比例线段及比例的基本性质

合集下载

比例线段及有关定理

比例线段及有关定理

射影定理
总结词
射影定理是指在直角三角形中,斜边的平方等于两直角边的平方和减去两直角边的乘积。
详细描述
射影定理是几何学中的一个重要定理,它描述了直角三角形中斜边与两直角边之间的关系。具体来说 ,在直角三角形中,斜边的平方等于两直角边的平方和减去两直角边的乘积。这个定理在解决实际问 题中具有广泛的应用,如测量、建筑等领域。
03
比例线段的计算方法
利用平行线分线段成比例定理计算平行线分线段成比例定理如果一组平行线被一组横截线所截,那么这些截线段之比是相等的。
应用
通过已知的比例线段,利用平行线分线段成比例定理,可以计算出其他相关的 比例线段长度。
利用相似三角形的性质和判定定理计算
相似三角形的性质
两个三角形对应角相等, 则这两个三角形相似。相 似三角形对应边之比为相 似比。
成比例的线段具有传递性,即如果a:b:c:d且b:c:d:e,则必有 a:b:c:e。
比例线段的性质
01
02
03
比例线段的性质
如果线段a、b、c、d成比 例,那么它们的长度之比 是常数,即|a/b|=|c/d|。
比例线段的性质
如果线段a、b、c、d成比 例,那么它们的面积之比 是常数的平方,即 |a×d/b×c|=1。
判定定理
如果两个三角形两组对应 角相等,则这两个三角形 相似。
应用
通过已知的比例线段,利 用相似三角形的性质和判 定定理,可以计算出其他 相关的比例线段长度。
利用射影定理计算
射影定理
在直角三角形中,斜边上的高将直角三角形分为两个小三角形,这两个小三角形 是相似的,且它们的边长之比等于原三角形的边长之比。
利用面积关系计算线段长度
通过已知的线段和面积比例关系,可以计算出未知线段的长度。

成比例线段与比例的基本性质

成比例线段与比例的基本性质

000,2
000,∴ac
3
=6
1
=2
,
d = 1 000 = 1 ,∴a =d ,
b 2 000 2 c b
∴这四条线段成比例.
方法归纳 解此类问题的基本步骤:①统一单位;②进行排序;③进行计
算;④做出判断.
1 成比例线段
栏目索引
知识点二 比例的性质
名称 比例的 基本性质 等式的 基本性质 合比性质 等比性质
(b,d不为0)
如果 a
b
=
c d
=
e f
=…=mn
(b+d+f+…+n≠0),那么ab
ce df
m n
=
a b
1 成比例线段
例2 (1)根据下列各题的条件求a∶b的值.
①2a=3b;② a b = 1 ;③ a 2b = 5 .
a 2 3b 3
(2)已知 a = b = c ,且a,b,c都是正数,求 a 3b 2c 的值.
1 成比例线段
栏目索引
解析
(1)∵四条线段的数值按从小到大的顺序排列为3,4,5,7,da
3
=4
,b
c
=
5 ,且3 ≠5 ,∴ a ≠b .
7 47 d c
∴这四条线段不成比例.
(2)a=3 cm,b=20 m=2 000 cm,c=6 cm,d=10 m=1 000 cm.
∵四条线段的数值按从小到大的顺序排列为3,6,1
栏目索引
初中数学(北师大版)
九年级 上册
第四章 图形的相似
第四章 图形的相似
栏目索引
1 成比例线段
栏目索引
知识点一 线段的比及成比例线段

