基于MATLAB的线性常系数差分方程求解

合集下载

基于MATLAB的线性常系数差分方程求解

基于MATLAB的线性常系数差分方程求解

基于MATLAB的线性常系数差分方程求解————————————————————————————————作者:————————————————————————————————日期:数字信号处理课程设计题目:基于MATLAB的线性常系数差分方程求解学院:专业:班级:学号:姓名:指导教师:目录摘要 (1)第一章背景 (3)1。

1 背景知识 (3)1。

2 《数字信号课程》特点 (3)1.3 软件介绍 (4)1.4 MATLAB及数字信号处理 (4)第二章设计目的及要求 (6)2.1 设计目的 (6)2.2 课程设计的内容要求 (7)2。

2。

1 设计要求 (7)第三章设计任务 (8)第四章设计原理 (9)4.1 差分与差分方程 (9)4。

2 线性常系数差分方程 (14)4.3 线性常系数差分方程的求解 (15)第五章设计过程 (16)5。

1 用MATLAB求解差分方程 (16)第六章设计代码及结果 (18)6.1 MATLAB源程序 (18)6.2 程序运行结果 (20)6。

3 比较结果总结 (24)第七章收获与体会 (25)致谢 (27)参考文献 (27)摘要《数字信号处理》分析了数字信号处理课程的重要性及特点,为了帮助学生理解与掌握课程中的基本概念、基本原理、基本分析方法,提出了用MATLAB进行数字信号处理课程设计的思路,并阐述了课程设计的具体方法、步骤和内容。

MATLAB语言是一种广泛应用于工程计算及数值分析领域的新型高级语言,MATLAB功能强大、简单易学、编成效率高,深受广大科技工作者的喜爱,特别是MATLAB还具有信号分析工具箱,不需具备很强的编程能力,就可以很方便地进行语音信号分析、处理和设计。

线性常系数差分方程求解是数字信号处理课程中常出现的课题,也是现代科学中值得深入研究的一个课题本文介绍了线性常系数差分方程的基本概念,论述了其求解方法,并用MATLAB具体实现了线性常系数差分方程的求解.基于MATLAB的线性常系数差分方程求解主要是用MATLAB作为工具平台,设计中涉及到差分方程的递推求解以及用filter对系数向量的归一化等等.通过数字信号处理课程的理论知识的综合运用,从实践上初步实现对数字信号的处理。

差分方程3Matlab求解

差分方程3Matlab求解

Matlab实现
• 首先建立一个关于变量n ,r的函数 • function x=sqh(n,r) • a=1+r; • x=100; • for k=1:n • x(k+1)=a*x(k); • end
• 在command窗口里调用sqh函数
k=(0:20)';
>> y1=sqh(20,0.0194); >> y2=sqh(20,-0.0324); >> y3=sqh(20,-0.0382); >> round([k,y1',y2',y3'])
• k=(0:20); • Y1=zwfz(100,21,0.18); • Y2=zwfz(100,21,0.19); • Y3=zwfz(100,21,0.20); • round([k',y1',y2',y3']) • plot(k,y1,k,y2, ':',k,y3, 'o'), • gtext('b=0.18'),gtext('b=0.19'),gtext('b=0.20')
模型及其求解
• 记一棵植物春季产种的平均数为c,种子能 活过一个冬天的(1岁种子)比例为b,活过 一个冬天没有发芽又活过一个冬天的(2 岁种子)比例仍为b,1岁种子发芽率a1,2 岁种子发芽率a2。
• 设c,a1,a2固定,b是变量,考察能一直繁殖的条件 • 记第k年植物数量为Xk,显然Xk与Xk-1,Xk-2有关,由
差 分 方 程(3) ——Matlab求解
主要内容:
1. 一阶线性常系数差分方程 2. 高阶线性常系数差分方程 3. 线性常系数差分方程组

matlab差分方程

matlab差分方程

matlab差分方程MATLAB是一种广泛使用的计算机辅助工具,其中包含了许多实用算法和解决方案。

差分方程是MATLAB中非常重要的一种工具,可以用于模拟和解决各种差分方程问题。

下面将介绍如何使用MATLAB来解决差分方程问题。

首先在MATLAB窗口中打开一个新的脚本文件(Ctrl+N),左侧显示脚本编辑器的窗口。

在窗口中输入以下内容:function dy = diffeq(t,y)dy = zeros(2,1);dy(1) = y(2);dy(2) = -0.1*y(2) - y(1) - 10*(y(1)^3);在这个脚本中,我们定义了一个名为“diffeq”的函数,它有两个参数(t和y)。

