2021版埋地钢质天然气管道腐蚀控制检测与对策
城镇燃气管道全面检验发现问题及整改建议

城镇燃气管道全面检验发现问题及整改建议摘要:天然气是每个家庭必不可缺的,它关乎着人们的生命安全,所以管道施工特别重要,必须加强燃气管道质量检验。
随着我国各级政府对安全生产工作越来越重视,每年都全方位、立体式、多层次地安排安全生产大检查。
燃气集团对超期服役老管道逐年有计划更换,同时重点抓住新建管道的质量检验工作。
关键词:城镇燃气管道;全面检验;整改建议引言天然气作为清洁能源,其污染小,热值高,在实际的生活中得到了广泛应用。
为了输送天然气而敷设的燃气管网包括燃气管道系统和燃气计量系统、监控系统、压力系统等,其具备较高的系统性和复杂性,也正是因为如此,燃气管网实际运行过程中充满着许多不确定的因素,必须对其运行过程加以控制,才能保证其运行的安全性。
而城镇燃气管道作为管网的关键组成部分,一旦发生泄漏很可能会造成着火或者爆炸事故,给人民的人身和财产安全带来很大的危害,而且更容易造成较大的社会影响,不利于社会的健康稳定发展。
因此加强对城镇燃气管道的定期检验具有很重要的意义,对保障天然气安全使用具有一定的积极作用。
1城镇燃气管道的施工特点1.1 工程影响因素多城镇燃气管道施工中,影响施工质量的因素相对较多,工期、施工材料、施工工艺方法等,都会对城镇燃气管道的施工质量造成影响。
城镇燃气管道对施工质量要求较高,由于城镇燃气管道运行工况复杂,涉及用户使用安全,对管道的施工质量提出了较高的要求,如果城镇燃气管道工程在施工质量中存在瑕疵,不但影响城镇燃气管道工程的竣工验收,也会给城镇燃气管道的运行使用带来安全隐患。
1.2 工程质量要求高由于城镇燃气管道工程施工工程量零散,施工条件复杂、市政管网交叉施工难度大,在实际施工中每一个阶段受到的影响都存在差异,导致了整个工程的施工质量管理难度大,施工质量容易出现较大的波动,对工程施工质量的管理和施工质量的提高产生了直接的影响。
因此,如何避免施工质量不均衡的情况,对于城镇燃气管道工程施工而言具有重要作用,同时也是提高城镇燃气管道施工质量管理的重要手段,对城镇燃气管道工程施工质量的提高提出了新要求。
浅析天然气管道防腐层检测的方法

浅析天然气管道防腐层检测的方法发布时间:2022-04-07T08:15:59.890Z 来源:《工程建设标准化》2021年12月第24期作者:孙拥军[导读] 关于天然气管道防腐层检测方法的应用,需要检测人员立足于天然气管道防腐层运行现状,孙拥军滨州市城镇化服务中心山东滨州 256600摘要:关于天然气管道防腐层检测方法的应用,需要检测人员立足于天然气管道防腐层运行现状,选择合适的技术手段进行针对性检测处理。
与此同时,在检测处理过程中,检测人员应该严格规范自身的操作行为,防止因个人操作失误而对整体检测质量造成不利影响。
除此之外,检测人员不应该只局限于当前几种天然气管道防腐层检测方法,最好可以积极借鉴国内外先进技术经验,努力拓展天然气管道防腐层检测内容,进一步为我国天然气管道的安全运行提供良好保障。
关键词:天然气管道;防腐层;检测方法1、外防腐层技术的应用结合当前发展情况来看,国内管道外防腐层技术正趋向于高性能与复合化方向发展。
举例而言,近几年来,我国在输气管道外防腐层材料的应用方面主要以新型材料为主。
其中,在这些新型材料的应用过程中,以三层PE材料以及环氧粉末为首的新型材料性能应用效果最突出。