线段的比与比例线段的概念

线段的比与比例线段的概念

线段的比与比例线段的概念、比例的性质和黄金分割I 梳理知识比与比例、比例的基本性质、合比性质、等比性质、两线段的比、成比例线段、平行线分 线段成比例、截三角形两边或其延长线的直线平行于第三边的判定、黄金分割1. 线段的比的定义 在同一单位长度下,两条线段2. 比例线段的定义在四条线段中,如果其中两条线段的_______________________________________ 等于另外两条线段的 _____ ,那么这四条线段叫做 成比例线段,简称 ____________ .在 a : b = c : d 中,a 、d 叫做比例的 ___ , b 、c 叫做比例 的 _____ ,称d 为a 、b 、c 的 _____________ .3. 比例的性质(1)比例的基本性质:如果a : b = c : d ,那么 则b 叫a , c 的比例中项.⑵合份)比性质:若a⑶等比性质:若一b4.黄金分割(1) 黄金分割的意义:如图,点 那么称线段 AB 被点C 黄金分割.其中点C 叫做线段AB 的 做 .(2) 黄金分割的作法【例题讲解】 例1.(1)已知1,厉,5三个数,如果再添一个数,使之能与已知的三个数成比例,则这个数应该是 ___________ .⑵在比例尺为1: n 的某市地图上,规划出一块长 5cm X 2cm 的矩形工业区,则该工业区的实际面积是平方米.例 2.(1)已知 X : y : z = 3 : 4 : 5,①求-—y的值;②若 x +y + z = 6, za(2)已知a 、b 、c 、d 是非零实数,且 --------b c d的值•的比叫做这两条线段的比•特别地,若a : b = b : C,即 ,则C 把线段AB 分成两条线段 AC 和BC,如果 __________________ , ,AC 与AB 的比叫求 X 、y 、z.C bad一d一k ,求 ka b c求x 的值.黄金分割点吗为什么【同步测试】 一、选择题1. 已知一矩形的长 a = 1.35m , (A)9 : 400(B)9 : 402. 下列线段能成比例线段的是( b = 60cm ,贝U a : b 的值为((C)9 : 4(D)90 : 4)(A)1cm,2cm,3cm,4cm (B)1cm, 72 cm,V 2 cm,2cm (C b/2 cm,亦cm, J 3 cm,1cm(D)2cm,5cm,3cm,4cm3. 如果线段a = 4, (A)84. 已知- b 3 (A)- 25. 已知 (A)— 2(B)16 2 2,则3 4 (B)4 y : z = 1 (B)2b = 16,c = 8, (C)24 「 的值为b5 (C)5 :2 : 3,且 (C)3 那么a 、b 、c 的第四比例项d 为( (D)32 3 (D)- 5 2x + y — 3z =— 15,贝U x 的值为( (D)— 3 6. 在比例尺为1 : 38000的南京交通游览图上,玄武湖隧道长约为 7cm ,它的实际长度约为()(A)0.226km (B)2.66km (C)26.6km (D)266km 7. 某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某一同学的身高是 影长是1米,旗杆的影长是 8米,则旗杆的高度是( ) (A)12 米 8. 已知点 1.5 米, (B)11 米 (C)10 米 C 是AB 的黄金分割点(AC >BC , (B)(6 — 2也)cm (D)9 米 若AB = 4cm ,贝U AC 的长为( (C)詰—1)cm AD AE (A)(2A /5 — 2)cm )(D)(3 —75 )cm 9.若D 、E 分别是△ ABC 的边AB 、AC 上的点,且AB =疋,那么下列各式中正确的是 ((3)若a 、b 、c 是非零实数,并满足ab c ,且 xa(a b)(b c)(c a)abc例3.(1 )已知线段AB = a ,在线段 AB 上有一点C,若则点 C 是线段AB 的(A)AD DEDB = BCAB(B)A DAE=A CDB AB(C)Ec = ACAD AE(D)DB = AC10.若k丄空 b 2c a + b+ CM0,k的值为((A)—1 (B)2 (C)1 (D) —二、填空题11.在(5 +x):2中的x= (5—x) : x 中的x=12.若10 813.若a : 3 = b : 4 = c : 5 ,且a + b —c= 6,贝U a=,b= c=14.已知x : y :z= 4 : 5 ,且x+ y+ z= 12,那么x= ,y=z=15.若b16.已知ace,②(x + y) : (y + z)17.若x 2y18.图纸上画出的某个零件的长是是32 mm,如果比例尺是 1 : 20,这个零件的实际长19.如图,已知AB : DB = AC:EC, AD = 15 cm , AB = 40 cm , AC = 28 cm ,贝U AEA20.已知,线段 2 cm, c (2 73) cm, 则线段a、c的比例中项b是三、解答题21.已知x3 0,求下列各式的值:(1)2x 3y 4z⑵5x 3y za22.已知——x0,求x+y+ z 的值.23.若△ ABC 的三内角之比为 1 : 2 : 3,求^ ABC 的三边之比.24.已知 a 、b 、c 为^ ABC 的三边,且 a + b + c = 60cm , a : b : c = 3 : 4 : 5,求^ ABC 的面 积.25.已知线段AB = 10cm , C 、D 是AB 上的两个黄金分割点,求线段CD 的长.四、挑战中考DE = 12 , BC = 15, GH = 4,求 AH .ABCD,取 AB 的中点 P ,连结 PD ,在BA 的延 长线上取点F ,使PF =PD,以AF 为边作正方形 AMEF ,点M 在AD 上(1)求AM 、MD 的长;1、若一c-a bA . 12B . 1C .— 1则k 的值为()D .-或一12AGABC 中,2、如图,△ 匹,且。

