数学必修4综合测试题

合集下载

高中数学必修4测试题及答案资料讲解.docx

高中数学必修4测试题及答案资料讲解.docx

高中数学必修 4 测试试题第Ⅰ卷(选择题共 60 分)一、选择题:本答题共 12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.-300°化为弧度是()4B.5C.2D.5 A.33362.为得到函数y sin(2x) 的图象,只需将函数y sin( 2x) 的图像()36A.向左平移个单位长度B.向右平移个单位长度44C.向左平移个单位长度D.向右平移个单位长度223.函数y sin(2 x) 图像的对称轴方程可能是()3A.x B.x12C.x6D.x.w.w.k.s.5.u.c.o612 4.若实数 x 满足㏒2x =2+sin, 则 x 1 x10()A. 2x-9B. 9-2xC.11D. 95. 点A(x,y)是300°角终边上异于原点的一点,则y值为 () xA. 3B. -3C.3D. -333 6. 函数y sin(2x) 的单调递增区间是()3A.k, k 5Z B.2k,2k5k Z k12121212C.k,k 5Z D.2k,2k5k Z k66667.sin(-10π )的值等于() A .1B.-1C.3D.-3 322228.在△ ABC 中,若sin( A B C ) sin( A B C ) ,则△ABC必是()A.等腰三角形B.直角三角形C.等腰或直角三角形D.等腰直角三角9. 函数 y sin x sin x 的值域是()A.0B.1,1C.0,1D.2,010. 函数 y sin x sin x 的值域是()A.1,1B.0,2C.2,2D.2,011.函数y sin x tan x 的奇偶性是()A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数12.比较大小,正确的是()A .sin(5)sin 3sin 5B.sin( 5)sin 3sin 5C.sin3sin( 5)sin 5D.sin 3sin( 5)sin 5第Ⅱ卷(非选择题共 90 分)二、填空题(每小题 6 分,共 30 分)13.终边在坐标轴上的角的集合为 _________.14.时针走过 1 小时 50 分钟,则分钟转过的角度是______.15.已知扇形的周长等于它所在圆的周长的一半,则这个扇形的圆心角是________________.16. 已知角的终边经过点P(-5,12),则sin+2cos的值为______.17.一个扇形的周长是 6 厘米,该扇形的中心角是1 弧度,该扇形的面积是________________.三、解答题:本大题共 4 小题,共 60分。

高中数学必修4第三章三角恒等变换综合检测题(人教A版)

高中数学必修4第三章三角恒等变换综合检测题(人教A版)

第三章三角恒等变换综合检测题本试卷分第I 卷选择题和第U 卷非选择题两部分,满分150分,时间120 分钟。

第I 卷(选择题共60分)一、选择题(本大题共12个小题,每小题 5分,共60分,在每小题给出的四个选项中 只有一个是符合题目要求的 )n 3 41 .已知 0v av 2v 3<n 又 sin a= 5, cos (a+ ®= — 5,贝V sin ()B . 0 或 2424 C.25 24 D . ±25 [答案]Cn 3 4[解析]•/ 0v av 2 v 3v n 且 sin a= 5, COS ( a+ 3 = — 54 n3 3• cos a= 5 , 2< a+ 3v ㊁ n, • sin( a+ 3 = ±5,=sin( a+ 3cos a — cos( a+ 3)sin a才< 3v n ••• sin 3> 0•故排除 A , B , D.4 3 4⑵由 cos( a+ 3)= — 5及 Sin a= 3可得 sin 3= §(1 + cos 3)代入 sin 2 3+ cos 2 3= 1 中可解得 cos37 n=—1或一25,再结合2<仟n 可求sin 32.若sin Bv 0, cos2 0v 0,则在(0,2 内)B 的取值范围是()3 n3=0.sin3=- 5x 4-又氏才,n j, • sin 3> 0,故 sin 3= 24当 sin( a+ 3 =,sin 3= sin [( a+ a[点评](1)可用排除法求解,T=器53 245 = 25;A . n< 0< 25 nB.5T <e< ¥3 nC.y <e< 2 nD.严< 0<孕4 4[答案]B[解析]2 2 2•/ cos2 e< 0, • 1 —2sin < 0,即sin e>2或sin < —"2,又已知sin < 0, •— 1 < sin e<—亠2,2由正弦曲线得满足条件的e取值为54n<e< ¥3. 函数y= sin2x+ cos2x的图象,可由函数y= sin2x —cos2x的图象()A .向左平移f个单位得到B .向右平移f个单位得到8c.向左平移n个单位得到4D .向右平移4个单位得到[答案]C[解析]y= sin2x+ cos2x= , 2sin(2x+J=2si n2(x +》_ n _ ny= sin2x—cos2x= 2sin(2x—4)= . 2sin2(x—§)n n n其中x+8=(x+ 4)—8n•••将y= sin2x—cos2x的图象向左平移:个单位可得y= sin2x+ cos2x的图象.44. 下列各式中,值为~2的是()A . 2sin 15 cos15 °2 2B. cos 15。