根据实际反馈情况来看,上述材料不仅在价格成本方面具备一定优势,同时在使用性能方面也具备一定优势。
且根据行业内专家判断得知,在未来的一段发展时间,上述管道防腐材料以及相关技术内容将会成为我国天然气管道外防腐层技术的重要内容。
2、内涂层技术的应用输气管线的内涂层在摩擦阻力损失方面远比其他技术小得多,与此同时,在管线输送速度方面远比其他技术快得多。
结合以往的应用经验来看,液体环氧以及环游粉末等均可以用作内涂层的主要材料。
通过合理应用上述涂层材料,不仅可以进一步增强管道输送能力,同时还可以进一步增强管道节能效果。
最重要的是,内涂层技术在大型输气管道防腐能力方面表现较为突出,可以为大型输气管道的安全运行提供良好保障。
埋地管道检测必要性及完善检验技术刘广业李红梅

埋地管道检测必要性及完善检验技术刘广业李红梅发布时间:2023-05-28T14:37:43.655Z 来源:《建筑实践》2023年6期作者:刘广业李红梅[导读] 随着国家经济的不断发展,各项基础设施的建设越来越多,基础设施的建设为人民的生活带来了很大的便利,但是另外一方面,所产生的电流对埋地管道也产生了一定的影响。
尤其是我国针对油气资源的运输所采用的主要是埋地管道,有些管道的服役期限较长,很多埋地管道在一定程度上产生了一些损坏。
为了确保管道的安全运行,定期的对埋地管道进行检测是一项必须做的工作。
本文主要阐述了埋地管道检测的必要性,并介绍了几种常用的埋地管道检测方式,旨在能够促进我国油气事业的进一步的发展。
(华北油田检验检测中心特检公司河北省任丘市 062552)【摘要】:随着国家经济的不断发展,各项基础设施的建设越来越多,基础设施的建设为人民的生活带来了很大的便利,但是另外一方面,所产生的电流对埋地管道也产生了一定的影响。
尤其是我国针对油气资源的运输所采用的主要是埋地管道,有些管道的服役期限较长,很多埋地管道在一定程度上产生了一些损坏。
为了确保管道的安全运行,定期的对埋地管道进行检测是一项必须做的工作。
本文主要阐述了埋地管道检测的必要性,并介绍了几种常用的埋地管道检测方式,旨在能够促进我国油气事业的进一步的发展。
【关键词】:埋地;管道;检测;必要;检测一引言油气资源是我国目前主要的能源物质之一,油气资源的运输方式有多种,但是管道运输是目前最为经济安全的一种运输方式。
其中,我国主要的应用的是埋地管道。
随着管道运行时间的不断增加,各地管道出现了不同程度的损坏,管线的运输安全性受到了一定的威胁,管道一旦发生安全事故,所造成的人力物力损失是巨大的。
曾今,国内外发生过多起多起由于管道泄露引发的事故。
1993年委内瑞拉发生的管道泄露事故造成51人的死亡;1994年美国新泽西州管道泄露导致火灾造成了多人受伤的惨剧。
天然气长输管道的防腐措施

天然气长输管道的防腐措施摘要:长输管道常常运送石油、天然气等自然资源,这些管道都要埋入地下,由于他们是钢材料,这对于安全性有一定的保证,然而也存在着腐蚀隐患。
管道埋入地下,面对的地形地质条件是复杂的,钢管会面对不同类型的土壤,因为土壤性质不同,给管道带来的损害程度也不一样。
土壤本身的腐蚀性也有区别,管道埋地后出现问题也难以保证能立即发现。
管道维修时成本往往非常巨大,一般来说维修管道的资金支出远远超过了新建管道所产生的资金支出,为了降低管道维修频次和费用,在铺设管道时就一定要重点做好管道防腐工作。
