin sin b a B A=得1sin sin 2B A =,又因为6sin sin B A -=sin 2A =,且()0,πA ∈,所以π3A =或2π3.【小问2详解】显然0,0,0a b c >>>,由b 是a 和3c 的等差中项得23b a c =+,即230a b c =->,可得32b c >,因为π3A =,由余弦定理2222cos a b c bc A =+-可得()22223b c b c bc -=+-,化简得2231180b bc c -+=,即()()380b c b c --=,解得83b c =或b c =(舍去),由23a b c =-,可得73a c =,由余弦定理222cos 2a c b B ac +-=,得22278133cos 7723c c c B c c ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭==-⎛⎫⨯ ⎪⎝⎭.19.已知函数()()36R f x x ax a =+-∈.(1)若函数()f x 的图象在2x =处的切线与x 轴平行,求函数()f x 的图象在3x =-处的切线方程;(2)讨论函数()f x 的单调性.【答案】19.15480x y -+=20.答案见解析【解析】【分析】(1)先求导函数再求斜率最后写出切线方程;(2)分类讨论列表根据导函数求单调性.【小问1详解】()23f x x a ='+.由题意()2120f a ='+=,解得12a =-,所以()3126f x x x =--,()33f -=,()315f '-=()f x 在3x =-处的切线方程为15480x y -+=【小问2详解】()23f x x a ='+.①当0a ≥时,()0f x '≥,()f x 在R 上单调递增.②当0a <时,由()0f x '=得x =,()f x 在R 上的变化情况如下表:由上表可得()f x 在,∞⎛- ⎝上单调递增,在⎛ ⎝上单调递减,在∞⎫+⎪⎪⎭上单调递增.综上,当0a ≥时,增区间为(),∞∞-+,无减区间;当0a <时,增区间为,∞⎛- ⎝和∞⎫+⎪⎪⎭,减区间为⎛ ⎝.20.如图,在三棱锥A BCD -中,CE BD ⊥,垂足为点E ,AH ⊥平面BCD ,垂足H 在CE 上,点F 在AC 上,且CEF CAH ∠=∠.(1)证明:AC ⊥平面BDF ;(2)若22BE DE ==,22CH EH ==,三棱锥A BCD -的体积为BF 与平面ABD 所成角的正弦值.【答案】(1)证明见解析(2)5.【解析】【分析】(1)利用线面垂直得到线线垂直,由CEF CAH ∠=∠,可得出AC EF ⊥,利用线面垂直的判定定理可以证得AC ⊥平面BDF ;(2)通过三棱锥A BCD -的体积,可以求出AH ,进一步求AC ,由两个三角形AHC ,EFC 相似,得出F 为AC 的中点,然后建立空间直角坐标系,求平面ABD 的法向量,进而可以求得直线与平面所成角的正弦值.【小问1详解】由AH ⊥平面BCD ,BD ⊂平面BCD ,得AH BD ⊥,又CE BD ⊥,而AH ⊂平面ACE ,CE ⊂平面ACE ,AH CE H = ,所以BD ⊥平面ACE ,又AC ⊂平面ACE ,所以BD AC ⊥.再由AH ⊥平面BCD ,EC ⊂平面BCD ,得AH EC ⊥,得90AHC ∠=︒,又CEF CAH ∠=∠,ACH ECF ∠=∠,得90EFC AHC ︒∠=∠=,即AC EF ⊥.又EF ⊂平面BDF ,BD ⊂平面BDF ,EF BD E = ,所以AC ⊥平面BDF .【小问2详解】由条件知11133322A BCD BCD V S AH BD CE AH AH -=⋅=⨯⨯⨯⨯==所以AH =,在Rt AHC 中,2228412AC AH CH =+=+=,所以AC =由(1)知Rt Rt AHC EFC ~△△,所以FC ECHC AC =,即2FC =,得FC =,可知F 为AC 的中点,过点H 作HG BD ∥交BC 于点G由(1)易得HG ,HC ,HA 两两垂直,以{HG 、HC 、}HA正交基底,建立空间直角坐标系H xyz -,如图所示由题意可知,(0,0,A ,()2,1,0B -,()0,1,0E -,()0,2,0C,(F .则(0,1,EA = ,()2,0,0EB =,(2,BF =- ,设平面ABD 的一个法向量为(),,n x y z =,则020EA n y EB n x ⎧⋅=+=⎪⎨⋅==⎪⎩,令1z =-,则y =,所以平面ABD的一个法向量()0,1n =-,设直线BF 与平面ABD 所成角θ,则sin =cos<,5n BF n BF n BFθ⋅>===⋅.故直线BF 与平面ABD所成角的正弦值为5.21.平面内一动点P 到直线:4l y =的距离,是它到定点()0,1F 的距离的2倍.(1)求动点P 的轨迹Γ的方程;(2)经过点F 的直线(不与y 轴重合)与轨迹Γ相交于M ,N 两点,过点M 作y 轴平行线交直线l 于点T ,求证:直线NT 过定点.【答案】(1)22143y x +=(2)证明见解析【解析】【分析】(1)由题意得4y -=,化简即可得解;(2)设直线MN 的方程以及,,M N T 的坐标,联立若椭圆方程,由韦达定理得()121232kx x x x =+,表示出NT 的方程,令0x =,证明此时y 为定值即可得证.【小问1详解】由题意,设动点P 的坐标为(),x y,则4y -=,平方整理得22143y x +=,所以点P 的轨迹Γ方程为22143y x+=.【小问2详解】由题意,设直线MN 的方程为1y kx =+,()11,M x y ,()22,N x y ,则()1,4T x .将1y kx =+代入22143y x +=得()2234690k x kx ++-=,所以122634k x x k -+=+,122934x x k -=+,显然0∆>,所以()121232kx x x x =+.因为直线NT 的方程为()212144y y x x x x --=--,令0x =,则()21221221122121214144x x kx x x y x x kx x y x x x x x x -+---===---()()21122121213545222x x x x x x x x x x --+-===--,因此,直线NT 过定点50,2⎛⎫ ⎪⎝⎭.【点睛】关键点点睛:本题第二问的关键是采用设线法,设直线MN 的方程为1y kx =+,再将其椭圆方程联立得到韦达定理式,再化积为和得到()121232kx x x x =+,再得到直线NT 的方程,令0x =计算即可.22.已知函数()()()22ln 211R 2m f x x x m x m =+-++∈.(1)求函数()f x 的极值;(2)设函数()f x 有两个极值点12,x x ,求证:()()122f x f x f m ⎛⎫+< ⎪⎝⎭.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)求定义域,求导,对导函数因式分解,分0m ≤,12m =,12m >,102m <<,得到函数的单调性,进而得到函数的极值情况;(2)由(1)得110,,22m ∞⎛⎫⎛⎫∈⋃+ ⎪ ⎪⎝⎭⎝⎭,并得到()()12212ln 222f x f x m m m +=---,2222ln 44f m m ⎛⎫=-+ ⎪ ⎪⎝⎭,作差法得到()()21222f x f x f m ⎛⎫⎫+-=-- ⎪⎪ ⎪⎭⎝⎭,结合m 的范围得到结论.【小问1详解】()()22ln 2112m f x x x m x =+-++的定义域为()0,∞+,()()()()()()2212212210mx m x x mx f x mx m x x x x-++--'=+-+==>①若0m ≤,则()20f '=,()0,2x ∈时()0f x '>,()2,x ∞∈+时()0f x '<,故()f x 在()0,2x ∈上单调递增,在()2,x ∞∈+上单调递减,所以函数的极大值为()22ln221f m =--,无极小值,②若12m =,则()()2202x f x x'-=≥,()f x 在()0,∞+上单调递增,无极值.③若12m >,由()()()210x mx f x x--'==得2x =或1x m =,10,x m ⎛⎫∈ ⎪⎝⎭时()0f x '>,1,2x m ⎛⎫∈ ⎪⎝⎭时()0f x '<,()2,x ∞∈+时()0f x '>,故()f x 在10,m ⎛⎫ ⎪⎝⎭,()2,∞+上单调递增,在1,2m ⎛⎫⎪⎝⎭上单调递减,所以极大值为112ln 12f m m m ⎛⎫=---⎪⎝⎭,极小值为()22ln221f m =--.④若102m <<,由()()()210x mx f x x--'==得2x =或1x m =,()0,2x ∈时()0f x '>,12,x m ⎛⎫∈ ⎪⎝⎭时()0f x '<,1,x m ∞⎛⎫∈+ ⎪⎝⎭时()0f x '>,故()f x 在()0,2,1,m ∞⎛⎫+⎪⎝⎭上单调递增,在12,m ⎛⎫⎪⎝⎭上单调递减,所以极大值为()22ln221f m =--,极小值为112ln 12f m m m ⎛⎫=---⎪⎝⎭.综上,当0m ≤时,极大值为()22ln221f m =--,无极小值;当102m <<时,极大值为()22ln221f m =--,极小值为112ln 12f m m m ⎛⎫=--- ⎪⎝⎭;当12m =时,()f x 无极值;当12m >时,极大值为112ln 12f m m m ⎛⎫=--- ⎪⎝⎭,极小值为()22ln221f m =--.【小问2详解】由(1)知函数()f x 有两个极值点时,110,,22m ∞⎛⎫⎛⎫∈⋃+ ⎪ ⎪⎝⎭⎝⎭.()()()121122ln2212ln 12f x f x f f m m m m ⎛⎫+=+=----- ⎪⎝⎭212ln222m m m=---,()222224ln 222122ln 44f m m m m m ⎛⎫=+-++=-++ ⎪ ⎪⎝⎭,所以()()122122462f x f x f m m m ⎛⎫+-=--++- ⎪⎪⎝⎭22442⎫=-+-=-⎪⎭,因为110,,22m ∞⎛⎫⎛⎫∈⋃+ ⎪ ⎪⎝⎭⎝⎭2≠,所以()()212220f x f x f m ⎛⎫⎫+-=-+< ⎪⎪ ⎪⎭⎝⎭,即()()1222f x f x f m ⎛⎫+<- ⎪ ⎪⎝⎭.【点睛】方法点睛:在导数解答题中,单调性问题是绕不开的一个问题,因为单调性是解决后续问题的关键,利用导函数求解函数单调性步骤,先求定义域,再求导,导函数能因式分解的要进行因式分解,根据导函数的正负号,确定函数的单调区间,若不能直接求出,可能需要多次求导.。