华师九上比例线段及比例的基本性质教案

华师九上比例线段及比例的基本性质教案

比例线段及比例的基本性质[内容]教学目标1.理解比例线段的概念,能说出比例关系式中比例的内项、外项、第四比例项或比例中项.2.掌握比例的基本性质,初步会用它进行简单的比例变形,并会判断四条线段是否成比例.3.培养学生将比例式看成是关于末知数的方程的观点,利用方程思想来解决问题. 教学重点和难点重点是比例线段的概念及基本性质的应用;难点是应用比例的基本性质进行比例变形. 教学过程设计一、复习四个数成比例的有关知识1.四个数a ,b ,c ,d 成比例的定义,比例的项、内项及外项的含义.2.比例的基本性质的内容.二、类比联想、定义比例线段的有关概念1.复习两条线段的比的有关知识.投影:如图5-4,矩形ABCD 与矩形A ¢B ¢C ¢D ¢中,AB=50,CD=25,A ¢B ¢=20,C ¢D ¢=10.求出''''CB B A BC AB 及的值,并回答它们的大小关系. 答:12''''==C B B A BC AB 由此引出比例线段的概念.2.用类比的方法学习比例线段的概念.(1)比例线段的概念.在四条线段中,如果其中两条线段比等于另外两条线段比,那么这两条线段叫做成比例线段,简称比例线段.(2)比例线段的符号表示及有关名称.① 四条线段?a ,b ,c ,d 成比例,记作a :b=c :d .组成比例的项是a ,b ,cd ,其中比例外项为a ,b ,比例内项为b ,c ,d 称为a ,b ,c 的第四比例项.② 特殊情况:若作为比例内项的两条线段相同,即a :b=c :d .则线段b 叫a ,c 的比例中项.③ (3)教师应强调四条线段才能成比例,而且有顺序关系. 如图5-4中,''''BA CB BC AB ≠,即AB ,BC ,B ¢C ¢,A ¢B ¢四条线段不成线段,而AB ,BC ,A ¢B ¢ ,B ¢C ¢四条线段成比例.三、比例的基本性质的证明及应用教师应指出,将四条线段成比例转化成四条线段的长度成比例,它具有数的成比例的所有性质,本节先学习比例的基本性质对于线段的应用.1.比例的基本性质的内容及推导.(1) 内容:bc ad dc b a =<=>= (2) 特例:ac b c b b a =<=>=2 (3) 说明:①引导学生根据等式的性质从正、反两方面进行证明.②教师强调,它的作用是将等积式与比例式互化,由于线段的长度都是正数,因此由一个等积式可得到八种比例式.2.比例基本性质的应用.应用(1) 判断四条线段是否成比例:将已知四条线段按大小顺序排列,如a >b >c >d ,若最长(a )和最短(d )的两条线段长之积等于其余两条线段长(b,c )之积,则这四条线段a ,b ,c ,d 成比例.例1 判断下列四条线段是否成比例.① a=2,b=5,c=15,d=32;② a=2,b=3, c=2,d=3;③ a=4,b=6, c=5,d=10;④ a=12,b=8, c=15,d=10.说明:教师示范一个例子,其余请学生来巩固练习.如第①题排序时,将a 改写成4,d 改写成12ab <b <d <c ,而ac =4×15;bd=5×12,ad=bd ,a ,b ,c ,d 四条线段成比例.答案:②不成比例;③不成比例;④b ,d ,a ,c 四条线段成比例.应用(2)按要求将等积式改写成比例式.教给学生等积式化比例式的方法.按照分类讨论的思想以及“内项积等于外项积”,同时可写出8个比例式,也可根据需要写出其中某一个比例式,要求学生熟练掌握这种比例变形. 例2已知:ad=bc .(1) 将其改写成比例式;(2) 写出所有以a ,d 为内项的比例式;(3) 写出使b 作为第四项比例项的比例式;(4)若db c a =;写出以c 作第四比例项的比例式; 分析:教给学生等积式化比例式的方法.(1)分类讨论.认准等积式中的一条线段,它可以在比例的内项、外项共四个位置出现,以a 为例: ()()()()()()()()()()()()a a a a ====,,, (2)找出与a 作乘积的项d ,放在相应位置上 . ()()()()()()()()ad a d d a d a====,,, (3)写出其余两项,分别有两种情况,同时交换比例的内项或外项,共可得到八个比例式: ①()()d c b a =②()()d b c a = ③()()c d a b = ④()()b d a c = ⑤()()c d a b = ⑥()()b d ac = ⑦()()a c bd = ⑧()()ab c d = 解(1)见分析(3)(2)(4)可以先将比例式化为等积式ab=bc ,转化为第(3)题再处理,也可以这样处理:①直接同时交换每个比的前项和后项,②交换比例的内项或外项.应用(3)检查所作的比例变形是否正确,把比例式化为等积式,看与原式所得的等积式是否 桢即可. 如将d c b a =变形为bc d a =,由于各自可化为等积式ad=bc ,ad=cd ,它们不相等,因此所作的比例变形不正确.四、应用举例、变式练习例3 计算.(1)已知:x ∶y=5∶4,y ∶z=3∶7.求x ∶y ∶z.(2)已知:a ,b ,c 为三角形三边长,(a-c) ∶(c+b) ∶(c-d)=2∶7∶(-1),周长为24.求三边长.分析:将比例式转化为方程(或方程组)来解决问题.第(1)题可将已知分别看成含同一字母y 的方程,表示出x=45y ,z=37y ,得x ∶y ∶z=45∶1∶37=15∶12∶28.或利用分数的基本性质,将两个比例式中y 的对应项系数化成它们的最小公倍数,如x ∶y=5∶4=15∶12,y ∶z=3∶7=12∶28,得出x ∶y ∶z=15∶12∶28. 第(2)小题可将比例式改为两个等积式,结合周长得到关于a ,b ,c 的三元一次方程组;例4 在相同时刻的物高与影长成比例,如果一古塔在地面上影长为50m ,同时,高为的测竿的影长为,那么,古塔的高是多么米?分析:(1)利用比例的知识测量不可直接到达的物体的高度,是比例的很重要的一个应用;(2)“相同时刻的物高与影长成比例”的实际含义是指同一时刻,两物体的高与它们对应的影长的比相等;(3)列出比例式,得到关于古塔高度的方程求解(古塔高为30m).例5(选用)已知:如图5-5,EFBE AD AB =,AB=10cm ,AD=2cm ,BC=,E 为BC 中点.求EF ,BF 的长.(答:,分析:应着重培养学生的分析能力,分析图中哪些线段可知长度,并列出关于一个末知数的方程来解决问题.练习 课本第204页第1,2题.补充练习如图5-6,AG·BC=DE·AH.(1) 写出由以上等积式得到的八个比例式;(2)若DE=12,BC=15,GH=3.求AH的长.(15)五、师生共同小结在学生尝试总结的基础上,教师强调:1.比例线段的有关概念和注意事项.2.比例的基本性质的内容.它是怎样证明的?有哪些应用?应用时有哪些需要注意的问题?3.将比例式看成方程解决问题的观点.六、作业课本第207页第4题,第203页第1,2,3题.1.成比例线段的顺序性课本虽然强调了,但学生体会不深,需要教师课堂举例让学生理解透彻,而且如何判断四条线段成比例,最好教给学生切实可行的措施.2.比例的基本性质是后边证明三角形相似以及证明等积式、比例式经常用到的基础知识,教师应教给学生如何熟练利用性质进行比例变形,如何检查变形是否正确.例如根据需要化乘积式为比例式的方法,使学生能逐渐熟练巩固这些性质,为后边“相似三角形”的学习扫清障碍,打好基础.。

