《概率统计学》答案

合集下载

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案

第二章作业题解:掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式.解:由表格知X 的可能取值为2,3,4,5,6,7,8,9,10,11,12。

并且,361)12()2(====X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ; 365)8()6(====X P X P ;366)7(==X P 。

即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)设离散型随机变量的概率分布为,2,1,}{ ===-k ae k X P k 试确定常数a .解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---eae 。

故 1-=e a甲、乙两人投篮时, 命中率分别为 和 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ========两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。

所以:(1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯= 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求)31()1(≤≤X P )5.25.0()2(<<X P 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 设离散型随机变量X 的概率分布为,,3,2,1,21}{ ===k k X P k,求 };6,4,2{)1( =X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++== X P 41}2{}1{1}3{)2(==-=-=≥X P X P X P设事件A 在每次试验中发生的概率均为 , 当A 发生3 次或3 次以上时, 指示灯发出 信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C (2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为 的泊 松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾; (2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于解:设应配备m 名设备维修人员。

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案

一、习题详解:3.1设二维随机向量(,)X Y 的分布函数为:1222,0,0,(,)0,x y x y x y F x y ----⎧--+≥≥=⎨⎩其他求}{12,35P X Y <≤<≤.解:因为 257(2,5)1222F ---=--+,6512221)5,1(---+--=F5322221)3,2(---+--=F ,4312221)3,1(---+--=F所以 )3,1()3,2()5,1()5,2()53,21(F F F F Y X P +--=≤<≤<==+--=----745672322220.02343.2 盒中装有3个黑球, 2个白球. 现从中任取4个球, 用X 表示取到的黑球的个数, 用Y 表示取到的白球的个数, 求(X , Y ) 的概率分布.解:因为X + Y = 4,所以(X ,Y )的可能取值为(2,2),(3,1)且 0)1,2(===Y X P ,6.053)2,2(452223=====C C C Y X P 4.052)1,3(451233=====C C C Y X P ,0)2,3(===Y X P 故(X ,Y )的概率分布为3.3 将一枚均匀的硬币抛掷3次, 用X 表示在3次中出现正面的次数, 用Y 表示3次中出 现正面次数与出现反面次数之差的绝对值,求(X , Y ) 的概率分布.解:因为|32||)3(|-=--=X X X Y ,又X 的可能取值为0,1,2,3 所以(X ,Y )的可能取值为(0,3),(1,1), (2,1),(3,3)且 81)21()3,0(3====Y X P ,83)21()21()1,1(2113====C Y X P 83)21()21()1,2(1223====C Y X P ,81)21()3,3(3====Y X P故(X ,Y )3.4设二维随机向量(,)X Y 的概率密度函数为:(6),01,02,(,)0,a x y x y f x y --≤≤≤≤⎧=⎨⎩其他 (1) 确定常数a ;(2) 求}{0.5, 1.5P X Y ≤≤(3) 求{(,)}P X Y D ∈,这里D 是由0,0,1x y x y ==+=这三条直线所围成的三角形区域.解:(1)因为dxdy y x a dxdy y x f ⎰⎰⎰⎰--=+∞∞-+∞∞-102)6(),(dx x x a dx y x a ⎰⎰---=---=10221022])4()6[(2])6(21[a dx x a 9)5(210=-=⎰由1),(=⎰⎰+∞∞-+∞∞-dxdy y x f ,得9a =1,故a =1/9.(2) dxdy y x Y X P ⎰⎰--=≤≤5.005.10)6(91)5.1,5.0( dx x dx y y x ⎰⎰--=--=5.005.005.102]89)6(23[91]21)6([91 125)687(5.00=-=⎰dx x (3) 1101{(,)}(,)(6)9xDP X Y D f x y dxdy dx x y dy -∈==--⎰⎰⎰⎰278)1211(181]21)6([9110210102=--=--=⎰⎰-dx x x dx y y x x3.5 设二维随机向量(,)X Y 的概率密度函数为:(2)2,0,0,(,)0,x y e x y f x y -+⎧>>=⎨⎩其他(1) 求分布函数(,)F x y ; (2) 求}{P Y X ≤解:(1) 求分布函数(,)F x y ; 当0,0x y >>,(2)220(,)(,)22(1)(1)yxyxx yu v u v x y F x y f u v dudv e dudv e du e dv e e -+-----∞-∞====--⎰⎰⎰⎰⎰⎰其他情形,由于(,)f x y =0,显然有(,)F x y =0。