高三数学试题与解析-惠州市2025届高三第一次调研考试暨惠州高二期末考试+数学

高三数学试题与解析-惠州市2025届高三第一次调研考试暨惠州高二期末考试+数学

惠州市2025届高三第一次调研考试试题数学2024.07全卷满分150分,时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上.2.作答单项及多项选择题时,选出每个小题答案后,用2B 铅笔把答题卡上对应题目的答案信息点涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效.3.非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效.一、单项选择题:本题共8小题,每小题满分5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求,选对得5分,选错得0分.1. 已知集合{}{}230,ln 0A x x x B x x =-<=>,则A B =I ( )A. {}01x x << B. {}0x x > C. {}03x x << D. {}13x x <<2. 若i(1)1z -=,则z z +=( )A. 2- B. 1- C. 1D. 23. 在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于( )A. 40B. 42C. 43D. 454. 732x æçè的展开式中常数项是( )A. 14B. 14- C. 42D. 42-5. 在正三棱柱111ABC A B C -中,若12,1AB AA ==,则点A 到平面1A BC 的距离为( )A.B.C.D. 6. 在ABC V 中,内角,,A B C 所对边分别为,,a b c .向量(,),(,)p a c b q b a c a =+=--r r .若//p q r r,则角C 的大小为( )A.π6B.π4C.π3D.2π3的7. 设点A,B 在曲线2log y x =上.若AB 的中点坐标为(5,2),则||AB =( )A. 6B.C.D. 8. 已知函数π5π()sin(3)sin(2)46f x x x w w =-+在区间(0,π)恰有6个零点,若0w >,则w 取值范围为( )A. 313(,)412B. 1317(,)1212C. 1719(,]1212D. 197(,124二、多项选择题:本题共3小题,每小题满分6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.9. 现有甲、乙两家检测机构对某品牌的一款智能手机进行拆解测评,具体打分如下表(满分100分).设事件M 表示“从甲机构测评分数中任取3个,至多1个超过平均分”,事件N 表示“从甲机构测评分数中任取3个,恰有2个超过平均分”.下列说法正确的是( )机构名称甲乙分值90989092959395929194A. 甲机构测评分数的平均分小于乙机构测评分数的平均分B. 甲机构测评分数的方差大于乙机构测评分数的方差C. 乙机构测评分数的中位数为92.5D. 事件,M N 互为对立事件10. 设公比为q 等比数列{}n a 的前n项积为n T ,若1916a a =,则( )A 54a = B. 当11a =时,q =C. 29log 18T = D. 223732a a +≥11. 在平面直角坐标系xOy 中,动点(,)P x y 的轨迹为曲线C ,且动点(,)P x y 到两个定点12(1,0),(1,0)F F -的距离之积等于3.则下列结论正确的是( )A. 曲线C 关于y 轴对称B. 曲线C 的方程为221x y ++=C. 12F PF △面积的最大值32D. ||OP 的取值范围为2]三、填空题:本题共3小题,每小题5分,共15分.12. 双曲线221-=x ky 的一个焦点是(2,0),则k =_______.的的.13. 若点(cos ,sin )A q q 关于y 轴对称点为(cos(),sin())66B p pq q ++,写出q 一个取值为___.14. 已知函数()f x 的定义域为[0,1],对于1201x x £<£,恒有12()()f x f x £,且满足1()(1)1,(()52x f x f x f f x +-==,则1(2024f =_______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y -+=相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.16. 某企业举行招聘考试,共有1000人参加,分为初试和复试,初试成绩总分100分,初试通过后参加复试.(1)若所有考生的初试成绩X 近似服从正态分布()2,N m s ,其中65,10m s ==,试估计初试成绩不低于75分的人数;(精确到个位数)(2)复试共三道题,每答对一题得10分,答错得0分,答完三道题后的得分之和为考生的复试成绩.已知某考生进入复试,他在复试中第一题答对的概率为34,后两题答对的概率均为35,且每道题回答正确与否互不影响.记该考生的复试成绩为Y ,求Y 的分布列及期望.附:若随机变量X 服从正态分布()2,N m s,则:()0.6827P X m s m s -<<+=,(22)0.9545,(33)0.9973P X P X m s m s m s m s -<<+=-<<+=.17. 在三棱锥-P ABC 中,PC ^平面π,3,2ABC PC ACB =Ð=.,D E 分别为线段,AB BC上的点,且22CD DE CE EB ====.(1)证明:DE ^平面PCD ;(2)求平面PAD 与平面PCD 夹角的余弦值.18. 如图,已知椭圆221:14x C y +=和抛物线()22:20C x py p =>,2C 的焦点F 是1C 的上顶点,过F 的的(1)求p 的值;(2)求OM ON ⋅ r r的值;(3)求OMNOABS S V V 的取值范围.19. 如果数列{}n a 对任意的*N n Î,211n n n n a a a a +++->-,则称{}n a 为“速增数列”.(1)判断数列{}2n是否为“速增数列”?说明理由;(2)若数列{}n a 为“速增数列”.且任意项Z n a Î,121,3,2023k a a a ===,求正整数k 的最大值;(3)已知项数为2k (2,Z k k ³Î)的数列{}n b 是“速增数列”,且{}n b 的所有项的和等于k ,若2n b n c =,1,2,3,,2n k =L ,证明:12k k c c +<.直线交C 2于M 、N 两点,连接NO 、MO 并延长之,分别交C 1于A 、B 两点,连接AB ,设V OMN 、V OAB的面积分别为S △OMN 、S V OAB .。

湖南省常德市2023届高三上学期期末检测数学试题及答案

湖南省常德市2023届高三上学期期末检测数学试题及答案

2022—2023学年度上学期常德市高三检测考试数 学(试题卷)本试卷满分150分,考试时间120分钟注意事项:1.所有试题的答案请在答题卡的指定区域内作答. 2.考试结束后,只交答题卡.一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{|320}A x x x =-+≤,{|22}B x x =-≤≤,则A B = A.[02], B.[12], C.[22]-,D.∅ 2. 已知复数z i =-3,则复数zz i-2在复平面内对应的点所在的象限为A .第一象限 B.第二象限 C.第三象限 D.第四象限 3. 已知向量,a b 满足a b ⋅2=,且b (3,4)=-,则向量a 在向量b 上的投影向量为A.(,)-6855B.(,)-6855C.(,)-682525D.(,)-6825254. 沙漏是我国古代的一种计时工具,是用两个完全相同的圆锥顶对顶叠放在一起组成的(如图).在一个圆锥中装满沙子,放在上方,沙子就从顶点处漏到另一个圆锥中,假定沙子漏下来的速度是恒定的.已知一个沙漏中沙子全部从一个圆锥中漏到另一个圆锥中需用时80分钟.设经过t 分钟沙漏上方圆锥中的沙子的高度与下方圆锥中的沙子的高度恰好相等(假定沙堆的底面是水平的),则t 的值为 A.10 B.20 C.60 D.705. 在平面直角坐标系中,已知点(3,4)P 为角α终边上的点,则cos2cos αα+=A.825B.1325C.2225D.2725 6. 在平面直角坐标系中,已知直线4390x y +-=与圆2220C x x y a -++=:相交的弦长为42,则a =A.8-B.2-C.2D.8 7. 已知ln a =22,ln b =33,e c =22,则A.a b c <<B.b c a <<C.b a c <<D.a c b <<8. 已知双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为1F 、2F ,过1F 的直线与曲线C 的左右两支分别交于点M 、N ,且12||:||:||1:2:3F M F N MN =,则曲线C 的离心率为 A.2 B.333 C.223 D.113二、选择题:本题共4小题,每小题5分,共20分. 在每小题给出的选项中,有多项符合 题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知抛物线2:4C y x =,O 为坐标原点,点P 为直线2x =-上一点,过点P 作抛物线C 的两条切线,切点分别为A ,B ,则 A.抛物线的焦点坐标为(0,1)B.抛物线的准线方程为1x =-C.直线AB 一定过抛物线的焦点D.OP AB ⊥10. 已知定义在R 上的函数()f x 满足0)()27(=++x f x f ,且)47(-=x f y 为奇函数,则下列说法一定正确的是A.函数()f x 的周期为27B.函数()f x 的图像关于)0,47(-对称C.函数()f x 为偶函数D.函数()f x 的图像关于47=x 对称11.下列说法正确的是A.数据6,5,3,4,2,7,8,9的上四分位数为7B.若2~(,)N ξμσ,且函数()(2)f x P x x ξ=≤≤+为偶函数,则1μ=C.若随机事件A ,B 满足:()()1P A B P A +=,则A ,B 相互独立D.已知采用分层抽样得到的样本数据由两部分组成,第一部分样本数据()1,2,,i x i n =的平均数为x ,方差为2x s ;第二部分样本数据()1,2,,i y i n =的平均数为y ,方差为2y s ,若总的样本方差为2222x yS S S +=,则x y =12. 