高一数学必修4第三章综合检测题

高一数学必修4第三章综合检测题

第三章综合检测题、选择题(本大题共12个小题,每小题5分,共60分)1. si门2右一cos2;n的值为(C )B.2 D. ,3~2[解析]原式=-(cos2^- sin^F - cos62.函数f(x)= sin2x—cos2x的最小正周期是(B )nA.q3 B . n C . 2 n D . 4 n[解析]f(x) = sin2x—cos2x= , 2sin(2x—4),故T=今=冗13.已知cos 0= 3,(0,n )则cos(32 + 2 0 = ( C )4;29D.9[解析]cos(3n + 2 0= sin2 A 2sin 0os0= 2X 屮3=普44.若tan a= 3, ta n B= 3,则tan (a— 3 等于(D )C. 3D.13 —4tan a—tan 3 3 1[解析]tan(a—®=■—o= = 3.1 + tan dt an B〔+ 3X4 335. COS275°+COS215°+COS75°C OS15的值是(A )5 6 3 2A.4B.〒eq D. 1 +可2 21 5 [解析]原式=sin215°+ cos 15° + sin15 6os15°= 1 + ?sin30 = 4.6. y= cos2x—sin2x+ 2sinxcosx的最小值是(B )A. 2 B2 C. 2 D2_ n _[解析]y= cos2x+ si n2x= 2si n( 2x+ 4),.,.y max=— 2.7.若tan a= 2, tan(B— M= 3,贝U tan(B—2 0)= ( D )A. —1B. —5C.7D.1tan p- a—tan a 3 —2 i[解析]tan( p—2 a = tan[( p— a) —a = = =千1 + tan p—a tan a 1 + 68.已知点P(cos a, sin M, Q(cos p, sin®,贝U |PQ| 的最大值是(B )A. 2[解析] PQ = (cos® —cos a, sin p—si n a ,贝U |PQ| = p cos®—cos a2+ sin p- sin a2='2—2cos a— p,故|PQ|的最大值为2.cos2x+ sin2x”^「十厂9.函数y= cos2x —sin2x的最小正周期为(C )n nA. 2 nB. nC.qD.41 + tan2x n n[解析]y= =tan(2x+ 4),.T=2.1 —tan2x 4 210. 若函数f(x) = sin2x —*x€ R),则f(x)是(D )A .最小正周期为訓勺奇函数B .最小正周期为n的奇函数C.最小正周期为2 n的偶函数 D .最小正周期为n的偶函数1 12 12[解析]f(x)= sin2x—2= —2(1 —2sin2x) = —^cos2x,.f(x)的周期为n的偶函数.n11. y= sin(2x —3)—sin2x 的一个单调递增区间是(B )n n n 7^ r 5 1^ _ _ _ n 5 nA . [—6, 3] B.[石,石n]c.[匚n 石n ] D . [3,石!5 n n n n n[解析] y = sin(2x — 3) — sin2x = sin2xcos^ — coshes% — sin2x =- (sin2xcos^ + cos2xsin^)=—sin(2x + 3),其增区间是函数y = sin(2x +3)的减区间,即2k n+㊁三2x + 3W 2k n+~2,「k nn7 n 「 r 「 n 7 n+12= x <k n+12,当 k = 0 时,x € [乜,乜].12. 已知 sin(a+ 3 = 2,sin(a- 3 = £,则 log • 5(器 等于 (C . 41 sin a os 3+ cos a in 23得 1sin a os 3— cos a in 3= 313. (1+ tan 17 )(1 + tan28 °tan 17 ° tan28[解析] 原式=1 + tan 17 + tan28 °tan 17 °tan28 ;又 tan(17 +28°) = ------------- =1 — tan17 )an28 0 tan45 = 1,Atan17 + tan28 = 1— tan 17 °tan28 )14. (2012全国高考江苏卷)设a 为锐角,若cosn a+6=5,贝U sin 2 a+ 的值为弋^2.n n 2 n n [解析]Ta 为锐角,.