真题模拟考试:2021 概率论与数理统计(经管类)真题模拟及答案(3)

真题模拟考试:2021 概率论与数理统计(经管类)真题模拟及答案(3)

真题模拟考试:2021 概率论与数理统计(经管类)真题模拟及答案(3)1、对于具体的元件,故障模式及影响分析(FMEA)通常包括的详细信息有( )A.故障模式B.故障原因C.故障影响D.纠正措施E.危害点评(多选题)A. 错B. 对试题答案:暂无答案2、根据不同类型的质量特性与顾客满意之间的关系而对质量特性进行分类的质量管理专家是( ) (单选题)A. 朱兰B. 狩野纪昭C. 休哈特D. 费根堡姆试题答案:B3、26.设随机变量X的概率密度为则常数a= (单选题)A. -10B.C.D. 10试题答案:D4、(09年真题)一个企业的外部顾客主要包括( )(多选题)A. 购买者B. 中间商C. 加工者D. 供应商E. 潜在顾客试题答案:A,B,C,D,E5、外汇风险的构成要素包括 ()(多选题)A. 时间B. 本币C. 外币D. 空间E. 汇率试题答案:A,B,C6、设是μ0次独立重复A出现的次数,p是事件A在每次试验中出现的概率,则对任意ε>0,均有 ( ) (单选题)A. 0B. -1C. >0D. 不存在试题答案:A7、下列对于盲法特点的陈述正确的是()(多选题)A. 盲法包括单盲和双盲B. 盲法仅是针对受试者而设计的C. 仅在指标观测和数据收集阶段实施盲法D. 盲法可以减少来自于受试者主观因素所致的偏倚E. 盲法中资料收集者一定知道研究对象是否处于干预组8、除了可测量性外,过程还具备的另一个条件是()(单选题)A. 可预测性B. 效益性C. 周期性D. 可重复性试题答案:D9、分类统计、相关分析和风险分析是( ) (单选题)A. 简单的因果分析B. 单变量分析C. 数据语义分析D. 双变量分析试题答案:D10、票据的基本职能是 () (单选题)A. 信用功能B. 兑换功能C. 结算功能D. 保值功能试题答案:C11、最基本的文献类型是【】(单选题)A. 零次文献B. 一次文献C. 二次文献D. 三次文献12、销售合同双方分别作为申请人,各开出一份以对方为受益人的信用证是 ( ) (单选题)A. 循环信用证B. 对开信用证C. 对背信用D. 保兑信用证试题答案:B13、《海牙规则》生效于()(单选题)A. 1912年6月B. 1931年6月C. 1913年7月D. 1924年6月试题答案:B14、若X服从泊松分布P(3),则 ( ) (单选题)A. 1B. 1/9C. 1/3D. 3试题答案:A15、按照国际惯例,国际储备应当满足( )个月的进口需要量,或全年进口额的25%。

《统计学》(练习1)答案

《统计学》(练习1)答案

《统计学》(练习1)答案统计学课程单项选择练习题11.指出下面的变量中哪一个属于分类变量(D)。

A、年龄B、工资C、汽车产量D、购买商品时的支付方式(现金、信用卡、支票)2.对高中生的一项抽样调查表明,85%的高中生愿意接受大学教育。

这一叙述是(D)的结果。

A、定性变量B、试验C、描述统计D、推断统计3.指出下面的变量中哪一个属于顺序变量(C)。

A、企业的收入B、员工的工资C、员工对企业某项改革措施的态度(赞成、中立、反对)D、汽车产量4.指出下面的变量中哪一个属于数值型变量(A)。

A、生活费支出B、产品的等级C、企业类型D、员工对企业某项改革措施的态度5.一家研究机构从IT从业者中随机抽取500人作为样本进行调查,其中60%回答他们的月收入在5000元以上,50%的人回答他们的消费支付方式是用信用卡。

这里的500人是(B)。

A、总体B、样本C、变量D、统计量6.下列不属于描述统计问题的是(A)。

A、根据样本信息对总体进行的推断B、了解数据分布的特征C、分析感兴趣的总体特征D、利用图表等对数据进行汇总和分析7.从含有N个元素的总体中,抽取n个元素作为样本,使得总体中的每一个元素都有相同的机会(概率)被抽中,这样的抽样方式称为(A)。

A、简单随机抽样B、分层抽样C、系统抽样D、整群抽样8.为了解某学校学生的购书费用支出,从男生中抽取60名学生调查,从女生中抽取40名学生调查,这种调查方法是(C)。