如图,已知正方体1111ABCD A B C D -的棱长为2,,E F 分别是棱1,BC CC 的中点,P 是侧面11BCC B 内(含边界)的动点,则下列说法正确的是A.若直线1A P 与平面AEF 平行,则三棱锥P -AEF 的体积为23B.若直线1A P 与平面AEF 平行,则直线A 1B 1上存在唯一的点Q ,使得DQ 与A 1P 始终垂直C.若15A P =,则EP 的最小值为51-D.若15A P =,则11A P B C ⋅的最大值为42 三、填空题:本题共4小题,每小题5分,共20分.13. 已知函数()ln x f x e a x a -=--1,若曲线()y f x =在点(,())f 11处的切线与直线012=-+y x 垂直,则切线的方程为_____________.14. 1631(1)(2)x y x--+的展开式中的常数项为_____________.15. 若函数()2sin()(0)6f x x πωω=->在(0,)3π内存在唯一极值点,且在2[,]23ππ上单调递减,则ω的取值范围为_____________.16. 已知数列{}n a 满足首项a =11,n n na n a a n ++⎧⎪=⎨⎪⎩12,为奇数3,为偶数,则数列{}n a 的前2n 项的和为_____________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知数列{}n a 的首项a =138,且满足n n n a a a +=+1332.(1)求证:数列{}na -13是等比数列; (2)若...na a a a ++++<1231111101,求满足条件的最大整数n 的值. 18.(本小题满分12分)如图,在梯形ABCD 中,AD //BC ,且2AD =,4BC =. (1)若3AB =,2CD =,求梯形ABCD 的面积; (2)若2D B ∠=∠,证明:ABC ∆为直角三角形. 19.(本小题满分12分)如图所示的几何体是由等高的直三棱柱和半个圆柱组合而成,点G 为DE 的中点,DE 为半个圆柱上底面的直径,且90BCF ∠=︒,2CD CB CF ===.H 为BC 的中点.(1)证明:平面DEH //平面GCF ;(2)若Q 是线段HE 上一动点,求直线AQ 与平面GCF 所成角的正弦的最大值.20.(本小题满分12分)常益长高铁的试运营,标志着我省迈入“市市通高铁”的新时代.常益长高铁全线长157公里,共设有常德站、汉寿站、益阳南站、宁乡西站、长沙西站5个车站. 在试运营期间,铁路公司随机选取了乘坐常德开往长沙G 6575次复兴号列车的200名乘客,记录了他们的乘车情况,得到下表(单位:人): 上车站 下车站 汉寿站益阳南站宁乡西站长沙西站总计常德站 10 20 10 40 80 汉寿站 10 10 20 40 益阳南站 10 40 50 宁乡西站 30 30 总计10 30 30 130 200(用频率代替概率)(1)从这200名乘客中任选一人,求该乘客仅乘坐一站的概率;(2)在试营运期间,从常德上车的乘客中任选3人,设这3人到长沙下车的人数为X ,求X 的分布列,及其期望;(3)已知德山经开区的居民到常德站乘车的概率为0.6,到汉寿站乘车的概率为0.4,若经过益阳南站后高铁上有一位来自德山经开区的乘客,求该乘客到长沙下车的概率. 21.(本小题满分12分)已知点(2,1)P 为椭圆:()x y C a b a b+=>>222210上的一点,椭圆C 的离心率为32.(1)求椭圆C 的方程;(2)如图,过点P 作直线l 1、l 2,分别交椭圆于另一点M 、R ,直线l 1,l 2交直线l :x =3于N ,S ,设直线l 1,l 2的斜率分别为k 1,k 2,且k 1+k 2=0,若PMS∆面积是PRN ∆面积的2倍,求直线l 1的方程.H第19题xyOPMN R Sl l 2 l第21题图22.(本小题满分12分)已知函数()ln f x x ax x=-+12.(1)讨论函数()f x 的零点个数;(2)证明:当*n N ∈,...ln()()n n n n +++++>+⨯⨯⨯+35721122436421.2022-2023学年度上学期常德市高三检测考试数 学(参考答案)5分,部分选对的得2分,有13.20x y -= 14.96 15.5(2,]216.4344n n ⨯--三、解答题:本大题共70分,解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分10分)解:(1)n n n a a a +=+1332,n n a a +∴=+11213 ···································································· 2分 ()n na a +∴-=-1121333, {}n a ∴-13是以-13为首项,23为公比的等比数列 ························································ 5分 (2)由(1)可得:()n n a =-+112333,(())...()n n n n n a a a a --∴++++=+=+-<-12312111112333311012313即:()n n +-<2310203 (8)令()()n f n n =+-231023,当n 1≥时,()()()n f n f n +-=->1213033,()f n ∴单调递增;又()f <330,()f >340,∴满足不等式的最大整数n =33·············································································· 10分 18.(本小题满分12分)解:(1)在ABC ∆中,由余弦定理得22227cos 28AC BC AB AC BCA AC BC AC+-+∠==⋅ ···························· 1分 在ACD ∆中,由余弦定理得2222cos 24AC AD CD AC CAD AC AD AC+-∠==⋅ ········································· 2分 由BCA CAD ∠=∠有,2274AC AC AC+=,解得AC =······················································ 3分 27cos 8AC BCA AC +∴∠=(0,)BCA π∠∈,3sin 4BCA ∴∠= ··········································· 4分 ∴梯形ABCD 的面积11sin sin 22ABC ACD S S S BC AC BCA AD AC CAD ∆∆=+=⋅∠+⋅∠·········································· 6分 法二:(1)取BC 的中点E ,连AE ,则BE =CE =2 ························································· 1分∴AD =EC ,AD //EC ,∴四边形AECD 为平行四边形···················································· 2分 ∴AE =DC =2 ······································································································· 3分在ABE ∆中,2223cos 24AB BC AE B AB BC +-∴∠==⋅又(0,)BCA π∠∈,7sin 4B ∴∠= ················································································ 4分∴梯形ABCD 的面积3397sin 224ABE AECD ABE S S S S AB BE B ∆∆=+==⋅∠= ································ 6分(2)设B α∠=,ACB θ∠=,则2D α∠=,BAC παθ∠=--,2ACD παθ∠=--在ABC ∆中,由正弦定理得sin sin AC BC B BAC=∠,即4sin sin()AC ααθ=+①在ACD ∆中,由正弦定理得sin sin AC AD D ACD=∠,即2sin 2sin(2)AC ααθ=+② ······························· 8分由①②得:sin 22sin(2)sin sin()ααθααθ+=+ ··············································································· 9分化简得,cos sin()sin(2)ααθαθ+=+又sin(2)sin[()]sin cos()cos sin()αθααθααθααθ+=++=+++ 所以sin cos()0ααθ+= ···························································································· 11分 又(0,),(0,)απαθπ∈+∈所以2παθ+=,2BAC π∠=,ABC ∆为直角三角形 ························································ 12分法二:取BC 的中点E ,连AE ,则BE =CE =2∴AD =EC ,AD //EC ,∴四边形AECD 为平行四边形···················································· 8分 ∴2AEC D B ∠=∠=∠ ∴B BAE ∠=∠ ···································································································· 10分 2AE BE EC ∴=== ∴ECA EAC ∠=∠∴2EAC EAB B ECA π∠+∠=∠+∠=2BAC π∠=,ABC ∆为直角三角形 ············································································· 12分 19.