比例线段及比例的基本性质

比例线段及比例的基本性质

[文件] sxc2jja0001.doc[科目] 数学[年级] 初二[章节][关键词] 比例线段/比例的基本性质[标题] 比例线段及比例的基本性质[内容]教学目标1.理解比例线段的概念,能说出比例关系式中比例的内项、外项、第四比例项或比例中项.2.掌握比例的基本性质,初步会用它进行简单的比例变形,并会判断四条线段是否成比例.3.培养学生将比例式看成是关于末知数的方程的观点,利用方程思想来解决问题. 教学重点和难点重点是比例线段的概念及基本性质的应用;难点是应用比例的基本性质进行比例变形. 教学过程设计一、复习四个数成比例的有关知识1.四个数a ,b ,c ,d 成比例的定义,比例的项、内项及外项的含义.2.比例的基本性质的内容.二、类比联想、定义比例线段的有关概念1.复习两条线段的比的有关知识.投影:如图5-4,矩形ABCD 与矩形A 'B 'C 'D '中,AB=50,CD=25,A 'B '=20,C 'D '=10.求出''''C B B A BC AB 及的值,并回答它们的大小关系. 答:12''''==C B B A BC AB 由此引出比例线段的概念. 2.用类比的方法学习比例线段的概念.(1)比例线段的概念.在四条线段中,如果其中两条线段比等于另外两条线段比,那么这两条线段叫做成比例线段,简称比例线段.(2)比例线段的符号表示及有关名称.① 四条线段 a ,b ,c ,d 成比例,记作a :b=c :d .组成比例的项是a ,b ,cd ,其中比例外项为a ,b ,比例内项为b ,c ,d 称为a ,b ,c 的第四比例项.② 特殊情况:若作为比例内项的两条线段相同,即a :b=c :d .则线段b 叫a ,c 的比例中项.③ (3)教师应强调四条线段才能成比例,而且有顺序关系.如图5-4中,''''BA CB BC AB ≠,即AB ,BC ,B 'C ',A 'B '四条线段不成线段,而AB ,BC ,A 'B ' ,B 'C '四条线段成比例.三、比例的基本性质的证明及应用教师应指出,将四条线段成比例转化成四条线段的长度成比例,它具有数的成比例的所有性质,本节先学习比例的基本性质对于线段的应用.1.比例的基本性质的内容及推导.(1) 内容:bc ad dc b a =<=>= (2) 特例:ac b c b b a =<=>=2 (3) 说明:①引导学生根据等式的性质从正、反两方面进行证明.②教师强调,它的作用是将等积式与比例式互化,由于线段的长度都是正数,因此由一个等积式可得到八种比例式.2.比例基本性质的应用.应用(1) 判断四条线段是否成比例:将已知四条线段按大小顺序排列,如a >b >c >d ,若最长(a )和最短(d )的两条线段长之积等于其余两条线段长(b,c )之积,则这四条线段a ,b ,c ,d 成比例.例1 判断下列四条线段是否成比例.① a=2,b=5,c=15,d=32;② a=2,b=3, c=2,d=3;③ a=4,b=6, c=5,d=10;④ a=12,b=8, c=15,d=10.说明:教师示范一个例子,其余请学生来巩固练习.如第①题排序时,将a 改写成4,d 改写成12ab <b <d <c ,而ac =4×15;bd=5×12,ad=bd ,a ,b ,c ,d 四条线段成比例.答案:②不成比例;③不成比例;④b ,d ,a ,c 四条线段成比例.应用(2)按要求将等积式改写成比例式.教给学生等积式化比例式的方法.按照分类讨论的思想以及“内项积等于外项积”,同时可写出8个比例式,也可根据需要写出其中某一个比例式,要求学生熟练掌握这种比例变形. 例2已知:ad=bc .(1) 将其改写成比例式;(2) 写出所有以a ,d 为内项的比例式;(3) 写出使b 作为第四项比例项的比例式;(4)若db c a =;写出以c 作第四比例项的比例式; 分析:教给学生等积式化比例式的方法.