关键词:天然气长输管道防腐防护措施1管道腐蚀的危害我国天然气比较丰富的地区集中在中西部,要运输天然气才能最大程度的确保天然气的价值能够被发挥出来。
管道运输是当前阶段比较常见的运输形式,然而最近几年由于管道运输所引发的安全事件也不在少数,管道运输还是有着某些弊端。
管道是埋入地下的,会经常性地出现腐蚀状况,常常会因为腐蚀原因而引起管道穿孔等危险事件发生:(1)一旦管道出现了腐蚀,就会导致外部的微生物侵入管道内部,导致天然气参入其他杂质,从而影响了天然气的纯度,还给使用天然气埋下了安全隐患;(2)管道出现腐蚀,假如没能尽早采取相应的防护,腐蚀物质会停留在管壁上方,造成管道出现的腐蚀程度加重;(3)长输管道被腐蚀程度越大,越易引发天然气泄漏,而天然气在泄漏时正好遭遇了明火或高温情况,就可能会引起火灾爆炸,最终导致人们的财产安全受到危害,严重时可能会危及人们的生命安全。
2管道防腐的重要性当前,世界各国对天然气的需求日益增加,已成为世界上最主要的能源之一。
尤其是在国家有关部门大力推行天然气这种洁净能源的同时,国内对天然气的需求也在不断增长,在这个进程中,需要保障天然气的供给安全。
以管道为主体的远距离输送,尽管其安全性很高,但近年来仍时有发生,而以管道腐蚀为主的安全隐患更是屡见不鲜。
当长距离输气管线发生腐蚀时,会在管线的内壁上粘附一些杂质,最终导致管线的加速腐蚀。
关于埋地钢质燃气管道阴极保护电位检测对策

关于埋地钢质燃气管道阴极保护电位检测对策摘要:本文立足于我国燃气管道网络建设实际情况,根据国家现行的钢质埋地燃气管道电位检测技术规范标准,首先阐述了钢质埋地燃气管道保护电位基本准则,然后根据某管线实际情况,对钢质埋地燃气管道阴极保护电位检测对策进行了粗略论述,以期为广大从业者提供有价值的参考借鉴。
关键词:电位检测、阴极保护、CIPS、通电电位、断电电位、试片法钢质埋地燃气管道通常采用阴极保护以及防腐涂层的方式来保证管道的长久使用,钢质埋地燃气管道在搬运、施工、使用过程中,预先涂刷的防腐蚀涂层有可能会被破坏,长期使用可能老化从而失去效用,不能起到保护管道的作用。
阴极保护是钢质埋地燃气管道的二次保护屏障,具有延长钢质埋地燃气管道使用寿命的作用,若是钢质埋地燃气管道服役期间,阴极保护不能达到相应的保护效果,管道防腐层破损处就会形成电化学腐蚀问题,从而引发穿孔泄露等现象,对钢质埋地燃气管道周边环境构成威胁,有严重安全隐患。
因此,需对钢质埋地燃气管道定期进行电位检测,以检测结果为基础提出相应的保护措施、调控措施,以确保埋地燃气管道的稳定运行。
一、钢质埋地燃气管道保护电位基本准则根据我国现行的钢质埋地燃气管道电位检测技术规范,针对钢质埋地燃气管道电位检测的技术准则大致可分为管地电位-850mV(不含IR降)、极化电位大于100mV两个类型。
一是钢质埋地燃气管道在施加阴极保护后,被保护钢质埋地燃气管道的电位相对铜饱和硫酸铜参比电极至少应为-850mV,钢质埋地燃气管道电位检测过程中必须要考虑到IR降所导致的误差值;二是被保护钢质埋地燃气管道表面和接触电解质稳定的参比电极之间的阴极极化值应该在100mV及以上,该原则不仅仅适用于钢质埋地燃气管道极化建立过程,同样也适用于钢质埋地燃气管道极化衰减过程[1-2]。
近年来,随着全国输气主干管网建设的提速,我国城市燃气管道长度不断增加,管道运输的瓶颈因素正逐步弱化。
数据显示,2018年我国城市燃气管道长度达716008公里,同比增长11.67%。