(本小题满分12分)(1)证明:取DE 的中点M ,连MG 、MH ··································································· 1分 ////1MG AD HC MG HC ==且MHCG ∴四边行为平行四边形 ················································································ 2分 //MH CG ∴,又MH ⊄平面CGF//MH CGF ∴平面 ································································································ 3分 //DE CF 又,又DE ⊄平面CGF//DE CGF ∴平面 ································································································ 4分 ,,DEMH M MH DHE DE DHE =⊂⊂又平面平面//DHE CGF ∴平面平面 ························································································· 5分 (2)如图,以C 为原点,CB 为x 轴,CF 为y 轴,CD 为z 轴建立空间直角坐标系,则A (2,0,2),C (0,0,0),F (0,2,0),G (―1,1,2),H (1,0,0),E (0,2,2) ······································ 6分 则(0,2,0),(1,1,2)CF CG ==-,设面CGF 的法向量(,,)n x y z = 2020y x y z =⎧⎨-++=⎩令1z =得2,0x y ==, 即(2,0,1)n = ·········································· 8分 (,2,2),HQ HE λλλλ==-(1,2,22)AQ AH HQ λλλ=+=--- ············· 9分设所求线面角为θ,则2222|2222|4sin 5(1)4(22)5965λλθλλλλλ--+-==--++--+ ··········································· 11分所以当13λ=时,sin θ································································· 12分20.(本小题满分12分)解:(1)仅乘坐一站的乘客有10+10+10+30=60人该乘客仅乘坐一站的概率600.3200p == ····· 2分 (2)从常德上车的乘客到长沙下车的概率401802p == ····················································· 3分 故这3人到长沙下车的人数1(3,)2XB ,331()2k P x k C ⎛⎫== ⎪⎝⎭········································· 5分······················································································································· 7分13()322E x =⨯= ··································································································· 8分 (3) 记事件A :该乘客在过益阳南站后到长沙站下车,记事件B 1:该乘客在常德站上车,记事件B 2:该乘客在汉寿站上车. 12()0.6 ()0.4P B P B ==1404(|)505p A B ==,2202(|)303p A B ==······································································ 10分 1122()()(|)()(|)P A P B P A B P B P A B =+4256()0.60.45375P A =⨯+⨯=··················································································· 12分 (阅卷说明:①直接4256()0.60.45375P A =⨯+⨯=得结果的不扣分;②11()0.60.40.522P A =⨯+⨯=的本问给1分)21.(本小题满分12分)解:(1)由题可知a b ca abc ⎧+=⎪⎪⎪=⎨⎪⎪=+⎪⎩22222411 ················································································· 2分解得:28a =,22b =椭圆C 的方程为x y +=22182··················································································· 4分 (2)记1k k =,设11(,)M x y ,22(,)R x y则直线l 1:(12)y kx k =+-;直线l 2:(12)y kx k =-++联立()x y y kx k ⎧+=⎪⎨⎪=+-⎩2218212消y 得:222(41)8(12)(16164)0k x k k x k k ++-+--= 则211216164241P k k x x x k --==+,即21288241k k x k --=+ ······················································· 6分1||2|PM x ∴-又||2|N PN x =-=2||84||41PM k PN k +∴=+ ································································································· 8分 同理2||84||41PR k PS k -+=+ ····························································································· 9分 1||||sin 2PMS S PM PS MPS ∆=∠;1||||sin 2PNR S PN PR NPR ∆=∠||||2||||PMS PNR S PM PS S PN PR ∆∆∴==;即||||2||||PM PR PN PS = ······························································ 10分 22848424141k k k k +-+∴=⨯++,解得:16k = 直线l 1的方程为:11(1)63y x =+-即640x y -+=······················································· 12分22.(本小题满分12分)解:(1)由题意()ln f x x ax x=-+12的零点即为方程()f x =0的实数解,即:ln x a x x=+221························································ 1分 令ln ()x g x x x=+221,则(ln )()x x x g x x --'=321 ························································································ 2分令()ln h x x x x =--1,()ln h x x '=-;当(,)x ∈01时,()h x '>0,()h x 单调递增; 当(,)x ∈+∞1时,()h x '<0,()h x 单调递减. ()()h x h ∴≤=10 ·································································································· 3分 ()g x '∴≤0 ,()g x 在(,)+∞0单调递减,又x →+∞,()g x →0; ··················································································· 4分 所以,当0a >,y a =与函数()g x 有一个交点, ()f x 有一个零点; 当a ≤0,y a =与函数()g x 没有交点,()f x 无零点 ···················································· 5分(2)令()ln ,[,)F x x x x x=-+∈+∞121,()()x F x x x x --'=--=≤22221110 ·············································································· 6分 ()F x ∴在[,)+∞1单调递减,()()F x F ≤=10ln ()x x x ∴≤-112 ································································································ 8分 ln ()n n n n n ++∴<+12121 ····························································································· 9分 ...ln ln ln ...ln()n n n n n++++++>++++⨯⨯⨯+35721234122436421123 即...ln()()n n n n +++++>+⨯⨯⨯+35721122436421 ···························································· 12分。