该函数返回一个长度为2的dy向量,dy是y的导数(dy/dt)。

在本例中,我们使用了系统描述的常见方法:x'=f(x,t),y是系统状态向量。

换句话说,我们将梯度设置为我们想要模拟的方程。

一旦函数被定义,我们现在可以开始运行模拟。

接下来,我们将使用MATLAB的ODE求解器来解决我们的差分方程问题。

我们可以这样编写代码:[t,y] = ode45(@diffeq,[0 30],[1 0]);在这里,ode45是MATLAB中用于解决常微分方程的函数,它需要三个参数。

第一个参数是定义我们的方程的函数(即我们之前声明的diffeq函数),第二个参数是我们期望的时间范围(从0到30,单位为秒),第三个参数是初值(在这个例子中,我们使用y(0)=1和y'(0)=0作为初值)。

运行后,MATLAB会将结果存储在两个向量t和y中,我们可以使用下面的代码来显示不同时间点t的y值:plot(t,y(:,1),'-')在此代码中,我们使用plot函数来绘制y的前一个元素(我们的状态向量正在被建模)以及时间t之间的关系。

结果应该是一个类似于与时间的函数y(t)的曲线。

这个值可以根据不同的初值和系统变量被改变。

差分方程的解法分析及MATLAB实现(程序)

差分方程的解法分析及MATLAB实现(程序)