天然气管道三层PE防腐层失效原因及防护措施

天然气管道三层PE防腐层失效原因及防护措施当前,我国的天然气工程发展迅速,在建设的过程中需要大量的大壁厚、高压力及大管径的钢质管道,因此我们必须充分重视埋地钢质管道的防护和腐蚀问题。
通常情况下,我们主要使用三层PE防腐层来防护那些长距离的天然气输送管道。
例如,西气东输管线、兰—成—渝的成品油管线、涩—宁—兰的输气管线、靖—西的输气管线、库—都输气管线、陕—京输气管线、中缅天然气管道等许多城市的燃气管网都使用了三层PE的防腐层技术。
然而,三层PE防腐层存在严重的失效问题,出现这一问题的原因主要有第三方的破坏、生产三层PE防腐层时存在的产品缺陷及施工质量等等。
在文中笔者分析了三层PE防腐层失效的具体情况,并提出了几点建议。
希望本文的观点能为相关研究提供参考。
1 常见的几种天然气管道的三层PE防腐层的失效模式当前对于天然气管道三层PE防腐层处理可供参考的国内外3PE 相关标准及技术规格书主要包括,SY/T0413—2O02埋地钢质管道聚乙烯防腐层技术标准,SY/T 0413-2005钢质管道单层熔结环氧粉末外涂层技术规范,CSA Z245.21—2002钢管聚乙烯外涂层标准,CSA Z245.20~2O02钢管熔结环氧外涂层标准,ISO *****.1—02石油天然气工业--用于管道输送系统的埋地和水下管道的外涂层第一部分,Q/SY GJX 0106-2007西气东输二线管道工程钢质管道三层结构聚乙烯防腐层技术规范(简称西二线)以及兰州一郑州一长沙管道工程(简称兰郑长)、川气东送管道工程(简称川气东送)和印度Reliance天然气管道工程(简称印度管道)的3PE技术规格书等。
目前国内对于钢管表面涂装的要求(见表1),除行业标准外基本与国外相同,另外还增加了含盐量、灰尘度等指标要求。
结合上述规范以及笔者自身的施工经验,总结了五种天然气管道的三层PE防腐层的失效模式,分别是第三方对三层PE防腐层的破坏;植物根系对三层PE防腐层的破坏;微生物对三层PE防腐层的破坏;三层PE防腐层和管体相分离;焊缝区三层PE防腐层应力开裂等等,具体情况见图l。
长输管道腐蚀及检测技术

长输管道腐蚀及检测技术摘要:随着国民经济的快速发展,中国已成为石油和天然气的主要生产国和消费国。
管道运输作为油气长距离运输的主要方式,以其效率高、损失小而受到越来越多的关注。
关键词:天然气长输管道;腐蚀机理;检测方法;为了进一步做好天然气长输管道的防腐工作,保证管道输送的安全性和可靠性,对不同地理环境下埋地管道的腐蚀机理及腐蚀原因进行了分析,并针对不同的腐蚀机理给出了相应的检测方法。
一、分析长输管道腐蚀1.外部土壤腐蚀。
国际上控制土壤对埋地钢质管道腐蚀的通用办法是采用外防腐蚀绝缘涂层和阴极保护联合防护的措施。
其中外防腐蚀涂层是主要防腐蚀手段,阴极保护作为涂层防腐蚀的补充。
外防腐蚀涂层多选用环氧煤沥青、石油沥青、熔结环氧、煤焦油瓷漆、二层PE或三层PE。
因此,外部土壤的腐蚀包括土壤对外防腐蚀层非金属的腐蚀和土壤对外防腐蚀层失效处金属管道的腐蚀。
2.内腐蚀原理分析。
(1)管道内的游离水和高气相流速。
由于压力降的作用,天然气管道中的饱和天然气,会出现自由液相。
这种高气液比使得管道内出现两种流型:一是环状流;二是层流。
其中,当气液比相对较高时,会形成环状流,特点是液膜涂覆于管壁上,气体向前对小液滴进行卷吸。