广东省深圳市南山区2023届高三上学期期末数学试题(解析版)

广东省深圳市南山区2023届高三上学期期末数学试题(解析版)

南山区2022-2023学年度第一学期期末质量监测高三数学试题2023.1注意事项:1.本试卷共4页,22小题,满分150分,考试用时120分钟.2.答卷前,考生务必将自己的学校,班级和姓名填在答题卡上,正确粘贴条形码.3.作答选择题时,用2B 铅笔在答题卡上将对应答案的选项涂黑.4.非选择题的答案必须写在答题卡各题目的指定区域内相应位置上,不准使用铅笔和涂改液.5.考试结束后,考生上交答题卡.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}11M x x =-<<,(){}20N x x x =-≤,则M N ⋂=()A.(]1,2- B.(]1,0- C.[)0,1 D.(]0,2【答案】C 【解析】【分析】先求出集合N 中元素范围,再根据交集的概念可得答案.【详解】(){}]200,2N x x x =-≤=,{}11M x x =-<<[)0,1M N ∴= 故选:C.2.命题“存在无理数m ,使得2m 是有理数”的否定为()A.任意一个无理数m ,2m 都不是有理数B.存在无理数m ,使得2m 不是有理数C.任意一个无理数m ,2m 都是有理数D.不存在无理数m ,使得2m 是有理数【答案】A 【解析】【分析】利用特称命题的否定是全称命题来得答案.【详解】根据特称命题的否定是全称命题得命题“存在无理数m ,使得2m 是有理数”的否定为“任意一个无理数m ,2m 都不是有理数”故选:A.3.若()()313x a x --的展开式的各项系数和为8,则=a ()A.1B.1-C.2D.2-【答案】C 【解析】【分析】直接令1x =计算可得答案.【详解】令1x =得()()31138a --=,解得2a =故选:C.4.已知随机变量X 的分布列如下:X12Pmn若()53E X =,则m =()A.16 B.13C.23D.56【答案】B 【解析】【分析】根据期望公式及概率和为1列方程求解.【详解】由已知得5231m n m n ⎧+=⎪⎨⎪+=⎩解得13m =故选:B.5.设3log 4a =,0.50.4b =,0.52c -=,则a ,b ,c 的大小关系为()A.<<c a bB.b a c <<C.c b a <<D.<<b c a【答案】D 【解析】【分析】构造对数函数和幂函数,利用其单调性来比较大小.【详解】函数3log y x =在()0,∞+上单调递增,33log 4log 31a =>=,函数0.5y x =在[)0,∞+上单调递增,50.0.50.505.0.40.5121b c -<=<===<<b c a∴故选:D.6.在,,A B C 三个地区爆发了流感,这三个地区分别有6%,5%,4%的人患了流感,假设这三个地区的人口数之比为5:6:9,现从这三个地区中任意选取一人,则此人是流感患者的概率为()A.0.032B.0.048C.0.05D.0.15【答案】B 【解析】【分析】由题意可知,分别求出此人来自,,A B C 三个地区的概率,再利用条件概率公式和全概率公式即可求得此人是流感患者的概率.【详解】设事件D 为“此人是流感患者”,事件123,,A A A 分别表示此人来自,,A B C 三个地区,由已知可得123569()0.25,()0.3,()0.45569569569P A P A P A ======++++++,123()0.06,()0.05,()0.04P D A P D A P D A ===,由全概率公式得112233()()()()()()()0.250.060.30.050.450.040.048P D P A P D A P A P D A P A P D A =++=⨯+⨯+⨯=故选:B7.若函数()cos f x x x =在区间1ln ,ln a a ⎡⎤⎢⎥⎣⎦上的最小值为m ,最大值为M ,则下列结论正确的为()A.0m M += B.0mM = C.1mM = D.1m M +=【答案】A 【解析】【分析】求出函数在1ln ,ln a a ⎡⎤⎢⎥⎣⎦上为奇函数,数形结合得到最小值与最大值的和为0,推导出0mM <.【详解】1lnln a a=-,由题意得:ln 0a ->,故()0,1a ∈,1ln ,ln a a ⎡⎤⎢⎥⎣⎦关于原点对称,且()()()cos cos f x x x x x f x -=--=-=-,故()cos f x x x =为奇函数,则0m M +=,A 正确,D 错误;故,m M 一定异号,所以0mM <,BC 错误.故选:A8.已知交于点P 的直线1l ,2l 相互垂直,且均与椭圆22:13x C y +=相切,若A 为C 的上顶点,则PA 的取值范围为()A.B.⎡⎣C.⎤⎦D.[]1,3【答案】D 【解析】【分析】根据题意,设(),P m n ,由条件联立直线与椭圆方程,得到点P 的轨迹是圆,从而得到结果.【详解】当椭圆的切线斜率存在时,设(),P m n ,且过P 与椭圆相切的直线方程为:()y n k x m -=-,联立直线与椭圆方程()2213x y y n k x m ⎧+=⎪⎨⎪-=-⎩,消去y 可得,2221()2()()103k x k n km x n km ++-+--=所以()()2222144103k n km k n km ⎛⎫⎡⎤∆=--+--= ⎣⎦⎝⎭,即()2223210mkkmn n -++-=,设12,k k 为方程的两个根,由两切线相互垂直,所以121k k ×=-,所以22113n m-=--,即2231m n -=-,所以2224(3)m n m +=≠,当椭圆的切线斜率不存在时,此时,1m n ==±,也满足上式,所以224m n +=,其轨迹是以()0,0为圆心,2为半径的圆,又因为A 为椭圆上顶点,所以()0,1A ,当点P 位于圆的上顶点时,min 211PA =-=,当点P 位于圆的下顶点时,max 213PA =+=,所以[]1,3PA ∈,故选:D二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设复数12i z =-,22i z =(i 为虚数单位),则下列结论正确的为()A.2z 是纯虚数B.12z z -对应的点位于第二象限C.123z z +=D.12iz =+【答案】AD 【解析】【分析】根据复数的概念判断A ;算出12z z -判断B ;算出12z z +判断C ;求出1z 判断D.【详解】对于A :22i z =,其实部为零,虚部不为零,是纯虚数,A 正确;对于B :1223i z z -=-,其在复平面上对应的点为()2,3-,在第四象限,B 错误;对于C :212i z z +=+,则12z z +==,C 错误;对于D :12i z =-,则12i z =+,D 正确.故选:AD.10.下列等式能够成立的为()A.1sin15cos152︒︒=B.sin 75cos15cos75sin151︒︒+︒︒C.cos105cos75sin105cos151︒︒-︒︒=-D.cos151︒+︒=【答案】BC 【解析】【分析】利用两角和与差的正弦余弦公式及倍角公式逐一计算判断.【详解】对于A :11sin15cos15sin 3024︒︒=︒=,A 错误;对于B :()sin 75cos15cos 75sin15sin 7515sin 901︒︒+︒︒=︒+︒=︒=,B 正确;对于C :()cos105cos 75sin105cos15cos 10575cos1801︒︒-︒︒=︒+︒=︒=-,C 正确;对于D ()cos152sin 15302sin 45︒+︒=︒+︒=︒=,D 错误.故选:BC.11.在平面直角坐标系xOy 中,已知点P 在双曲线()22:0C xy λλ-=>的右支上运动,平行四边形OAPB 的顶点A ,B 分别在C 的两条渐近线上,则下列结论正确的为()A.直线AO ,AP 的斜率之积为1-B.C 的离心率为2C.PA PB +D.四边形OAPB 的面积可能为23λ【答案】AC 【解析】【分析】根据题意可得:双曲线为等轴双曲线,即可得到离心率为,渐近线方程为0x y ±=,设P 点的坐标,根据渐近线互相垂直可得:平行四边形OAPB 为矩形,利用点到直线的距离公式和基本不等式进而进行判断即可.【详解】由题意可知:双曲线()22:0C x y λλ-=>,故选项B 错误;由方程可知:双曲线()22:0C xy λλ-=>的渐近线方程为0x y ±=,不妨设点A 在渐近线0x y +=上,点B 在渐近线0x y -=上.因为渐近线互相垂直,由题意可知:平行四边形OAPB 为矩形,则1AP OB k k ==,1OA k =-,所以直线AO ,AP 的斜率之积为1-,故选项A 正确;设点00(,)P x y ,由题意知:OAPB 为矩形,则,PB OB PA OA ⊥⊥,由点到直线的距离公式可得:PA ==,PB ==PA PB +≥PA PB =,也即P 为双曲线右顶点时取等,所以PA PB +,故选项C 正确;由选项C 的分析可知:2PA PB λ⋅==,因为四边形OAPB 为矩形,所以2OAPB S PA PB λ=⋅=,故选项D 错误,故选:AC .12.如图,正方体1111ABCD A B C D -的棱长为2,若点M 在线段1BC 上运动,则下列结论正确的为()A.直线1A M 可能与平面1ACD 相交B.三棱锥A MCD -与三棱锥1D MCD -的体积之和为定值C.当1CM MD ⊥时,CM 与平面1ACD 所成角最大D.当AMC 的周长最小时,三棱锥11M CB D -的外接球表面积为16π【答案】BCD 【解析】【分析】A.利用面面平行的性质定理,判断A ;B.利用等体积转化,可判断B ;C.利用垂直关系的转化,结合线面角的定义,即可判断C ;D.首先确定点M 的位置,再利用球的性质,以及空间向量的距离公式,确定球心坐标,即可确定外接球的半径,即可判断D.【详解】A.如图,11//A C AC ,且11A C ⊄平面1ACD ,AC ⊂平面1ACD ,所以11//A C 平面1ACD ,同理1BC 平面1ACD ,且11AC ⊂平面11ABC ,1BC ⊂平面11A BC ,且1111A C BC C Ç=,所以平面11//A BC 平面1ACD ,且1A M ⊂平面11A BC ,所以1//A M 平面1ACD ,故A 错误;B.