「6<a+ 6<3,v cos a- 6 =4 5, n 3 sin a+ 6 = 5;n n n 24.••sin 2 a+ 3 = 2sin a+ 6 cos a+ 6 = 25,n n 2 .2 n 7cos(2 a+ 3) = cos( a+ g) 一 sin ( a+ g) =25 . n n n . n .•sin 2 a+ 12 = sin 2 + 3— 4 = sin 2 a — 3 ncos4—cosc n . n 1A /2 2a+3 sin 4= 50 .115.已知 cos2a= 3,贝U sin 4 a+ cos 4a=[解析]由sin(a+ 3 = 2, sin(a- a 5sin ocos 3=12.tan a 1,• °tan 3cos a i n 3=徨=5,「•log ‘5(眯沪 g 552 = 4.、填空题(本大题共4个小题, 每小题5分,共20分)代入原式可得结果为2.521 2 2 2[解析]cos2o a 2cos a—1= 3 得cos a 3,由cos2o a 1 —2s in a得sin2a 3(或据sin2a2 2 1 , + cos a 1得Sin a= 3),代入计算可得.3 1 n n16.设向量a=(刃sin0, b= (cos0 3),其中0€ (0,刃,若a / b,贝U 0= ___41 n [解析]若a//b,贝U sin 0cos A2,即卩2sin(Cos B= 1 ,:sin2 A1,又(0,㊁),n 4.三、解答题(本大题共6个小题,共70分,写出文字说明,证明过程或演算步骤3 - 3 sin2 a+ 2sin a,17.(本题满分10分)已知cos a—sin a= 5^,且na^n 求—1 —t an a—的值.[解析]因为cos a—sin aa%"2,所以1 —2si n a cos a=卷,所以2si n«cos a= £又a€ ( n "2),故sin a+ CoS a=-冷 1 + 2sin0cos a= —誉,2 2sin2 a+ 2sin a 2sin a cos a+ 2sin a cos a 2sin a cos a cos a+ sin a所以=1 —tan a COS a—sin a COS a—sin aZ x4/225x一 55 28 75.18.(本题满分12分)设x€ [0 , 3],求函数y= cos(2x-3) + 2sin(x—力的最值.n n n n[解析]y = cos(2x—3) + 2si n(x—6)= cos2(x—6)+ 2sin(x—石)2n n n 1 2 3=1 —2sin (x—舌)+ 2sin(x —6)= —2[sin(x—$) —2 + 21 1 3 1 • x€ [0 , 3], —x—g[一6,6].• °sin(x—g) € [一?, 2] ,^ymax a2,ymin= —2*19.(本题满分12分)已知tan2a2tan2a+ 1,求证:cos20+ sin2a= 0.十卄2cos20- sin20 2 1 —tan20 2—2tan2a[证明] cos2 0+ sin a= 2 2 + sin a= 2 + sin a= 2cos20+ sin20 1 + tan20 1 + 2tan2a+ 1+ si n2a=.2—sin a 2 + sin a= COS a+ Sin a 2 o—sin a+ sin a 0.3x . 3xx . x »亠12分)已知向量 a = (cos^, sin_2), b = (co^,— sin^), c = (.3— 1),其中 x €R.(1)当a 丄b 时,求x 值的集合; ⑵求a —ci 的最大值.3x x 3x xk n n [解析](1)由 a 丄b 得 a b = 0,即卩 cos^cos^ —sin-^sin^a 0,贝Ucos2x = 0,得x a ^ + 4(kk n n€ Z), Ax 值的集合是{x|x = 2 + 4, « Z}.2 3x1- 2 3x 2 o 3x t -3x o 3x 3x(2)|a — c| = (cos 刁—.3) + (sin_2 + 1) = cos"^ — 2.3cos^ + 3+ sin + 2sin^ + 1=5+ 2sin^x —2 ,3。