当气液比较低时,出现层流现象,此时液相的运动发生于管道下部,而气相的运动发生于上部。
另外,当气体流速增加时,冲蚀能力也随之增加,即腐蚀速率与气体流速成正比。
(2)杂质气体及温度和压力。
首先天然气管道中除了天然气之外,还存在部分杂质气体,如CO2、SO2、H2S和水蒸气等,而水蒸气受温度和压力的影响,在流管中会冷凝变成液态水,所形成的液态水与CO2及SO2结合会形成碳酸(H2CO3)与亚硫酸(H2SO3)等酸性液体,严重腐蚀管道。
二、管道腐蚀检测技术1.埋地管道外腐蚀检测技术。
天然气埋地钢质管道采用外防腐层和阴极保护系统组成的联合腐蚀防护系统。
因此,外防腐层至关重要,若防腐层失效则管体就会发生腐蚀。
防腐层在制作和施工过程中会不可避免地出现缺陷损伤,防腐管道埋入地下后,更是受到环境、土壤等各方面的影响,使防腐层产生老化、龟裂和剥离等现象,严重影响了天然气管道的使用寿命。
天然气管道腐蚀原因及防治措施

天然气管道腐蚀原因及防治措施摘要:随着国家的发展,天然气已经在人们的生活中得到广泛的应用,为了对天然气使用的安全性予以保证,就需要进行天然气资源的长距离运输,在这一过程中对管道质量便提出了更高的要求,一旦管道出现腐蚀问题,将直接威胁到天然气使用群体的生命财产安全,因此就需要对天然气管道的腐蚀原因展开全面的分析,并制定出有效的防治措施。
关键词:天然气;管道腐蚀原因;防治措施引言天然气能源在使用过程中的优势比较明显,但其危险性也比较高,在管道运输过程中,风险问题发生的概率比较大,因此,需要对管道施加一定的防护措施。
管道的跨越区域相对较多,总长度相对较长,管道可能会与其他管道、电气电缆等设施交叉或者并行,这些设施可能会对管道的运行安全产生一定的影响,因此,管道与其他设施之间需要保持一定的距离。
1管道概述对于天然气介质而言,其具有很强的特殊性,如果使用其它的方式进行远距离输送,不但运输成本相对较高,且输送的过程中容易产生蒸发损耗问题,因此,大多数的天然气能源都将会采用管道进行远距离的输送。
长距离输送管道主要是将气田生产的天然气远距离输送给用户,在管道沿线的设施相对较多,例如压气站以及穿跨越设施等。
另一方面,输气管道可以分为两种类型,分别是输气干线以及输气支线,输气干线主要指的是从输气首站到输气末站的工艺管道,输气干线的距离相对较长,且管道的管径相对较大,对于输气支线而言,其主要指的是由输气干线到用户的工艺管道,与输气干线相比,输气支线的距离相对较短,且管径相对较小。
管道首末端以及中间的各种类型站场都可以被称为输气站,由此可见,输气站包括压气站以及分输站等,对于输气站而言,根据其性质的不同,其承担的任务也存在较大的差距,但是输气站的设立都是为了保障管道长期处于安全稳定运行状态。
对于长距离管道而言,由于管道沿线的情况相对较为复杂,因此,对于安全性的要求相对较高,需要采取合理的措施防止出现介质泄漏问题。
事实上,为了全面提高管道运行的安全性以及效率,大多数管道都已经引入了自动化控制系统,不但可以对管道进行实时监控,还可以对管道运行情况进行自动化管理,自动控制系统已经成为管道管理的重要组成部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021版埋地钢质天然气管道腐蚀控制检测与对策Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place.( 安全管理 )单位:______________________姓名:______________________日期:______________________编号:AQ-SN-08612021版埋地钢质天然气管道腐蚀控制检测与对策摘要:结合实际的天然气输气管道工程,对埋地管道外防腐层和阴极保护系统运行状况进行检测。