如图,过点M 作ME BC ⊥于点E ,1MF CC ⊥于点F ,根据面面垂直的性质定理可知,ME ⊥平面ACD ,MF ⊥平面1DCD ,2ME MF BE EC BC +=+==,11A MCD D MCD M ACD M DCD V V V V ----+=+()1111333ACD D CD ACD S ME S MF S ME MF =⨯⨯+⨯=⨯⨯+ 114222323=⨯⨯⨯⨯=.故B 正确;C.因为11D C ⊥平面1BCC ,MC ⊂平面1BCC ,所以11D C MC ⊥,且1MD MC ⊥,且1111D C D M D = ,11D C ⊂平面11D C M ,1D M ⊂平面11D C M ,所以MC ⊥平面11D C M ,且1MC ⊂平面11D C M ,所以1CM MC ⊥,即1CM BC ⊥,点M 是1BC 的中点,此时线段MC 最短,又因为11//BC AD ,且1BC ⊄平面1ACD ,1AD ⊂平面1ACD ,所以1//BC 平面1ACD ,即1BC 上任何一个点到平面1ACD 的距离相等,设为h ,设CM 与平面1ACD 所成角为θ,0,2πθ⎛⎫∈ ⎪⎝⎭,sin h MC θ=,当1CM MD ⊥时,线段MC 最短,所以此时sin θ最大,所以θC 正确;D.AMC 的周长为AM MC AC ++,AC 为定值,即AM MC +最小时,AMC 的周长最小,如图,将平面1BCC 展成与平面11ABC D 同一平面,当点,,A M C 共线时,此时AM MC +最小,作CN AB ⊥,垂足为N ,BM AB CN AN =⇒=,解得:2=-BM,如图,以点D 为原点,建立空间直角坐标系,()0,2,0C ,2,2M,连结1AC ,1AC ⊥平面11CB D ,且经过11CB D 的中心,所以三棱锥11M CB D -外接球的球心在1AC 上,设球心(),2,2O a a a --,则OC OM =,即()()(()(2222222222222a a a a a a +--+-=-+--+--+,解得:0a =,224R OC ==,所以外接球的表面积2416S R ππ==,故D 正确.附:证明1AC ⊥平面11CB D ,因为AB ⊥平面1BCC ,1B C ⊂平面1BCC ,所以1AB B C ⊥,又因为11B C BC ⊥,且1AB BC B =I ,AB ⊂平面1ABC ,1BC ⊂平面1ABC ,所以1B C ⊥平面1ABC ,1AC ⊂平面1ABC ,所以11B C AC ⊥,同理111B D AC ⊥,且1111B C B D B ⋂=,所以1AC ⊥平面11CB D ,且三棱锥111C CB D -是正三棱锥,所以1AC 经过11CB D 的中心.故选:BCD【点睛】思路点睛:本题考查空间几何的综合应用,难点是第四个选项的判断,充分利用数形结合和空间向量的综合应用,解决三棱锥外接球的球心问题.三、填空题:本大题共4小题,每小题5分,共20分.13.已知()1,2a =r ,()2,b m =-r ,若a b ⊥,则b = ______.【答案】【解析】【分析】先利用a b ⊥求出m ,再利用模的坐标公式计算即可.【详解】a b⊥220a b m ∴⋅=-+=,解得1m =,()2,1b ∴=-r,b ∴=.14.已知正实数x ,y 满足1x y +=,则22x y +的最小值为________.【答案】1##0.52【解析】【分析】根据基本不等式可得2124x y xy +⎛⎫≤= ⎪⎝⎭,再计算()222212x y xy x y xy =+-=-+的范围即可求解.【详解】因为1x y +=,所以2211224x y xy +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭,当且仅当12x y ==时,等号成立,所以()222112121242x y xy x x y y =+-=--⨯=+≥,所以22xy +的最小值为12,故答案为:12.15.如图是瑞典数学家科赫在1904年构造的能够描述雪花形状的图案.图形的作法为:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边.反复进行这一过程,就得到一条“雪花”状的曲线.设原正三角形(图①)的边长为1,将图①,图②,图③,图④中的图形周长依次记为1C ,2C ,3C ,4C ,则142C C C =______.【答案】163##153【解析】【分析】观察图形可知{}n C 是首项为13C =,公比为43的等比数列,即可求得结果.【详解】通过观察图形可以发现,从第二个图形开始,每一个图形的周长都在前一个图形周长的基础上增加了其周长的13,即1111433n n n n C C C C ---=+=,所以数列{}n C 是首项为13C =,公比为43的等比数列,即4321144644339,C C C C ⎛⎫⎛⎫=⨯==⨯=⎪ ⎪⎝⎭⎝⎭因此14264316943C C C ⨯==.故答案为:16316.若关于x 的方程2ln 0x a x x --=在区间()1,+∞上有且仅有一个实数根,则实数a 的取值范围为______.【答案】()1,+∞【解析】【分析】设()2ln f x x a x x =--,()1,x ∈+∞,将方程的根转换为函数零点问题,讨论函数单调性从而确定函数的变化趋势,结合零点存在定理,即可求得实数a 的取值范围.【详解】解:设()2ln f x x a x x =--,()1,x ∈+∞,则()2221a x x af x x x x--'-=-=,令()0f x '=得220x x a --=,所以22a x x =-,令()22112248g x x x x ⎛⎫=-=-- ⎪⎝⎭,()1,x ∈+∞,所以()g x 在()1,x ∈+∞单调递增,则()()1,g x ∈+∞,于是可得,当1a ≤时,方程220x x a --=在()1,x ∈+∞无解,即()0f x ¢>恒成立,所以()f x 在()1,x ∈+∞单调递增,又()10f =,所以此时方程2ln 0x a x x --=在区间()1,+∞上无零点,不符合题意;当1a >时,方程220x x a --=在()1,x ∈+∞的根为1184x +=或1184x =(舍),当1181,4x ⎛+∈ ⎝⎭,()0;f x '<当118,4x ∞⎛⎫+∈+ ⎪ ⎪⎝⎭,()0;f x '>所以()f x 在1181,4x ⎛+∈ ⎝⎭单调递减,在118,4x ∞⎛⎫+∈+ ⎪ ⎪⎝⎭单调递增,又()10f =,所以104f ⎛⎫+< ⎪ ⎪⎝⎭,又1a >,()()2ln ln 1f a a a a a a a a =--=--,设()1ln h aa a =--,1a >,所以()1110a h a a a-'=-=>恒成立,则()h a 在()1,a ∈+∞上单调递增,故()()10h a h >=,则()()ln 10f a a a a =-->,且当1a >时,()()()22411816161610a a a a a a --+=-=->,即14a <,故0118,4x a ⎛⎫∃∈ ⎪ ⎪⎝⎭,使得()00f x =,即方程2ln 0x a x x --=在区间()1,+∞上有且仅有一个实数根综上,实数a 的取值范围为()1,+∞.故答案为:()1,+∞.【点睛】关键点睛:本题考查方程的根与函数零点的关系,结合导数进行判断,属于中等题.解决本题的关键是,如果方程在某区间上有且只有一个根,可根据函数的零点存在定理进行解答,构造函数()2ln f x x a x x =--,()1,x ∈+∞,利用导数确定单调性时要分类讨论.当1a ≤,函数()f x 在()1,x ∈+∞单调递增,结合特殊值()10f =,得不符合题意,当1a >时,得()f x 在11,4x ⎛+∈ ⎪⎝⎭单调递减,在1,4x ∞⎛⎫+∈+ ⎪ ⎪⎝⎭单调递增,判断()1f ,14f ⎛⎫+ ⎪ ⎪⎝⎭,()f a 的符号,结合零点存在定理可得a 的范围.四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.设数列{}n a 的前n 项和为n S ,且()22*n n S a n =-∈N .(1)求{}n a 的通项公式;(2)设2211log log n n n b a a +=⋅,记{}n b 的前n 项和为n T ,证明:1n T <.【答案】(1)2n n a =(2)证明见解析【解析】【分析】(1)利用1n n n a S S -=-计算整理得12n n a a -=,再利用等比数列的通项公式求解即可;(2)将n b 变形为111n b n n =-+,利用裂项相消法求n T ,进一步观察证明不等式.【小问1详解】()22*n n S a n =-∈N ①,∴当2n ≥时,1122n n S a --=-②,①-②得122n n n a a a -=-,即12n n a a -=,又当1n =时,11122a S a ==-,解得12a =,∴数列{}n a 是以2为首项,2为公比的等比数列,2n n a ∴=;【小问2详解】由(1)得()1221111log 2log 211n n n b n n n n +===-⋅++,1111111122311n T n n n ∴=-+-++-=-++ ,因为101n >+,1n T ∴<18.某学校有学生1000人,其中男生600人,女生400人.为了解学生的体质健康状况,按照性别采用分层抽样的方法抽取100人进行体质测试.其中男生有50人测试成绩为优良,其余非优良;女生有10人测试成绩为非优良,其余优良.(1)请完成下表,并依据小概率值0.1α=的2χ独立性检验,分析抽样数据,能否据此推断全校学生体质测试的优良率与性别有关.性别体质测试合计优良非优良男生女生合计(2)100米短跑为体质测试的项目之一,已知男生该项成绩(单位:秒)的均值为14,方差为1.6;女生该项成绩的均值为16,方差为4.2,求样本中所有学生100米短跑成绩的均值和方差.附:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.α0.10.050.010.0050.001x α2.7063.8416.6357.87910.828参考公式:()()22221111111mnmm m iji i i i j i i i a c bc a a m a c m m =====⎛⎫⎛⎫-+-=-+-+⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑2211111nn n j j j j j j b b n b c n n ===⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭∑∑∑【答案】(1)根据小概率事件0.1α=的独立性检验,不可以认为全校学生体质测试的优良率与性别有关.