(1)分类讨论.认准等积式中的一条线段,它可以在比例的内项、外项共四个位置出现,以a 为例: ()()()()()()()()()()()()a a a a ====,,, (2)找出与a 作乘积的项d ,放在相应位置上 . ()()()()()()()()ad a d d a d a====,,, (3)写出其余两项,分别有两种情况,同时交换比例的内项或外项,共可得到八个比例式: ①()()d c b a =②()()d b c a = ③()()c d a b = ④()()b d a c = ⑤()()c d a b = ⑥()()b d ac = ⑦()()a c b d = ⑧()()ab c d = 解(1)见分析(3)(2)(4)可以先将比例式化为等积式ab=bc ,转化为第(3)题再处理,也可以这样处理:①直接同时交换每个比的前项和后项,②交换比例的内项或外项.应用(3)检查所作的比例变形是否正确,把比例式化为等积式,看与原式所得的等积式是否 桢即可. 如将d c b a =变形为bc d a =,由于各自可化为等积式ad=bc ,ad=cd ,它们不相等,因此所作的比例变形不正确.四、应用举例、变式练习例3 计算.(1)已知:x ∶y=5∶4,y ∶z=3∶7.求x ∶y ∶z.(2)已知:a ,b ,c 为三角形三边长,(a-c) ∶(c+b) ∶(c-d)=2∶7∶(-1),周长为24.求三边长.分析:将比例式转化为方程(或方程组)来解决问题.第(1)题可将已知分别看成含同一字母y 的方程,表示出x=45y ,z=37y ,得x ∶y ∶z=45∶1∶37=15∶12∶28.或利用分数的基本性质,将两个比例式中y 的对应项系数化成它们的最小公倍数,如x ∶y=5∶4=15∶12,y ∶z=3∶7=12∶28,得出x ∶y ∶z=15∶12∶28. 第(2)小题可将比例式改为两个等积式,结合周长得到关于a ,b ,c 的三元一次方程组;例4 在相同时刻的物高与影长成比例,如果一古塔在地面上影长为50m ,同时,高为1.5m 的测竿的影长为2.5m ,那么,古塔的高是多么米?分析:(1)利用比例的知识测量不可直接到达的物体的高度,是比例的很重要的一个应用;(2)“相同时刻的物高与影长成比例”的实际含义是指同一时刻,两物体的高与它们对应的影长的比相等;(3)列出比例式,得到关于古塔高度的方程求解(古塔高为30m).例5(选用)已知:如图5-5,EFBE AD AB =,AB=10cm ,AD=2cm ,BC=7.2cm ,E 为BC 中点.求EF,BF的长.(答:0.72cm,2.88cm)分析:应着重培养学生的分析能力,分析图中哪些线段可知长度,并列出关于一个末知数的方程来解决问题.练习课本第204页第1,2题.补充练习如图5-6,AG·BC=DE·AH.(1) 写出由以上等积式得到的八个比例式;(2)若DE=12,BC=15,GH=3.求AH的长.(15)五、师生共同小结在学生尝试总结的基础上,教师强调:1.比例线段的有关概念和注意事项.2.比例的基本性质的内容.它是怎样证明的?有哪些应用?应用时有哪些需要注意的问题?3.将比例式看成方程解决问题的观点.六、作业课本第207页第4题,第203页第1,2,3题.1.成比例线段的顺序性课本虽然强调了,但学生体会不深,需要教师课堂举例让学生理解透彻,而且如何判断四条线段成比例,最好教给学生切实可行的措施.2.比例的基本性质是后边证明三角形相似以及证明等积式、比例式经常用到的基础知识,教师应教给学生如何熟练利用性质进行比例变形,如何检查变形是否正确.例如根据需要化乘积式为比例式的方法,使学生能逐渐熟练巩固这些性质,为后边“相似三角形”的学习扫清障碍,打好基础.。