A、简单随机抽样B、系统抽样C、分层抽样D、整群抽样第1页共6页9.一个样本中各个部分的数据与全部数据之比称为(C)。

A、频数B、频率C、比例D、比率10.样本中各不同类别数值之间的比值称为(D)。

A、频数B、频率C、比例D、比率11.将比例乘以100得到的数值称为(B)。

A、频率B、百分数C、比例D、比率12.下面的图形中最适合于描述结构性问题的是(B)。

A、条形图B、饼图C、雷达图D、直方图13.为描述身高与体重之间是否有某种关系,适合采用的图形是(C)。

《统计学》(贾俊平,第五版)分章习题及答案

《统计学》(贾俊平,第五版)分章习题及答案

《统计学》分章习题及答案(贾俊平,第五版)主编:杨群目录习题部分 (2)第1章导论 (3)第2章数据的搜集 (4)第3章数据的整理与显示 (5)第4章数据的概括性度量 (6)第5章概率与概率分布 (10)第6章统计量及其抽样分布 (11)第7章参数估计 (11)第8章假设检验 (13)第9章分类数据分析 (14)第10章方差分析 (16)第11章一元线性回归 (17)第12章多元线性回归 (19)第13章时间序列分析和预测 (22)第14章指数 (25)答案部分 (30)第1章导论 (30)第2章数据的搜集 (30)第3章数据的图表展示 (30)第4章数据的概括性度量 (31)第5章概率与概率分布 (32)第6章统计量及其抽样分布 (33)第7章参数估计 (33)第8章假设检验 (34)第9章分类数据分析 (34)第10章方差分析 (36)第11章一元线性回归 (37)第12章多元线性回归 (38)第13章时间序列分析和预测 (40)第14章指数 (41)习题部分第1章导论一、单项选择题1.指出下面的数据哪一个属于分类数据()A.年龄B.工资C.汽车产量D.购买商品的支付方式(现金、信用卡、支票)2.指出下面的数据哪一个属于顺序数据()A.年龄B.工资C.汽车产量D.员工对企业某项制度改革措施的态度(赞成、中立、反对)3.某研究部门准备在全市200万个家庭中抽取2000个家庭,据此推断该城市所有职工家庭的年人均收入,这项研究的统计量是()A.2000个家庭B.200万个家庭C.2000个家庭的人均收入D.200万个家庭的人均收入4.了解居民的消费支出情况,则()A.居民的消费支出情况是总体B.所有居民是总体C.居民的消费支出情况是总体单位D.所有居民是总体单位5.统计学研究的基本特点是()A.从数量上认识总体单位的特征和规律B.从数量上认识总体的特征和规律C.从性质上认识总体单位的特征和规律D.从性质上认识总体的特征和规律6.一家研究机构从IT从业者中随机抽取500人作为样本进行调查,其中60%的人回答他们的月收入在5000元以上,50%的回答他们的消费支付方式是使用信用卡。

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案

第二章作业题解:掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式.解:由表格知X 并且,361)12()2(====X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ; 365)8()6(====X P X P ;366)7(==X P 。

即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)设离散型随机变量的概率分布为,2,1,}{ ===-k ae k X P k 试确定常数a .解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---e ae 。

故 1-=e a甲、乙两人投篮时, 命中率分别为 和 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ========两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。

所以:(1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯= 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求)31()1(≤≤X P )5.25.0()2(<<X P 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 设离散型随机变量X 的概率分布为,,3,2,1,21}{ ===k k X P k ,求 };6,4,2{)1( =X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++== X P41}2{}1{1}3{)2(==-=-=≥X P X P X P设事件A 在每次试验中发生的概率均为 , 当A 发生3 次或3 次以上时, 指示灯发出 信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C (2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为 的泊 松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾;(2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于 解:设应配备m 名设备维修人员。

《数理统计学(第2版)》习题答案及解题步骤

《数理统计学(第2版)》习题答案及解题步骤

"+ !,0)0!"+
!"0,"+(6!>"))0!#!>"">(6!?"06!>/">"),0)0!#!?"
"?(!06!?/"?")
6!!"连续#当 ">,%#"?,%时#有6!>/">",6!>"#6!?/"?",6!?"
2#),!>#?"(:";><,%7!!!)"+!>/"">>",#!"!,?"+!?#?/"?"" "?,%
##!!)"+!>#>/">)##!!,"+!?#?/"?)
即有)0!个观测值小于等于>#一个落入区间 !>#>/">"#,0)0!个落入区间
!>/">#?)#一个落入区间 !?#?/"?)#余下"0,个大于?/"?$
27!!!)"+!>#>/">"#!!,"+!?#?/"?""
(!)0!"+ !+
(!)0!"+
"+ !,0)0!"+
!"0,"+(6!>"))0!(6!?"06!>"),0)0!