(2)均值14.8;方差3.6【解析】【分析】(1)根据题意,由独立性检验的计算公式,代入计算即可判断;(2)根据题意,可得男生,女生的人数,结合均值方差的性质,代入计算即可得到结果.【小问1详解】性别体质测试合计优良非优良男生501060女生301040合计80200100()()()()()()222100500300 1.042 2.70660408020n ad bc a b c d a c b d χ-⨯-==≈<++++⨯⨯⨯,根据小概率事件0.1α=的独立性检验,不可以推断全校学生体质测试的优良率与性别有关.【小问2详解】男生人数60,女生人数40,则设男生的成绩为()1,2,,60,i a i = 女生的成绩为()1,2,,40,j b j = 所以均值为()11460164014.8100⨯+⨯=,所以()()22604060606022111111114.814.86014.86060iji i i i j i i i a ba a a =====⎛⎫⎛⎫-+-=-+-+⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑22404040111114014.84040j j j j j j b b b ===⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭∑∑∑()()6022114601414.8i i a ==-+-+∑()()4022116401614.8jj b=-+-∑()21.660601414.8=⨯+-+()24.240401614.8360⨯+-=,所以样本中所有学生100米短跑成绩的方差为3603.6100=19.如图,在三棱柱111ABC A B C -中,侧面11ACC A 为矩形,平面11ACC A ⊥平面ABC ,1AC BC ⊥,且E 为1AA 的中点.(1)证明:平面EBC ⊥平面11ACC A ;(2)若AC BC =,且1EC EC ⊥,求平面1EBC 与平面ABC 的夹角的余弦值.【答案】(1)证明见解析;(2)6.【解析】【分析】(1)先根据已知证明11AC BCC B ⊥平面,即可得到ACBC ⊥,又通过11ACC A ABC ⊥平面平面即可证明11BC ACC A ⊥平面,即可证明答案;(2)设1AC BC ==,AE x =,先通过已知与勾股定理求出1x =,建立空间直角坐标系,即可通过二面角的向量求法求出答案.【小问1详解】证明: 侧面11ACC A 为矩形,1AC CC ∴⊥,1AC BC ⊥ ,1BC 、111CC BCC B ⊂平面,且111BC CC C ⋂=,11AC BCC B ∴⊥平面,AC BC ∴⊥,11ACC A ABC ⊥ 平面平面,且平面11ACC A 平面ABC AC =,11BC ACC A ∴⊥平面,BC EBC ⊂ 平面,11EBC ACC A ∴⊥平面平面;【小问2详解】设1AC BC ==,AE x =,由题意可得EC =,1EC EC ⊥ ,1CC ∴=,E 为1AA 的中点,112AE AA CC ∴==,1EC EC ⊥2x ∴=,解得1x =,即1AE =,1122AE AA CC ===,根据第一问与题意可得:ACBC ⊥,1AC CC ⊥,1BC CC ⊥,则以C 为原点,以CA ,CB ,1CC分别为x ,y ,z轴的正方向建立如图空间直角坐标系,则()0,0,0C ,()0,1,0B ,()10,0,2C ,()1,0,1E ,则()11,0,1C E =- ,()10,1,2C B =-,设平面1EBC 的一个法向量为(),,n x y z =r,则11020C E n x z C B n y z ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,令1z =,则()1,2,1n = ,由题意可得平面ABC 的一个法向量为()0,0,1m =,设平面1EBC 与平面ABC 的夹角为α,且由图得α为锐角,则cos cos ,6n m n m n m α⋅===⋅.20.在ABC中,AB =,2AC =,D 为边BC 上一点.(1)若sin 2sin BAD CAD ∠=∠,求BDCD的值;(2)若BD CD =,且1AD =,求ABC 的面积.【答案】(1;(2)152.【解析】【分析】(1)在ABD △、ACD 中分别利用正弦定理,结合已知条件可求得BDCD的值;(2)由平面向量的线性运算可得出2AD AB AC =+,利用平面向量的数量积运算可得出cos BAC ∠的值,利用同角三角函数的平方关系以及三角形的面积公式可求得结果.【小问1详解】解:在ACD 中,由正弦定理可得sin sin CD ACCAD ADC =∠∠,可得2sin sin CAD CD ADC∠=∠,在ABD △中,由正弦定理得sin sin BD ABBAD ADB=∠∠,可得()sin πsin BAD BADBD ADC ADC ∠∠==-∠∠,因此,6sin sin sin 2sin BD BAD ADCCD ADC CAD∠∠=⋅=∠∠.【小问2详解】解:因为BD CD =,则BD DC = ,即AD AB AC AD -=- ,2AD AB AC ∴=+,所以,()222242AD AB ACAB AC AB AC =+=++⋅,即6422cos 4BAC ++∠=,即6BAC ∠=-,解得cos 4BAC ∠=-,()0,πBAC ∠∈ ,故BAC ∠为钝角,所以,10sin 4BAC ∠==,故1sin 22ABC S AB AC BAC =⋅∠=△.21.已知直线l 与抛物线2:4C y x =交于A ,B 两点,且与x 轴交于点()(),00M a a >,过点A ,B 分别作直线1:l x a =-1A ,1B ,动点N 在1l 上.(1)当1a =,且N 为线段11A B 的中点时,证明:AN BN ⊥;(2)记直线NA ,NB ,NM 的斜率分别为1k ,2k ,3k ,是否存在实数λ,使得123k k k λ+=?若存在,求λ的值;若不存在,请说明理由.【答案】(1)证明见解析;(2)2λ=.【解析】【分析】(1)取AB 的中点D ,连接DN .利用几何法,分别证明出AN ,BN 为11,A AD B BD ∠∠的角平分线,即可证明;(2)利用“设而不求法”分别表示出123,,k k k ,解方程求出λ.【小问1详解】如图示:当1a =时,()1,0M 恰为抛物线2:4C y x =的焦点.由抛物线的定义可得:11,AM AA BM BB ==.取AB 的中点D ,连接DN ,则DN 为梯形11ABB A 的中位线,所以()1112DN AA BB =+.因为D 为AB 的中点,所以()1112DA DB AA BB ==+,所以DA DN =.在ADN △中,由DA DN =可得:AND NAD ∠=∠.因为DN 为梯形11ABB A 的中位线,所以1//DN AA ,所以1AND A AN ∠=∠,所以1NAD A AN ∠=∠.同理可证:1NBD B BN ∠=∠.在梯形11ABB A 中,11180A AB B BA ∠+∠=︒,所以11180A AN NAD DBN NBB ∠+∠+∠+∠=︒,所以1180902NAD DBN ∠+∠=⨯︒=︒,所以90ANB ∠=︒,即AN BN ⊥.【小问2详解】假设存在实数λ,使得123k k k λ+=.由直线l 与抛物线2:4C y x =交于A ,B 两点,可设:l x my a =+.设()()1122,,,A x y B x y ,则24y xx my a⎧=⎨=+⎩,消去x 可得:2440y my a --=,所以124y y m +=,124y y a =-.则()()()()()121211212212121212122222222222y y y y y y y y y y m y y x a x a my a my a my a my ak k ++------+-=----++=+++=()()()()()2212122222212124444222424244m y y y y m m a m a m y y ma y y a m a ma m a ⎡⎤⎡⎤-+----⎣⎦⎣⎦==-⎡⎤⎡⎤+++-+⋅+⎣⎦⎣⎦.而1230222y y m m a a a ak +-===----.所以2m m a a λ⎛⎫-=- ⎪⎝⎭,解得:2λ=.22.已知定义在()0,∞+上的函数()e ax f x =.(1)若R a ∈,讨论()f x 的单调性;(2)若0a >,且当()0,x ∈+∞时,不等式2e ln aax xx ax⎛⎫≥⎪⎝⎭恒成立,求实数a 的取值范围.【答案】(1)分类讨论,答案见解析;(2)1[,)e+∞.【解析】【分析】(1)求出函数()f x 的导数()f x ',再分类讨论解()0f x ¢>和()0f x '<作答.(2)当01x <≤时,可得a 为任意正数,当1x >时,变形给定不等式,构造函数并利用单调性建立不等式,分离参数求解作答.【小问1详解】函数()e ax f x =,0x >,求导得:()e e e ax ax ax f x '=+=,当0a ≥时,()0f x '>,函数()f x 在()0,∞+上单调递增,当a<0时,由()0f x '>得102x a <<-,由()0f x '<得12x a >-,则()f x 在1(0,)2a-上递增,在1(,)2a-+∞上递减,所以当0a ≥时,函数()f x 的递增区间是()0,∞+;当a<0时,函数()f x 的递增区间是1(0,2a -,递减区间是1(,)2a-+∞.第21页/共21页【小问2详解】因为0a >,且当()0,x ∈+∞时,不等式2e ln (ax a x x ax≥恒成立,当01x <≤时,0a ∀>,2e ln (0ax a x x ax>≥恒成立,因此0a >,当1x >时,2e ln ()2ln e 2ln ln(ln )ln()ax a ax x a a x x ax x ax ≥⇔-≥-2ln e ln(ln e )2ln ln(ln )ax ax a a x x ⇔+≥+,令()2ln g x ax x =+,原不等式等价于(ln e )(ln )ax g g x ≥恒成立,而1()20g x a x'=+>,即函数()g x 在(1,)+∞上单调递增,因此1,ln e ln ax x x ∀>≥,即ln 1,ln x x ax x a x ∀>≥⇔≥,令ln (),1x h x x x =>,21ln ()x h x x -'=,当1e x <<时,()0h x '>,当e x >时,()0h x '<,函数()h x 在(1,e)上单调递增,在(e,)+∞上单调递减,max 1()(e)e h x h ==,因此1e a ≥,综上得1ea ≥,所以实数a 的取值范围是1[,)e +∞.