阐述了检测工作的主要内容,分析、评价了检测结果,提出了腐蚀控制对策。
关键词:天然气管道;腐蚀控制;阴极保护;检测1概述佛山市天然气输气管道采用直缝双面埋弧焊钢管,钢管规格为Ø508×9.5,材质为L360,设计压力为4.4MPa。
埋地管道的腐蚀控制方案采用阴极保护系统和管道外防腐层联合保护。
阴极保护系统以外加电流阴极保护为主,局部非开挖施工(顶管等)地段安装牺牲阳极为辅。
钢管外防腐采用3层聚乙烯加强级防腐层,即高密度聚乙烯作外涂层材料,熔结环氧粉末(FBE)作底层,共聚物作中间粘结层,防腐层总厚度≥3.2mm。
已在门站内建设1座外加电流阴极保护站,站内设有2台恒电位仪(1开1备)、1台控制柜以及1口深井阳极井,井深33.4m,采用高硅铸铁阳极,阴极保护站与管道同时投入运行。
由于佛山市天然气输气管道大部分敷设于城乡结合地区,土壤多为回填土、建筑废弃物,且地下水位高,地表水系发达,土壤的腐蚀性较强。
为了全面掌握已运营管道的腐蚀控制状况,制订合理、科学的维护管理方案,我们对2007年底投产运行的罗村调压计量站至官窑调压计量站间约20km的输气管道腐蚀控制进行了全面检测。
2检测工作的主要内容①在非开挖的情况下,采用管线探测仪对管道的平面位置和埋深进行复查,协助管理人员检查管道埋深和复核线路标志桩等设施。
②采用管中电流检测法(PipeCurrentMapping,PCM)和直流电压梯度检测法(DirectCurrentVoltageGradient,DCVG)[1],全面检测该段管道外防腐层的现状,包括防腐层老化情况、破损位置及破损大小状况,测算防腐层的绝缘电阻率。
管中电流检测法是通过施加多频信号电流在管道上,检测信号电流在管道上的衰减率,计算出管道防腐层的平均绝缘电阻率。
直流电压梯度检测法是向检测管道施加特定频率的电流信号,如果管道防腐层出现破损,信号电流就会从破损点流出,由于土壤的电阻作用,破损点与周围大地之间产生了电压梯度,通过对电压梯度进行检测,确定破损点的位置和破损的程度。
③采用密间隔电位检测法(CloseIntervalPotentialSurvey,CIPS)对管道阴极保护电位进行检测[1],全面掌握阴极保护系统的运行状况,对管道是否获得全面、合适的阴极保护进行测量。
基本原理是:测量埋地管道的管道电位数据,每间隔1~3m采集管道电位数据,对于采用阴极保护系统的管道,测量时得到两种管道电位,一是阴极保护系统开启时管道电位Von,一是阴极保护系统关闭时管道电位Voff,其中Voff就是消除土壤中IR降后的保护电位。
④通过测量管道附近土壤电位梯度来判断杂散电流分布情况,对确认存在杂散电流干扰的管段进行管道电位监控测量,判断杂散电流对管道的腐蚀影响。
3检测结果分析与评价①管道外防腐层平均绝缘电阻率通过管道测试桩施加多频信号电流在管道上,根据每段检测管道的长度不同,输入信号电流大小不同,现场每30m左右设1个检测点,测得电流值,把数据输入计算机,用PCM检测数据分析处理软件分析处理后,得到每段检测管道防腐层绝缘电阻率,计算得到整条管道防腐层平均绝缘电阻率为15500Ω•m2以上质量等级为优,则罗村调压计量站至官窑调压计量站的输气管道防腐层总体平均质量等级属于优级别。