北师大版数学九年 级数学上册4.1:成比例线段与比例的基本性质 课件

北师大版数学九年 级数学上册4.1:成比例线段与比例的基本性质 课件

第二环节 新课探究
三、比例的基本性质
三、比例的基本性质
小组合作交流三:
如果a、b、c、d 四个数成比例,
即 ac
bd
,那么ad=bc 吗?反过来,如
果ad=bc,那么a、b、c、d 四个数成比
例吗?
三、比例的基本性质
如果
a b
c, d
那么
ad
bc
如果 ad bc(a, b, c, d都不等于0),那么 a c bd
巩固练习2
1.判断下列线段是否是成比例线段:
(1)a=2cm,b=0.04m,c=0.3dm,d=6cm;
(2)a=0.8,b=3,c=1,d=2.4.
解:(2) a 0.8, c 1, d 2.4,b 3 a 0.8 4 , d 2.4 4 c 1 5b 3 5 a d cb a、c、d、b是成比例线段。
3 题、解决问题能力,培养数学应用意识,体会数学与自然,
社会的密切联系。
2014.10
你能在下面图形中找出形状相同的图形吗?







合作交流1:



④ ⑤ ⑥⑦
• 1、图中形状相同的图形有什么不同? • 2、形状相同的图形其中的一个如何由另一个得到? • 3、形状相同的图形对应线段如何变化? • 4、形状相同而大小不同的两个图形,你认为如何描 • 述它们的大小关系?
考考你的眼力
找出这两幅图中四处不同
第一环节 情景引入 在实际生活中,经常会看到许多形状相同的图片
第四章 图形的相似
第1节 成比例线段(一)
4.1.1成比例线段
学习目标
结合现实情境感受学习线段的比的必要性,借助

北师大数学九年级上册第四章比例线段

 北师大数学九年级上册第四章比例线段

第01讲_比例线段知识图谱比例与比例线段知识精讲一.比例的性质1.比例的基本性质:a cad bc b d =⇔=; 2.反比定理:a c b db d ac =⇔=;3.更比定理:a c a b b d c d =⇔=(或d cb a =);4.合比定理:a c a b c db d b d ++=⇔=; 5.分比定理:a c a b c db d b d --=⇔=; 6.合分比定理:a c a b c db d a bcd ++=⇔=--; 7.等比定理:(0)a c m a c m ab d n b d n b d n b++⋅⋅⋅+==⋅⋅⋅=++⋅⋅⋅+≠⇔=++⋅⋅⋅+.二.成比例线段1.比例线段:对于四条线段a b c d ,,,,如果其中两条线段的比与另两条线段的比相等,如a cb d=(即::a b c d =),那么这四条线段a b c d ,,,叫做成比例线段,简称比例线段. 2.比例的项:在比例式a cb d =(::a bcd =)中,a d ,称为比例外项,b c ,称为比例内项,d 叫做a b c ,,的第四比例项.三条线段a bb c=(2b ac =)中,b 叫做a 和c 的比例中项.3.黄金分割:如图,若线段AB 上一点C 把线段AB 分成两条线段AC 和BC (AC BC >),且使AC 是AB 和BC 的比例中项(即2AC AB BC =⋅)则称线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,其中510.618AC AB AB -=≈,350.382BC AB AB -=≈,AC 与AB 的比叫做黄金比.三点剖析一.考点:比例与成比例线段二.重难点:比例的性质三.易错点:注意等比定理在运用时的时候一定要对分母为0或不为0进行讨论.比例的基本性质例题1、已知23a b=(0ab≠),下列比例式成立的是()A.32ab= B.32a b= C.23ab= D.32ba=【答案】B【解析】本题考查比例的基本性质,内项积等于外项积。