【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,利用导数探求函数单调性、最值是解决问题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届高三数学质量检测暨期末考试试题一、选择题(本大题共12小题,每小题5分,共60分.)1. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .42.设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则3()2f 等于( )A.32 B .-14 C.14 D.12 3.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( ) A.12 B .1 C.32D. 3 4. 若函数()f x 的导函数2'()43f x x x =-+,则使函数(1)f x -单调递减的一个充分不必要条件是( )A . []0,1B .[]3,5 C. []2,3 D []2,45.已知 1.22a =,0.81()2b -=,52log 2c =,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a 6.等差数列{}n a 、{}n b 的前n 项和分别为n S 、Tn ,若231n n a n b n =+,则2121S T 的值为( ) A. 1315 B. 2335 C. 1117 D. 497.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还。

”其意思为:有一个人走了378里路,第一天健步行走,从第二天起脚痛每天所走的路程为前一天的一半,走了6天到达目的地,请问第二天走了 ( )A .192里B .96里C .48里D .24里8.设S n 是等差数列{a n }的前n 项和,若3613S S =,则612S S 等于( ) A .81 B .31 C .91 D . 103 9. 函数2log (2)a y x ax =-+在区间(],1-∞上是减函数,则a 的取值范围为( )A .[)2,+∞B .[)1,+∞C .[)2,3D . (2,3) 10. 函数2ln(23)2()x x f x x+-=的图象在点(-1,2)处的切线与坐标轴围成的三角形的面积等于( )A . 23B . 43C . 12D . 1611. 函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,'()f x >2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞) 12.已知函数132log ,1(),1x x f x x x x >⎧⎪=⎨⎪-+≤⎩,若对任意的x R ∈,不等式27()24f x m m ≤-恒成立,则实数的取值范围为( )A .1,8⎛⎤-∞- ⎥⎝⎦B .[)1,1,8⎛⎤-∞-+∞ ⎥⎝⎦C .[)1,+∞D .1,18⎡⎤-⎢⎥⎣⎦二、填空题(共4个小题,每小题5分,计20分)13.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于________.14.函数()ln(1)g x x x =+-的最大值是______.15. 已知函数f (x )=⎩⎪⎨⎪⎧ 2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是_______.16. 定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y )+2xy (x ,y ∈R ),f (1)=2,则f (-2)=________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知等差数列{a n }的公差是正数,且a 3a 7=-12,a 4+a 6=-4,求它的通项公式.18. (12分)设函数f (x )=x +ax 2+b ln x ,曲线y =f (x )过P (1,0),且在P 点处的切线斜率为2.(1)求a ,b 的值;(2)证明:f (x )≤2x -2.19. (12分) 已知数列{a n }的前n 项和为S n ,且a n +S n =n .(1)设c n =a n -1,求证:{c n }是等比数列;(2)求数列{a n }的通项公式.20.(12分)已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n .(1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .21. (12分)已知函数f (x )=13x 3-ax 2+(a 2-1)x +b (a ,b ∈R ). (1)若x =1为f (x )的极值点,求a 的值;(2)若y =f (x )的图像在点(1,f (1))处的切线方程为x +y -3=0,求f (x )在区间[-2,4]上的最大值.22. (12分)已知函数f (x )=ln x x-x . (1)求函数f (x )的单调区间;(2)设m >0,求f (x )在[m,2m ]上的最大值.参考答案:一、 选择题:1—6 B A D C A C 7——12 B D C C B B二、填空题(共4个小题,每小题5分,计20分)13. 180 14. 0 15. (0,1) 16. 2三、解答题17. 解 设等差数列{a n }的公差为d . 因为a 3+a 7=a 4+a 6=-4,a 3a 7=-12,所以a 3,a 7是方程x 2+4x -12=0的两根.因为d >0,所以a 3<a 7.解方程,得⎩⎪⎨⎪⎧ a 3=-6,a 7=2.由a 7=a 3+4d ,得d =2. 所以a n =a 3+(n -3)d =-6+2(n -3)=2n -12.18. (1)解 f ′(x )=1+2ax +b x . 解得⎩⎪⎨⎪⎧ a =-1,b =3. (2)证明 因为f (x )的定义域为(0,+∞),由(1)知f (x )=x -x 2+3ln x . 设g (x )=f (x )-(2x -2)=2-x -x 2+3ln x ,则g ′(x )=-1-2x +3x =-x -12x +3x .当0<x <1时,g ′(x )>0,当x >1时,g ′(x )<0.所以g (x )在(0,1)上是增加的,在(1,+∞)上是减少的.而g (1)=0,故当x >0时,g (x )≤0,即f (x )≤2x -2.19. (1)证明:∵a n +S n =n , ① ∴a n +1+S n +1=n +1. ②②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1,∴a n +1-1a n -1=12,∴{a n -1}是等比数列.首项c 1=a 1-1,又a 1+a 1=1, ∴a 1=12,∴c 1=-12,公比q =12. 又c n =a n -1, ∴{c n }是以-12为首项,公比为12的等比数列. (2)由(1)可知c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n , ∴a n =c n +1=1-⎝ ⎛⎭⎪⎫12n .20. 解 (1)设等差数列{a n }的首项为a 1,公差为d .因为a 3=7,a 5+a 7=26,所以⎩⎪⎨⎪⎧ a 1+2d =7,2a 1+10d =26, 解得⎩⎪⎨⎪⎧ a 1=3,d =2.所以a n =3+2(n -1)=2n +1, S n =3n +n n -12×2=n 2+2n . (2)由(1)知a n =2n +1,所以b n =1a 2n -1=12n +12-1=14·1n n +1=14·⎝ ⎛⎭⎪⎫1n -1n +1, 所以T n =14·(1-12+12-13+…+1n -1n +1)=14·(1-1n +1)=n 4n +1, 即数列{b n }的前n 项和T n =n 4n +1. 21. 解析: (1)f ′(x )=x 2-2ax +a 2-1, ∵x =1是f (x )的极值点,∴f ′(1)=0,即a 2-2a =0,解得a =0或2.(2)∵(1,f (1))在x +y -3=0上.∴f (1)=2, ∵(1,2)在y =f (x )的图像上,∴2=13-a +a 2-1+b , 又f ′(1)=-1,∴1-2a +a 2-1=-1, ∴a 2-2a +1=0,解得a =1,b =83, ∴f (x )=13x 3-x 2+83,f ′(x )=x 2-2x , 由f ′(x )=0可知x =0和x =2是f (x )的极值点.∵f (0)=83,f (2)=43,f (-2)=-4,f (4)=8, ∴f (x )在区间[-2,4]上的最大值为8.22. 解:(1)∵f ′(x )=1-ln x x2-1, 令f ′(x )=0,得x 2=1-ln x . 显然x =1是上面方程的解.令g (x )=x 2+ln x -1,x ∈(0,+∞), 则g ′(x )=2x +1x>0, ∴函数g (x )在(0,+∞)上单调递增. ∴x =1是方程f ′(x )=0的唯一解.∵当0<x <1时,f ′(x )=1-ln x x2-1>0; 当x >1时,f ′(x )<0. ∴函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.(2)由(1)知函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.故①当0<2m ≤1,即0<m ≤12时,f (x )在[m,2m ]上单调递增. ∴f (x )max =f (2m )=ln 2m 2m-2m . ②当m ≥1时,f (x )在[m,2m ]上单调递减,∴f (x )max =f (m )=ln m m -m . ③当m <1<2m ,即12<m <1时,f (x )max =f (1)=-1. 如有侵权请联系告知删除,感谢你们的配合!如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档