差分方程的解法分析及MATLAB 实现(程序)摘自:张登奇,彭仕玉.差分方程的解法分析及其MATLAB 实现[J]. 湖南理工学院学报.2014(03) 引言线性常系数差分方程是描述线性时不变离散时间系统的数学模型,求解差分方程是分析离散时间系统的重要内容.在《信号与系统》课程中介绍的求解方法主要有迭代法、时域经典法、双零法和变换域法[1].1 迭代法例1 已知离散系统的差分方程为)1(31)()2(81)1(43)(-+=-+--n x n x n y n y n y ,激励信号为)()43()(n u n x n =,初始状态为21)2(4)1(=-=-y y ,.求系统响应. 根据激励信号和初始状态,手工依次迭代可算出2459)1(,25)0(==y y . 利用MATLAB 中的filter 函数实现迭代过程的m 程序如下:clc;clear;format compact;a=[1,-3/4,1/8],b=[1,1/3,0], %输入差分方程系数向量,不足补0对齐n=0:10;xn=(3/4).^n, %输入激励信号zx=[0,0],zy=[4,12], %输入初始状态zi=filtic(b,a,zy,zx),%计算等效初始条件[yn,zf]=filter(b,a,xn,zi),%迭代计算输出和后段等效初始条件2 时域经典法用时域经典法求解差分方程:先求齐次解;再将激励信号代入方程右端化简得自由项,根据自由项形式求特解;然后根据边界条件求完全解[3].用时域经典法求解例1的基本步骤如下.(1)求齐次解.特征方程为081432=+-αα,可算出41 , 2121==αα.高阶特征根可用MATLAB 的roots 函数计算.齐次解为. 0 , )41()21()(21≥+=n C C n y n n h (2)求方程的特解.将)()43()(n u n x n =代入差分方程右端得自由项为 ⎪⎩⎪⎨⎧≥⋅==-⋅+-1,)43(9130 ,1)1()43(31)()43(1n n n u n u n n n 当1≥n 时,特解可设为n p D n y )43()(=,代入差分方程求得213=D . (3)利用边界条件求完全解.当n =0时迭代求出25)0(=y ,当n ≥1时,完全解的形式为 ,)43(213 )41()21()(21n n n C C n y ⋅++=选择求完全解系数的边界条件可参考文[4]选)1(),0(-y y .根据边界条件求得35,31721=-=C C .注意完全解的表达式只适于特解成立的n 取值范围,其他点要用)(n δ及其延迟表示,如果其值符合表达式则可合并处理.差分方程的完全解为)(])43(213 )41(35)21(317[)1(])43(213 )41(35)21(317[)(25)(n u n u n n y n n n n n n ⋅+⋅+⋅-=-⋅+⋅+⋅-+=δ MATLAB 没有专用的差分方程求解函数,但可调用maple 符号运算工具箱中的rsolve 函数实现[5],格式为y=maple('rsolve({equs, inis},y(n))'),其中:equs 为差分方程表达式, inis 为边界条件,y(n)为差分方程中的输出函数式.rsolve 的其他格式可通过mhelp rsolve 命令了解.在MATLAB 中用时域经典法求解例1中的全响应和单位样值响应的程序如下.clc;clear;format compact;yn=maple('rsolve({y(n)-3/4*y(n-1)+1/8*y(n-2)=(3/4)^n+1/3*(3/4)^(n-1),y(0)=5/2,y(-1)=4},y(n))'),hn=maple('rsolve({y(n)-3/4*y(n-1)+1/8*y(n-2)=0,y(0)=1,y(1)=13/12},y(n))'),3 双零法根据双零响应的定义,按时域经典法的求解步骤可分别求出零输入响应和零状态响应.理解了双零法的求解原理和步骤,实际计算可调用rsolve 函数实现.yzi=maple('rsolve({y(n)-3/4*y(n-1)+1/8*y(n-2)=0,y(-1)=4, y(-2)=12},y(n))'),yzs=maple('rsolve({y(n)-3/4*y(n-1)+1/8*y(n-2)=(3/4)^n+1/3*(3/4)^(n-1),y(0)=1,y(-1)=0},y(n))'),4 变换域法设差分方程的一般形式为)()(00r n x b k n y a r Mr k N k -=-∑∑==.对差分方程两边取单边z 变换,并利用z 变换的位移公式得])()([])()([1010m r m r r M r l k l k k N k z m x z X z b z l y z Y z a ---=-=---=-=∑∑∑∑+=+整理成)()()()()()(00z X z X z B z Y z Y z A +=+形式有. )(, )(110110M M N N z b z b b z B z a z a a z A ----+++=+++=. )()(, )()(110110∑∑∑∑=--=--=--=--==M r r m m r r N k k l l k k z m x b s X zl y a s Y可以看出,由差分方程可直接写出 )(z A 和 )(z B ,系统函数)(/)()(z A z B z H =,将系统函数进行逆z 变换可得单位样值响应.由差分方程的初始状态可算出 )(0z Y ,由激励信号的初始状态可算出 )(0z X ,将激励信号进行z 变换可得 )(z X ,求解z 域代数方程可得输出信号的象函数 , )()()()()()(00z A z Y z X z X z B z Y -+= 对输出象函数进行逆z 变换可得输出信号的原函数)(n y .利用z 变换求解差分方程各响应的步骤可归纳如下:(1)根据差分方程直接写出 )(z A 、 )(z B 和)(z H ,)(z H 的逆变换即为单位样值响应;(2)根据激励信号算出 )(z X ,如激励不是因果序列则还要算出前M 个初始状态值;(3)根据差分方程的初始状态 )(, ),2( ),1(N y y y -⋅⋅⋅--和激励信号的初始状态 )(, ),2( ),1(M x x x -⋅⋅⋅--算出 )(0z Y 和 )(0z X ;(4)在z 域求解代数方程)()()()()()(00z X z X z B z Y z Y z A +=+得输出象函数 )(z Y , )(z Y 的逆变换即为全响应;(5)分析响应象函数的极点来源及在z 平面中的位置,确定自由响应与强迫响应,或瞬态响应与稳态响应;(6)根据零输入响应和零状态响应的定义,在z 域求解双零响应的象函数,对双零响应的象函数进行逆z 变换,得零输入响应和零状态响应.用变换域法求解例1的基本过程如下. 根据差分方程直接写出2181431 )(--+-=z z z A ,1311 )(-+=z z B .系统函数的极点为41,21. 对激励信号进行z 变换得)43/( )(-=z z z X .激励象函数的极点为3/4. 根据差分方程的初始状态算出102123 )(-+-=z z Y .根据激励信号的初始状态算出 0)(0=z X . 对z 域代数方程求解,得全响应的象函数)323161123/()83243125( )(2323-+-+-=z z z z z z z Y . 进行逆z 变换得全响应为)(])43(213 )41(35)21(317[)(n u n y n n n ⋅+⋅+⋅-= 其中,与系统函数的极点对应的是自由响应;与激励象函数的极点对应的是强迫响应. )(z Y 的极点都在z 平面的单位圆内故都是瞬态响应.零输入响应和零状态响应可按定义参照求解.上述求解过程可借助MATLAB 的符号运算编程实现.实现变换域法求解差分方程的m 程序如下: clc;clear;format compact;syms z n %定义符号对象% 输入差分方程、初始状态和激励信号%a=[1,-3/4,1/8],b=[1,1/3], %输入差分方程系数向量y0=[4,12],x0=[0], %输入初始状态,长度分别比a 、b 短1,长度为0时用[]xn=(3/4)^n, %输入激励信号,自动单边处理,u(n)可用1^n 表示% 下面是变换域法求解差分方程的通用程序,极点为有理数时有解析式输出 %N=length(a)-1;M=length(b)-1;%计算长度Az=poly2sym(a,'z')/z^N;Bz=poly2sym(b,'z')/z^M;%计算A(z)和B(z)Hz=Bz/Az;disp('系统函数H(z):'),sys=filt(b,a),%计算并显示系统函数hn=iztrans(Hz);disp('单位样值响应h(n)='),pretty(hn),%计算并显示单位样值响应Hzp=roots(a);disp('系统极点:');Hzp,%计算并显示系统极点Xz=ztrans(xn);disp('激励象函数X(z)='),pretty(Xz),%激励信号的单边z 变换Y0z=0;%初始化Y0(z),求Y0(z)注意系数标号与变量下标的关系for k=1:N;for l=-k:-1;Y0z = Y0z+a(k+1)*y0(-l)*z^(-k-l);endenddisp('初始Y0(z)'),Y0z,%系统初始状态的z 变换X0z=0;%初始化X0(z),求X0(z)注意系数标号与变量下标的关系for r=1:M;for m=-r:-1;X0z = X0z+b(r+1)*x0(-m)*z^(-r-m);endenddisp('初始X0(z)'),X0z,%激励信号起始状态的z 变换Yz=(Bz*Xz+X0z-Y0z)/Az;disp('全响应的z 变换Y(z)'),pretty(simple(Yz)),yn=iztrans(Yz);disp('全响应y(n)='),pretty(yn),% 计算并显示全响应Yziz=-Y0z/Az;disp('零输入象函数Yzi(z)='),pretty(Yziz),%零激励响应的z 变换yzin=iztrans(Yziz);disp('零输入响应yzi(n)='),pretty(yzin),% 计算并显示零输入响应 Yzsz=(Bz*Xz+X0z)/Az;disp('零状态象函数Yzs(z)='),pretty(Yzsz),%零状态响应的z 变换yzsn=iztrans(Yzsz);disp('零状态响应yzs(n)='),pretty(yzsn),% 计算并显示零状态响应该程序的运行过程与手算过程对应,显示在命令窗的运行结果与手算结果相同.。