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案

第五章作业题解5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率.解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ 由切比雪夫不等式,得)2100|7300(|)94005200(<-=<<X P X P982100700112222=-=-≥εσ.5.2 设随机变量X 服从参数为λ的泊松分布, 使用切比雪夫不等式证明 1{02}P X λλλ-<<≥. 解:因为)(~λP X ,所以λμ==)(X E 。

λσ==)(2X Var 故由切比雪夫不等式,得)|(|)20(λλλ<-=<<X P X P λλλλεσ111222-=-=-≥不等式得证.5.3 设由机器包装的每包大米的重量是一个随机变量, 期望是10千克, 方差是0.1千克2. 求100袋这种大米的总重量在990至1010千克之间的概率.解:设第i 袋大米的重量为X i ,(i =1,2,…,100),则100袋大米的总重量为∑==1001i i X X 。

因为 10)(=i X E ,1.0)(=i X Var ,所以 100010100)(=⨯=X E ,101.0100)(=⨯=X Var 由中心极限定理知,101000-X 近似服从)1,0(N故 )10|1000(|)1010990(<-=<<X P X P1)10(2)10|101000(|-Φ≈<-=X P998.01999.021)16.3(2=-⨯=-Φ=5.4 一加法器同时收到20个噪声电压,(1,2,,20)i V i = ,设它们是相互独立的随机变量,并且都服从区间[0,10]上的均匀分布。

记201k k V V ==∑,求(105)P V >的近似值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单项选择题:
对以往数据分析的结果表明,机器在良好状态时,生产的产品合格率为90%,而当机器在有故障状态时,产品合格率为30%,每天开机时机器良好的概率为75%。

当某天开机后生产的第一件产品为合格品时,机器是良好状态的概率等于()。

A、
B、
C、
D、
袋中有5个球(3个新球,2个旧球)。

现每次取一个,无放回的抽取两次,则第二次取到新球的概率是()。

A、3/5
B、3/4
C、1/2
D、3/10
已知在10个电子元件中有2只是次品,从其中取两次,每次随机的取一只,做不放回抽取,则第二次取出的是次品的概率是()。

A、1/45
B、1/5
C、16/45
D、8/45
已知P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=3/16,则事件A,B,C全不发生的概率等于()。

A、7/16
B、3/4
C、1/4
D、9/16
甲、乙两袋内都装有两个黑球和两个白球,现从甲、乙两袋中各摸取一个球,记事件A为“从甲袋中摸出白球”,B为“从乙袋中摸出白球”,C为“摸出的两个球颜色不同”,则有()。

A、A,B,C相互独立
B、A,B,C三个事件两两独立
C、A,B,C三个事件两两互不相容
D、AB与C互不相容
对于任意两个事件A与B,则有P(A-B)为()
A、P(A)-P(B)
B、P(A)-P(B)+P(AB)
C、P(A)-P(AB)
D、P(A)+P(AB)
设随机变量X~N(0,1),Y=3X+2,则Y服从()分布。

A、N(2,9)
B、N(0,1)
C、N(2,3)
D、N(5,3)
人的体重ξ~φ(x),E(ξ)=a,D(ξ)=b,10个人的平均体重记为η,则()正确。

A、E(η)=a
B、E(η)=0.1a
C、D(η)=0.01b
D、D(η)=b
设两个相互独立的随机变量X和Y的方差分别为6和3,则随机变量2X-3Y的方差是()。

A、51
B、21
C、-3
D、36
设二独立随机变量X与Y之和X+Y与X和Y服从同一名称的分布,如果X和Y都服从()。

A、均匀分布
B、二项分布
C、指数分布
D、泊松分布
假设随机变量X服从参数为(9,0.6)的二项分布,则其最可能数为()。

A、5
B、6
C、5和6
D、6和7
假设X是只有有限个可能值的离散型随机变量,随机变量Y服从正态分布,且X和Y相互独立,则随机变量X+Y的分布函数()。

A、是阶梯函数
B、恰好有一个间断点
C、是连续函数
D、恰好有两个间断点
在假设检验中,一般情况下()错误。

A、只犯第一类
B、只犯第二类
C、既可能犯第一类也可能犯第二类
D、不犯第一类也不犯第二类
填空题:
1.
某市有50%住户订日报,有65%住户订晚报,有85%的住户至少订这两种报纸的住户百分比是___。