高一数学必修4第一章综合检测题

高一数学必修4第一章综合检测题

第一章综合检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若α是第二象限角,则180°-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角[答案] A[解析] α为第二象限角,不妨取α=120°,则180°-α为第一象限角.2.sin(-600°)=( )A.12B.32 C .-12 D .-32 [答案] B3.已知角α的终边经过点P (3,-4),则角α的正弦值为( ) A.34 B .-4 C .-45 D.35 [答案] C[解析] x =3,y =-4,则r =x 2+y 2=5, 则sin α=y r =-45.4.函数y =tan ⎝ ⎛⎭⎪⎫x -π4的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π4B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-π4C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x ≠k π+π4,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+3π4k ∈Z[答案] D[解析] 要使函数有意义,则有x -π4≠π2+k π,k ∈Z ,即x ≠3π4+k π,k ∈Z .5.已知sin(π+α)=13,则cos ⎝ ⎛⎭⎪⎫3π2-α等于( )A .-13 B.13 C .-33 D.33[答案] B[解析] sin(π+α)=-sin α=13,则sin α=-13,cos ⎝ ⎛⎭⎪⎫3π2-α=-sin α=13. 6.函数y =sin ⎝ ⎛⎭⎪⎫2x +π6的一个单调递减区间为( ) A.⎝ ⎛⎭⎪⎫π6,2π3 B.⎝ ⎛⎭⎪⎫-π3,π6 C.⎝ ⎛⎭⎪⎫-π2,π2 D.⎝ ⎛⎭⎪⎫π2,2π3 [答案] A[解析] 令π2+2k π≤2x +π6≤3π2+2k π(k ∈[]),整理得π6+k π≤x ≤2π3+k π,所以仅有⎝ ⎛⎭⎪⎫π6,2π3是单调递减区间.7.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( ) A .-43 B.54 C .-54 D.45[答案] D[解析] sin 2θ+sin θcos θ-2cos 2θ =sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-21+tan 2θ=45. 8.将函数y =sin(x -π3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向右平移π3个单位,得到的图象对应的解析式是( )A .y =sin 12xB .y =sin(12x -π2)C .y =sin(12x -π6)D .y =sin(2x -π6)[答案] B[解析] y =sin(x -π3)――→横坐标伸长为原来的2倍y =sin(12x -π3)错误!y=sin[12(x -π3-π3]=sin(12x -π2).9.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π2(x ∈R ),下面结论错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称 D .函数f (x )是奇函数[答案] D[解析] ∵f (x )=sin ⎝ ⎛⎭⎪⎫x -π2=-cos x (x ∈R ), ∴T =2π,在⎣⎢⎡⎦⎥⎤0,π2上是增函数. ∵f (-x )=-cos(-x )=-cos x =f (x ).∴函数f (x )是偶函数,图象关于y 轴即直线x =0对称. 10.已知某帆船中心比赛场馆区的海面上每天海浪高度y (米)可看作是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ),经长期观测,y =f (t )的曲线可近似地看成是函数y =A cos ωt +b ,下表是某日各时的浪高数据:A .y =12cos π6t +1B .y =12cos π6t +32C .y =2cos π6t +32D .y =12cos6πt +32[答案] B[解析] ∵T =12-0=12,∴ω=2πT =2π12=π6.又最大值为2,最小值为1,则⎩⎪⎨⎪⎧A +b =2,-A +b =1,解得A =12,b =32,∴y =12cos π6t +32.11.已知函数f (x )=A cos(ωx +φ)的图象如图所示,f ⎝ ⎛⎭⎪⎫π2=-23,则f (0)等于( )A .-23B .