用matlab解差分方程

用matlab解差分方程

• title('(a)'); xlabel('(n)');ylabel('(n)');%ep141.m: 调用filter解差分方程y(n)-ay(n-1)=x(n)
• a=0.8; ys=1;
%设差分方程系数a=0.8,初始状态:y(-1)=1
• xn=[1,zeros(1,30)] %x(n)=单位脉冲序列,长度N=31
• B=1; A=[1,-a]; %差分方程系数
• xi=filtic(B,A,ys); %由初始条件计算等效初始条件的输入序列xi
• yn=filter(B,A,xn,xi); %调用filter解差分方程,求系统输出信号y(n)
图形表现
批注本地保存成功开通会员云端永久保存去开通
用matlab解差分方程
本例子截取书上第19页,
matlab求解程序
• %ep141.m: 调用filter解差分方程y(n)-ay(n-1)=x(n)
• a=0.8; ys=1;
%设差分方程系数a=0.8,初始状态:y(-1)=1
• xn=[1,zeros(1,30)] %x(n)=单位脉冲序列,长度N=31
• B=1; A=[1,-a]; %差分方程系数
• xi=filtic(B,A,ys); %由初始条件计算等效初始条件的输入; %调用filter解差分方程,求系统输出信号y(n)
• n=0:length(yn)-1;
• subplot(3,2,1);stem(n,yn,'.')