②管道防腐破损点通过管道测试桩向管道施加特定频率的电流信号时,检测人员采用英国雷迪RD-PCM埋地管道外防腐状况检测仪(配A字架),沿管道走向检测,当距离破损点足够近时,就可在仪器上测得直流电压梯度,将A字架的地针插入管道上方的土壤中,采用十字叉定位法,依据接收显示的方向和DB微电压的数值确定出电压场的中心及大小,从而确定破损点的位置和破损的程度。
共检测出该段卖地输气管道防腐层缺陷点共计2处,经开挖验证,2处缺陷均为防腐施工质量问题。
一处3层聚乙烯防腐层厚度不达标,应采用热收缩套修补,加大外防腐层厚度;另一处在恶劣土壤环境下,补口处防腐层与管道轻度剥离,使用电火花仪(30kV)检查未发现漏电,在阴极保护系统正常运行状况下,可暂不作修补处理,但应对缺陷位置进行标示并加强测试监控[2]。
③管道阴极保护系统在阴极保护电源输出线上串接断流器,断流器以一定的周期断开或接通,检测人员沿管道轴向每间隔1m,采集阴极保护系统开、关时管道电位数据,绘制连续的管道电位曲线图,直观反映出管道全线阴极保护电位情况。
当管道没有外加阴极保护电流,只有少量牺牲阳极工作的情况下,测得罗村调压计量站至官窑调压计量站之间管道电位分布情况是:罗村调压计量站至桃园路立交桥约15km管道,管道电位(Cu/CuSO4参比电极,以下同)为-0.95V~-0.85V,达到最小保护电位要求(-0.85V),占管道总长的75%;剩余部分的管道从桃园路立交桥至官窑调压计量站约5km管道,管道电位为-0.85~-0.81V,没有达到但接近保护电位。
当管道有外加阴极保护电流和牺牲阳极工作的情况下,从罗村调压计量站至官窑调压计量站之间管道的保护电位为-1.21~-1.01V,全部达到了-1.25~-0.85V的保护电位的要求,阴极保护系统运行良好。
④杂散电流分布情况一般认为,当管道附近土壤中的电位梯度大于0.5mV/m,杂散电流的干扰存在;当土壤中的电位梯度大于2.5mV/m,应及时采取防护措施[3]。
在对该段管道附近土壤进行电位梯度检测时,沿管道走向每间隔300m左右测量1组土壤电位梯度值,特殊复杂地段则缩小检测间距。
经检测、计算,土壤电位梯度最大值出现在罗村调压计量站和官窑调压计量站附近,均达到2.1mV/m;土壤电位梯度最小值出现在桃园路立交桥以北2km处,为0.3mV/m。
为了进一步验证杂散电流的干扰存在,还对整条管道电位进行监测,每个测试桩都采用电位监控记录仪进行了一定时间的监控测量,特别对两座调压计量站外测试桩进行了24h连续监测。
监测数据表波动,其中官窑调压计量站外20号测试桩测得的管道电位在-1.17~-0.91V范围波动,波动幅度为0.26V;其余的测试桩测得管/地电位波动幅度为0.06~0.22V,但管道电位均负于-0.85V。
《钢质管道及储罐腐蚀控制工程设计规范》SY0007—1999对杂散电流强弱程度的判断指标为:土壤中的电位梯度小于0.5mV/m,杂散电流干扰程度小;土壤中的电位梯度范围为0.5~5mV/m,杂散电流干扰程度中等;土壤中的电位梯度大于5mV/m,杂散电流干扰程度大。
因此,现状管道上分布的杂散电流干扰程度一般,综合国内外腐蚀控制经验,在阴极保护系统运行状态下,加强监测,可暂不采取排流措施[3]。