-12 C.23 D.12[答案] C[解析] 首先由图象可知所求函数的周期为T =2⎝ ⎛⎭⎪⎫11π12-7π12=2π3,故ω=2π2π3=3.将⎝ ⎛⎭⎪⎫11π12,0代入解析式, 得A cos ⎝ ⎛⎭⎪⎫3×11π12+φ=0,即cos ⎝ ⎛⎭⎪⎫11π4+φ=0,∴11π4+φ=π2+2k π,k ∈Z , ∴φ=-9π4+2k π(k ∈Z ).令φ=-π4,代入解析式得f (x )=A cos ⎝ ⎛⎭⎪⎫3x -π4.又∵f ⎝ ⎛⎭⎪⎫π2=-23, ∴f ⎝ ⎛⎭⎪⎫π2=-A sin π4=-22A =-23∴A =232,∴f (0)=232cos ⎝ ⎛⎭⎪⎫-π4=232cos π4=23.12.已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M (3π4,0)对称,且在区间[0,π]上是单调函数,则ω+φ=( )A.π2+23B.π2+2 C.π2+32 D.π2+103[答案] A[解析] 由于f (x )是R 上的偶函数,且0≤φ≤π,故φ=π2.图象关于点M (3π4,0)对称,则f (3π4)=0,即sin(3π4ω+π2)=0,所以cos 3ωπ4=0.又因为f (x )在区间[0,π]上是单调函数,且ω>0, 所以ω=23.故ω+φ=π2+23.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.某人的血压满足函数式f (t )=24sin160πt +110,其中f (t )为血压,t 为时间,则此人每分钟心跳的次数为________.[答案] 8014.化简1-2sin4cos4=________. [答案] cos4-sin4[解析] 原式=sin 24+cos 24-2sin4cos4=(sin4-cos4)2=|sin4-cos4|.则sin4<cos4,所以原式=cos4-sin4.15.定义在R 上的函数f (x )既是偶函数,又是周期函数.若f (x )的最小正周期是π,且当x ∈[0,π2]时,f (x )=sin x ,则f (5π3)的值为________.[答案] 32[解析] ∵T =π,∴f (5π3)=f (π+2π3)=f (23π)=f (π-π3)=f (-π3)=f (π3)=32.16.已知函数f (x )=sin ⎝ ⎛⎭⎫2x -π4,在下列四个命题中:①f (x )的最小正周期是4π;②f (x )的图象可由g (x )=sin2x 的图象向右平移π4个单位长度得到;③若x 1≠x 2,且f (x 1)=f (x 2)=-1,则x 1-x 2=k π(k ∈Z ,且k ≠0); ④直线x =-π8是函数f (x )图象的一条对称轴.其中正确命题的序号是________(把你认为正确命题的序号都填上).[答案] ③④[解析] f (x )的最小正周期是T =2π2=π,所以①不正确;f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π8, 则f (x )的图象可由g (x )=sin2x 的图象向右平移π8个单位长度得到,所以②不正确;当f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4=-1时,有2x -π4=-π2+2k π(k ∈Z ),则x =-π8+k π(k ∈Z ),又x 1≠x 2,则x 1=-π8+k 1π(k 1∈Z ),x 2=-π8+k 2π(k 2∈Z ),且k 1≠k 2,所以x 1-x 2=(k 1-k 2)π=k π(k ∈Z 且k ≠0),所以③正确;当x =-π8时,f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫-π8-π4=-1,即函数f (x )取得最小值-1,所以④正确.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)设f (θ)= 2cos 3θ+sin 2(2π-θ)+sin (π2θ)-32+2sin 2(π2+θ)-sin (3π2-θ),求f (π3)的值.[解析] 解法一:f (π3)=2cos 3π3+sin 2(2π-π3)+sin (π2+π3)-32+2sin 2(π2+π3)-sin (32π-π3)=2cos 3π3+sin 25π3+sin 5π6-32+2sin 25π6-sin7π6=2×18+34+12-32+2×14+12=-12.解法二:∵f (θ)=2cos 3θ+sin 2θ+cos θ-32+2cos 2θ+cos θ =2cos 3θ+1-cos 2θ+cos θ-32+cos θ+2cos 2θ=2cos 3θ-2-(cos 2θ-cos θ)2+cos θ+2cos 2θ =2(cos 3θ-1)-cos θ(cos θ-1)2+2cos 2θ+cos θ=(cos θ-1)(2cos 2θ+cos θ+2)2cos 2θ+cos θ+2=cos θ-1,∴f (π3)=cos π3-1=-12.18.