差分方程的程序求解

差分方程的程序求解
用Matlab求解差分方程
采用filter函数实现线性常系数差分方程的递推 求解 yn=filter(B,A,xn) 计算输入信号xn的零状态响 应yn yn=filter(B,A,xn,xi) 计算输入信号xn的全响应 yn,xi为等效初始条件的输入序列 xi=filtic(B,A,ys,xs) 由初始条件计算xi的函数
程序结果
(a) 2 1.5
y(n)
1 0.5 0
0
5
10
15 n (b)
20
25
30
1
ห้องสมุดไป่ตู้
y(n)
0.5
0
0
5
10
15 n
20
25
30
xn=[1 zeros(1,20)] B=[2,3] A=[1,0.5,0.06] ys=[1,2] xi=filtic(B,A,ys) yn1=filter(B,A,xn) yn2=filter(B,A,xn,xi) subplot(2,1,1) n1=0:length(yn1)-1 stem(n1,yn1,'.') axis([0,21,-3,3]) subplot(2,1,2) n2=0:length(yn2)-1 stem(n2,yn2,'.')
%初始状态: y(-1)=1
xn=[1, zeros(1, 30)]; %x(n)=单位脉冲序列, 长度N=31 B=1; A=[1, -a]; xi=filtic(B, A, ys); % %由初始条件计算等效初始条件 的输入序列xi
yn=filter(B, A, xn, xi); %调用filter解差分方程, 求
系统输出信号y(n)。
n=0:length(yn)-1; subplot(3, 2, 1); stem(n, yn, '.') title('(a)'); xlabel('n'); ylabel('y(n)') 程序中取差分方程系数a=0.8时,得到系统输出y(n)

用Matlab求解差分方程问题

用Matlab求解差分方程问题

高阶线性常系数差分方程
如果第k+1时段变量Xk+1不仅取决 于第k时段变量Xk,而且与以前时段变 量有关,就要用高阶差分方程来描述
一年生植物的繁殖
一年生植物春季发芽,夏天开花,秋季 产种,没有腐烂,风干,被人为掠取的 那些种子可以活过冬天,其中一部分能 在第2年春季发芽,然后开花,产种,其 中的另一部分虽未能发芽,但如又能活 过一个冬天,则其中一部分可在第三年 春季发芽,然后开花,产种,如此继续, 一年生植物只能活1年,而近似的认为, 种子最多可以活过两个冬天,试建立数 学模型研究这种植物数量变化的规律, 及它能一直繁殖下去的条件。
1, 2

5 10 2
b
植物能一直繁殖下去的条件是b>0.191
线性常系数差分方程组
汽车租赁公司的运营
一家汽车租赁公司在3个相邻的城市运营,为方便顾客起见公司 承诺,在一个城市租赁的汽车可以在任意一个城市归还。根据经
验估计和市场调查,一个租赁期内在A市租赁的汽车 在A,B,C市归还的比例分别为0.6,0.3,0.1;在B市 租赁的汽车归还比例0.2,0.7,0.1;C市租赁的归还 比例分别为0.1,0.3,0.6。若公司开业时将600辆 汽车平均分配到3个城市,建立运营过程中汽 车数量在3个城市间转移的模型,并讨论时间 充分长以后的变化趋势。

x2
(k
1)



0.3
0.7
0.3


x2
(
k
)

x3 (k 1) 0.1 0.1 0.6 x3 (k )
function x=czqc(n) A=[0.6,0.2,0.1;0.3,0.7,0.3;0.1,0.1,0.6]; x(:,1)=[200,200,200]'; for k=1:n