成比例线段与比例的基本性质

成比例线段与比例的基本性质
ABEH2 10 AD EF 5
成比例线段
四条线段a,b,c,d中,如果a与b的比等于c与d的, 即 ac
bd
那么这四条线段a,b,c,d叫做成比例线段,简称比 例线段.
上图中AB,EH,AD,EF是成比例线段, AB,AD,EH,EF也是成比例线段。
跟踪练习
1、判断下列四条线段 a,b,c,d 是否成比例
如果ad=bc(a,b,c,d都不等于零),那么 a = c bd
例题
如图,一块矩形绸布的长AB=am,宽AD= 1m ,按着图中所示的方式
将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原
a 绸布的宽与长的比相同,即 AE AD ,那么 的值应当是多少? AD AB
解:根据题意可知,A Ba,m A E1a,m A D 1m 3
如果把 m 表示成比值k,那么 AB k,或AB=k·CD
n
CD
两条线段的比实际上就是两个数的比.
五边形ABCDE与五边形A′B′C′D′形状相同 AB=5cm,A'B'=3cm,AB:A'B'=5:3, 5 就是线段AB与线段A'B的比。
3
这个比值刻画了这两个五边形的大小关系。
想一想
两条线段长度的比与所采用的长度单位有 没有关系?
对于形状相同而大小不同的两个图形, 我们可以用相应线段长度的比来描述它们 的大小关系
线段的比
如果选用同一个长度单位量得两条线段AB,CD的
长度分别是m、n,那么说这两条线段的比就是它们长
度的比,即 AB:CD=m:n或写成 AB m CD n
其中,线段AB,CD分别叫做这个线段比的前项、后项.
没有关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比例线段及比例的基本性质
[内容]
教学目标
1理解比例线段的概念,能说出比例关系式中比例的内项、外项、第四比例项或比例中项
2 •掌握比例的基本性质,初步会用它进行简单的比例变形,并会判断四条线段是否成比例
3•培养学生将比例式看成是关于末知数的方程的观点,利用方程思想来解决问题
教学重点和难点
重点是比例线段的概念及基本性质的应用;难点是应用比例的基本性质进行比例变形
教学过程设计
一、复习四个数成比例的有关知识
1四个数a, b, c, d成比例的定义,比例的项、内项及外项的含义
2比例的基本性质的内容
二、类比联想、定义比例线段的有关概念
1复习两条线段的比的有关知识
投影:如图5-4,矩形ABCD 与矩形A BCD 中,AB=50 , CD=25, A B =20, CD =10 求出如及AX BC BC的值,并回答它们的大小关系
AB A'B' 2
答:BC B'C' 1由此引出比例线段的概念
2用类比的方法学习比例线段的概念
(1 )比例线段的概念
在四条线段中,如果其中两条线段比等于另外两条线段比,那么这两条线段叫做成比例线段,
简称比例线段
(2)比例线段的符号表示及有关名称
①① 四条线段a, b, c, d成比例,记作ab=c d组成比例的项是a, b, cd,其中比例外项为
a, b,比例内项为b, c, d称为a, b, c的第四比例项
②② 特殊情况:若作为比例内项的两条线段相同,即ab=c d贝熾段b叫a, c的比
例中项
③③(3)教师应强调四条线段才能成比例,而且有顺序关系
AB B'C'
如图5-4中,BC A'B',即AB , BC , B C , A B四条线段不成线段,而AB , BC ,
AB ,B C四条线段成比例
三、比例的基本性质的证明及应用
教师应指出,将四条线段成比例转化成四条线段的长度成比例,它具有数的成比例的所有性质,本节先学习比例的基本性质对于线段的应用
1比例的基本性质的内容及推导
(1) (1) 内容:a e
ad be b d
a b .2 —— b ae
(2) (2) 特例: b e
(3)(3)说明:①引导学生根据等式的性质从正、反两方面进行证明②教师强调,它的作用是将等积式与比例式互化,由于线段的长度都是正数,因此由一个等
积式可得到八种比例式•
2•比例基本性质的应用应用(1)判断四条线段是否成比例:将已知四条线段按大小顺序排列,如abed,若最长(a)和最短(d)的两条线段长之积等于其余两条线段长(b,c)之积,则这四条线段a,b,e,d成比例
例1 判断下列四条线段是否成比例
①①a=2,匕=^2=乜15, d=2叮3;
②② a= 2 , b=3, e=2 , d= ‘ 3;
③③a=4, b=6,e=5, d=10;
④④a=12, b=8, e=15 , d=10
说明:教师示范一个例子,其余请学生来巩固练习
如第①题排序时,将a改写成-4 , d改写成.12