(本题满分12分)(2011~2012·山东济南一模)已知sin θ=45,π2<θ<π.(1)求tan θ;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值. [解析] (1)∵sin 2θ+cos 2θ=1,∴cos 2θ=1-sin 2θ=925.又π2<θ<π, ∴cos θ=-35.∴tan θ=sin θcos θ=-43. (2)sin 2θ+2sin θcos θ3sin 2θ+cos 2θ=tan 2θ+2tan θ3tan 2θ+1=-857.19.(12分)已知x ∈[-π3,2π3],(1)求函数y =cos x 的值域;(2)求函数y =-3sin 2x -4cos x +4的值域.[解析] (1)∵y =cos x 在[-π3,0]上为增函数,在[0,2π3]上为减函数,∴当x =0时,y 取最大值1; x =2π3时,y 取最小值-12.∴y =cos x 的值域为[-12,1].(2)原函数化为:y =3cos 2x -4cos x +1, 即y =3(cos x -23)2-13,由(1)知,cos x ∈[-12,1],故y 的值域为[-13,154].20.(本题满分12分)已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x +π4-1,x ∈R . 求:(1)函数f (x )的最小值及此时自变量x 的取值集合; (2)函数y =sin x 的图象经过怎样的变换得到函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x +π4-1的图象? [解析] (1)函数f (x )的最小值是3×(-1)-1=-4,此时有12+π4=2k π-π2,解得x =4k π-3k π2(k ∈Z ), 即函数f (x )的最小值是-4,此时自变量x 的取值集合是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =4k π-3π2,k ∈Z . (2)步骤是:①将函数y =sin x 的图象向左平移π4个单位长度,得到函数y =sin ⎝ ⎛⎭⎪⎫x +π4的图象; ②将函数y =sin ⎝ ⎛⎭⎪⎫x +π4的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin ⎝ ⎛⎭⎪⎫12x +π4的图象; ③将函数y =sin ⎝ ⎛⎭⎪⎫12x +π4的图象上所有点的纵坐标伸长为原来的3倍(横坐标不变),得到函数y =3sin ⎝ ⎛⎭⎪⎫12x +π4的图象; ④将函数y =3sin ⎝ ⎛⎭⎪⎫12x +π4的图象向下平移1个单位长度,得函数y =3sin ⎝ ⎛⎭⎪⎫12+π4-1的图象. 21.(本题满分12分)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的周期为π,且图象上一个最低点为M (2π3,-2). (1)求f (x )的解析式;(2)当x ∈[0,π12]时,求f (x )的最值.[解析] (1)由最低点为M (2π3,-2),得A =2. 由T =π,得ω=2πT =2ππ=2. 由点M (2π3,-2)的图象上,得2sin(4π3+φ)=-2, 即sin(4π3+φ)=-1. 所以4π3+φ=2k π-π2,(k ∈Z ). 故φ=2k π-11π6(k ∈Z ). 又φ∈(0,π2), 所以φ=π6.所以f (x )=2sin(2x +π6). (2)因为x ∈[0,π12],所以2x +π6∈[π6π3]. 所以当2x +π6=π6,即x =0时,f (x )取得最小值1; 当2x +π6=π3,即x =π12时,f (x )取得最大值 3. 22.(本题满分12分)已知f (x )=2sin(2x +π6)+a +1(a 为常数). (1)求f (x )的单调递增区间;(2)若当x ∈[0,π2]时,f (x )的最大值为4,求a 的值; (3)求出使f (x )取得最大值时x 的取值集合.[解析] (1)由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,得k π-π3≤x ≤k π+π6,k ∈Z ,所以f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z ).(2)当x ∈[0,π2]时,2x +π6∈[π6,76π], 故当2x +π6=π2,即x =π6时,f (x )有最大值a +3=4,所以a =1. (3)当sin(2x +π6)=1时f (x )取得最大值, 此时2x +π6=2k π+π2,k ∈Z ,即x =k π+π6,k ∈Z ,此时x 的取值集合为{x |x =k π+π6,k ∈Z }.。