MATLAB中的差分方程建模与求解方法

MATLAB中的差分方程建模与求解方法

MATLAB中的差分方程建模与求解方法引言差分方程是数学中常见的一种方程类型,是一种离散形式的微分方程。

在实际问题中,差分方程能够提供对系统的离散描述,对于动态模型的建立和求解具有重要作用。

MATLAB作为一种功能强大的数值计算软件,其内置了丰富的工具箱和函数,为差分方程的建模和求解提供了便利。

一、差分方程的建模差分方程的建模是将实际问题转化为数学方程的过程。

在MATLAB中,差分方程的建模可以通过定义离散系统的状态和状态转移方程来实现。

下面以一个简单的例子说明差分方程的建模过程。

假设有一个人口增长模型,人口数在每年增加10%,则差分方程可以表示为:P(n+1) = P(n) + 0.1 * P(n),其中P(n)表示第n年的人口数,P(n+1)表示第n+1年的人口数。

在MATLAB中,可以通过定义一个函数来描述差分方程的状态转移方程,代码如下:```matlabfunction Pn = population_growth(Pn_minus_1)growth_rate = 0.1;Pn = Pn_minus_1 + growth_rate * Pn_minus_1;end```上述代码定义了一个名为"population_growth"的函数,该函数的输入参数为上一年的人口数"Pn_minus_1",输出为当前年的人口数"Pn"。

其中,growth_rate表示人口增长率,根据差分方程的定义,将上一年的人口数乘以增长率再加上本身,即可得到当前年的人口数。

二、差分方程的求解方法在MATLAB中,差分方程的求解可以通过多种方法实现。

下面介绍两种常用的差分方程求解方法:欧拉法和四阶龙格-库塔法。

1. 欧拉法(Euler's method)欧拉法是差分方程求解中最简单直观的一种方法。

其基本思想是通过离散化的方式逐步逼近连续函数的解。

具体步骤如下:1) 将时间段分割成若干个小区间;2) 根据差分方程的状态转移方程,在每个小区间内进行计算;3) 迭代计算直到达到指定的时间点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津城市建设学院
课程设计任务书
2012 —2013 学年第 1 学期
计算机与信息工程 学院 电子信息工程 系 专业
课程设计名称: 数字信号处理
设计题目: 基于MATLAB 的线性常系数差分方程求解
完成期限:自2012 年 12月 17 日至 2012 年 12月 28 日共 2 周
设计依据、要求及主要内容:
一.课程设计依据
《数字信号处理》是电子信息类专业极其重要的一门专业基础课程,这门课程是将信号和系统抽象成离散的数学模型,并从数学分析的角度分别讨论信号、系统、信号经过系统、系统设计(主要是滤波器)等问题。

采用仿真可帮助学生加强理解,在掌握数字信号处理相关理论的基础上,根据数字信号处理课程所学知识,利用Matlab 对线性常系数方程进行求解,分析不同初始条件对解的影响。

二.课程设计内容
1、自行产生一个序列,对序列进行差分运算,并画出差分序列的时域波形图;
2、已知一个二阶线性常系数差分方程用下式表示
y(n)+a1y(n-1)+a2y(n-2)= b0x(n)+b1x(n-1)+b2x(n-2)
要求:(1)参数a1、a2、b0、b1、b2由运行时输入;(2)已知输入()0.5()n
x n u n 画出x(n)的时域波形图;(3)求出x(n )的共轭对称分量e ()x n 和共轭反对称分量o ()x n ,并分别画出时域波形图;(4)
初始条件由运行时输入,求输出y(n),并画出其波形;(5)对于不同的初始条件分析其输出是否一致,从中得出什么结论。

三.课程设计要求
1. 要求独立完成设计任务。

2. 课程设计说明书封面格式要求见《天津城市建设学院课程设计教学工作规范》附表1
3. 课程设计的说明书要求简洁、通顺,计算正确,图纸表达内容完整、清楚、规范。

4. 测试要求:根据题目的特点,编写Matlab 程序,绘制结果图形,并从理论上进行分析。

5. 课设说明书要求:
1) 说明题目的设计原理和思路、采用方法及设计流程。

2) 详细介绍运用的理论知识和主要的Matlab 程序。

3) 绘制结果图形并对仿真结果进行详细的分析。

指导教师(签字):
系/教研室主任(签字):
批准日期:2012 年12 月13 日。

相关文档
最新文档