abv bv d v e,而ae= 4x 15 ; bd= 5 x 12, ad=bd,
a, b, e, d四条线段成比例答案:②不成比例;③不成比例;④b, d , a, e四条线段成比例
应用(2)按要求将等积式改写成比例式
教给学生等积式化比例式的方法按照分类讨论的思想以及“内项积等于外项积”,同时可写出8个比例式,也可根据需要写出其中某一个比例式,要求学生熟练掌握这种比例变形
例2已知 :ad=be
(1) (1) 将其改写成比例式;
(2) (2) 写出所有以a, d为内项的比例式;
(3) (3) 写出使b作为第四项比例项的比例式;
a b
(4) 若e d ;写出以e作第四比例项的比例式;
分析:教给学生等积式化比例式的方法
(1)分类讨论认准等积式中的一条线段,它可以在比例的内项、外项共四个位置出现, 以a 为例:
⑵找出与a作乘积的项d,放在相应位置上
a dad
d ,a ,d , a
(3)写出其余两项,分别有两种情况,同时交换比例的内项或外项,共可得到八个比例式:
acab b d c d b d c d d c
①b d②c d③a c④a b⑤a c⑥a b⑦b a⑧
解⑴见分析⑶(2)
{丄d
"/ r
a c d c
或£ -
a&,叫h *
_ j__L厂亍弋%或汁钦
(4)可以先将比例式化为等积式ab=bc,转化为第(3)题再处理,也可
以这样处理:①直接
同时交换每个比的前项和后项,②交换比例的内项或外项
匚廿 6 cf a f” c *
应用(3)检查所作的比例变形是否正确,把比例式化为等积式,看与原式所得的等积式是否桢即可•
a c a c
如将b d变形为d b,由于各自可化为等积式ad=bc,ad=cd,它们不相等,因此所作
的比例变形不正确•
四、应用举例、变式练习
例3计算•
(1)已知:x : y=5 : 4, y : z=3 : 7.求x : y : z.
⑵已知:a, b, c为三角形三边长,(a-c) : (c+b) : (c-d)=2 : 7 : (-1),周长为24.求三边长.
分析:将比例式转化为方程(或方程组)来解决问题.
5 7 5
第⑴题可将已知分别看成含同一字母y的方程,表示出x=4y,z=3y,得x : y : z= 4 : 1 :
7
3=15: 12 : 28.或利用分数的基本性质,将两个比例式中
公倍数,如 x : y=5 : 4=15 : 12,y : z=3 : 7=12 : 28,得出 x : y : z=15 : 12 : 28. 第(2)小题可将比例式改为两个等积式,结合周长得到关于
a ,
b ,
c 的三元一次方程组;
2(c-b}- -(点-
i7(c - A) = - (c T |
v 于杠寸「二24,
例4在相同时刻的物高与影长成比例,如果一古塔在地面上影长为 50m 同时,高为1.5m
的测竿的影长为2.5m ,那么,古塔的高是多么米 ? 分析:
(1) 利用比例的知识测量不可直接到达的物体的高度,是比例的很重要的一个应用;
(2) “相同时刻的物高与影长成比例”的实际含义是指同一时刻,两物体的高与它们对应的 影长的比
相等;
⑶ 列出比例式,得到关于古塔高度的方程求解 (古塔高为30m).
AB BE
例 5(选用)已知:如图 5-5, AD EF ,AB=10cm AD=2cm BC=7.2cm, E 为 BC 中点.求 EF, BF 的长.(答:0.72cm ,2.88cm) 分析:应着重培养学生的分析能力, 分析图中哪些线段可知长度, 并列出关于一个末知数的
方程来解决问题.
练习课本第204页第1,2题.
B

E

图 5七 图 5-5
补充练习 如图5-6,AG ・BC=DEAH.(1)写出由以上等积式得到的八个比例式;
(2)若DE=12,
BC=15 GH=3求 AH 的长.(15)
五、 师生共同小结
在学生尝试总结的基础上,教师强调:
1. 比例线段的有关概念和注意事项 .
2. 比例的基本性质的内容.它是怎样证明的?有哪些应用?应用时有哪些需要注意的问题 ?
3. 将比例式看成方程解决问题的观点 .
六、 作业
y 的对应项系数化成它们的最小
课本第207页第4题,第203页第1,2,3题.
1. 成比例线段的顺序性课本虽然强调了,但学生体会不深,需要教师课堂举例让学生理解透彻, 而且如何判断四条线段成比例,最好教给学生切实可行的措施.
2. 比例的基本性质是后边证明三角形相似以及证明等积式、比例式经常用到的基础知识,教师应教给学生如何熟练利用性质进行比例变形,如何检查变形是否正确. 例如根据需要化乘积式为比例式的方法,使学生能逐渐熟练巩固这些性质,为后边“相似三角形”的学习扫清障碍,打好基础.。

相关文档
最新文档