4埋地天然气管道腐蚀控制对策①罗村调压计量站至官窑调压计量站的输气管道投产运行两年后,对管道的腐蚀控制系统进行了检测,检测的数据显示管道的阴极保护系统运行正常,钢管的外防腐层基本完好,能够将腐蚀介质与钢管表面隔离开,起到良好的防护作用。
但是由于埋地管道长期受到土壤溶液的侵蚀作用,任何一种防腐绝缘材料都不可能完全将腐蚀介质与管道隔离,而且管道防腐层在生产、运输和施工的多个环节均有可能受到一定程度的损伤。
为了保证管道的正常运行,可每3年进行1次非开挖管道外防腐层检测,配合检测结果局部开挖验证。
对已检测出的管道防腐层缺陷点,应0.5年后进行1次复查,掌握防腐层缺陷的发展状况,及时进行修补,确保管道处于良好的保护状态。
②根据PCM方法检测得到管道防腐层平均电阻率为15500Ω•m2,按照外加电流阴极保护长度的简化公式计算,得到现状管道阴极保护总保护长度为71.99km[4]。
目前佛山市已通气的天然气主管道约70km,且已建的1座阴极保护站基本位于管道的中间,该站的保护长度基本已达到极限。
并且随着运行时间的增加,管道防腐层绝缘电阻将出现一定程度的下降,管道所需的保护电流密度增加,保护长度将缩短。
要维持现有的管道保护长度,就必须提高通电点的输出电位,增大输出电流,但这样会导致通电点电位过高而形成“过保护”。
因此,应结合未来管道规划,考虑增加若干15深井阳极井,以保证所有运行管道均处于受保护状态。
③随着城市化的发展,公路、铁路、工业区等的配电设施都可能在土壤中形成杂散电流,并且杂散电流对管道的腐蚀会随杂散电流源的工作状态和管道的外防腐绝缘层的变化而变化,这给杂散电流的监测和排除带来很大困难。
参照此次的检测结果,结合杂散电流腐蚀控制管理的特点,可在输气管线的设计、施工以及日常维护管理等方面采取以下应对措施[5]:a.合理选择管道的走向,尽量远离杂散电流干扰源;对经过铁路、公路等地段的管道可加密安装电位测试桩,日常管网巡检有针对性地加密检测;加强管道巡检并加强监测管道附近土壤电位梯度,特别是土壤电位梯度波动范围较大地段应定期检测,依据检测数据,分析土壤电位梯度是否有增大的趋势。
b.严格监控管道沿线的工厂、在建铁路等潜在的杂散电流干扰源;当测得土壤中的电位梯度大于2.5mV/m,或管道电位较自然电位正向偏移100mV时,及时采取排流措施[5]。
c.当管道路由附近存在电塔或其他配电设施时,应主动与供电部门协商,迁移电塔或配电设施的接地体,尽量使接地体安装于远离管道的另一侧,加大管道与接地体的距离。
d.严格落实阴极保护系统运行管理的工作内容,加强阴极保护系统设备的维护保养,作好管道阴极保护的日常检测,详细记录检测的各项参数。
定期测量管道的阴极保护电位,定期对重点监控的管道区域进行土壤电位梯度检测,将检测数据作好记录并存档。
日积月累的检测记录将有助于我们客观地评价阴极保护系统的保护效果,为管道的运行维护工作提供重要依据。
5结语通过对管道外防腐层和阴极保护系统的全面检测分析,可了解管道腐蚀控制的现状,为科学合理地、有针对性地制订管道运营维护管理方案提供依据,也为下一步的项目设计、施工提供参考数据。
参照相关国际、国内标准,结合多项工程实例,我们认为,阴极保护系统与管道外防腐层相结合的管道防腐方法是较为经济、有效的管道腐蚀控制措施,且阴极保护系统的工程造价在工程总造价中的比例不足1%,经济效益及社会效益都显而易见。