2.7/12
已知P(A)=P(B)=P(C)=1/4,P(AB)=0,P(AC)=P(BC)=1/6,则事件A,B,C全不发生的概率等于___。

3.1/18
已知A1,A2,A3,为一完备事件组,且P(A1)=0.1,P(A2)=0.5,P(B|A1)=0.2,P(B|A2)=0.6,P(B|A3)=0.1,P(A1|B)=___。

4.
设10件产品中有4件不合格品,从中任取2件,已知所取2件产品中有1件是不合格品,则另外1件也是不合格品的概率为___。

5.
电路元件A与两个关联的元件B,C串联而成,若A,B,C损坏与否是相互独立的,且它们损坏的概率依次为0.3,0.2,0.1,则电路断路的概率是___。

6. 0.5,1/π,0.5
7. 9/64
8. 65/81
设随机变量X服从参数为(2,P)的二项分布,随机变量Y服从参数为(3,P)的二项分布,若P{x≥1}=5/9,则P{Y≥1}=___.
9. 3/4,0,1/2
10. 20,19.49
从废品率为5%的一批产品中每次取一个产品,直到渠道废品为止,平均要取___个产品,所取产品个数的均方差为___。

11.
设离散型随机变量ξ的取值是在两次独立试验中事件A发生的次数,如果在这次试验中事件发生的概率相同并且已知ξE(ξ)=0.9,则D(ξ)=___。

12. 65/81
若随机变量ξ~B(2,p),η~B(4,p),且P{ξ≥1}=5/9,则P{η≥1}=___。

13. 20/27
设随机变量X在[1,4]上服从均匀分布,现在对X进行3次独立试验,则至少有两次观察值大于2的概率为___。

14. 0.06415,0.3303,0.009,0.6606,超过240V
设电源电压U~N(220,625)(单位:V)有三种情况:(1)不超过200V;(2)200V~240V;(3)超过240V,在以上三种情况下,某电子元件损坏的概率分别为0.1,0.001,0.2,电子元件损坏的概率___;若已知电子元件损坏,电压处在___情况可能性最大。

15. t(n-1)
16. 极大似然估计
在学过的内容中,矩估计和___是点估计的两种常用方法。

17. [0.101,0.224]
从一大批产品中抽取样本容量为100的样本,经检验发现有16个次品,则这种产品的次品率p的置信度为0.95的置信区间为___。

18. 否,否
19. 不正常,显着变大
问答题:
1. P(A1)=70%,P(A2)=30%,P(B|A1)=95%,P(B|A2)=80%
市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂的合格率是80%。

若用事件A1、A2分别表示甲、乙两厂的产品,B表示产品为合格品,试写出有关事件的概率P(A1),P(A2),P (B|A1),P(B|A2)。

2. 3/4,11/12
已知P(A)=1/4,P(B)=2/3.(1)若A与B相互独立,求P(A+B);(2)若A与B不相容,求P(A+B).
3. 0.039,0.0006,0.000006,0.000004,0.00000001
某人买了四节电池,已知这批电池有百分之一的产品不合格,求这人买到的四节电池中恰好有一节、二节、三节、四节是不合格的概率。

4. 1/π,1/3
5. 1/λ
6. 7.5,7,0.0460,0.9540
自优质品率为15%的一批产品中进行50次还原抽样检验,假设检验不影响产品的质量。

试求:
(1)抽到优质品的平均件数;(2)抽到优质品的最可能件数;(3)抽到优质品不超过3次的概率;(4)抽到优质品超过3次的概率。

7.
ξ服从参数为a,P的二项分布,已知P(ξ≥1)=5/9,那么成功率为P的4重贝努里试验中至少有一次成功的概率是多少
8. 13/8,41/8,12
9.
某元件寿命ξ服从参数为λ(1/λ=1000小时)的指数分布。

3个这样的元件使用1000小时后,都没有损坏的概率是多少
10. 37
11.
已知某种白炽灯泡寿命服从正态分布,在某星期所生产的该种灯泡中随机抽取10只,则得寿命(以小时记)为1067,919,1196,785,1126,936,918,1156,920,948,若总体参数均未知,使用极大似然估计法估计这个星期中生产的灯光能使用1300小时以上的概率。

12. 可以认为。

相关文档
最新文档