人教版高中数学必修4综合测试试题含答案(原创,难度适中)

人教版高中数学必修4综合测试试题含答案(原创,难度适中)

人教版高中数学必修4综合测试试题含答案(原创,难度适中)高中数学必修4综合测试满分:150分时间:120分钟注意事项:客观题请在答题卡上用2B铅笔填涂,主观题请用黑色水笔书写在答题卡上。

一、选择题:(共12小题,每小题5分,共60分。

)1.sin300°的值为A。

-31 B。

3 C。

22 D。

1/22.角α的终边过点P(4,-3),则cosα的值为A。

4 B。

-3 C。

2/5 D。

-4/53.cos25°cos35°-sin25°sin35°的值等于A。

3/11 B。

3/4 C。

2/11 D。

-2/114.对于非零向量AB,BC,AC,下列等式中一定不成立的是A。

AB+BC=AC B。

AB-AC=BCC。

AB-BC=BC D。

AB+BC=AC5.下列区间中,使函数y=sinx为增函数的是A。

[0,π] B。

[π,2π] C。

[-π/2,π/2] D。

[-π,0]6.已知tan(α-π/3)=1/√3,则tanα的值为A。

4/3 B。

-3/5 C。

-5/3 D。

-3/47.将函数y=sinx图象上所有的点向左平移π/3个单位长度,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象的函数解析式为A。

y=sin(2x+π/3) B。

y=sin(2x+2π/3)C。

y=sin(2x-π/3) D。

y=sin(2x-2π/3)8.在函数y=sinx、y=sin(2x+π/2)、y=cos(2x+π)中,最小正周期为π的函数的个数为()A。

1个 B。

2个 C。

3个 D。

4个9.下列命题中,正确的是A。

|a|=|b|→a=b B。

|a|>|b|→a>bC。

|a|=0→a=0 D。

a=b→a∥b10.函数y=Asin(ωx+φ)在一个周期内的图象如右图所示,此函数的解析式为y=2sin(2x-π/3)11.方程sin(πx)=x的解的个数是()A。

高中数学 必修4模块 综合测试卷

高中数学 必修4模块 综合测试卷

高中数学 必修4模块 综合测试卷一.选择题(每小题5分,共60分)1、下列各角中与3π-终边相同的是( )A .35π-B .32πC .34πD .35π2、=-)611cos(π( ) A .21 B .21- C .23- D .23 3、已知),0(,53cos παα∈-=,则=αtan ( )A .34B .34-C .34±D .43±4、函数x y sin =的图象( ) A .关于点)1,2(π对称 B .关于直线π=x 对称C .关于点)0,(π对称D .关于y 轴对称 5、函数x y 2cos 21=的周期为( ) A .π B .π2 C . π4 D .4π 6、函数)4tan(π+=x y 的单调增区间为( )A .⎥⎦⎤⎢⎣⎡+-4,43ππππk k B .)4,43(ππππ+-k k C .⎥⎦⎤⎢⎣⎡+-2,2ππππk k D .)2,2(ππππ+-k k7、在△ABC 中,a=,b=B =45°,则A 等于()A .30°B .60°C .60°或120°D . 30°或150°8、9、在△ABC 中,周长为7.5cm ,且sinA :sinB :sinC =4:5:6,下列结论:①::=4:5:6a b c②::a b c ③=2,=2.5,=3a cm b cm c cm ④::=4:5:6A B C 其中成立的个数是 ( ) A .0个 B .1个 C .2个 D .3个9、化简θθ44sin cos - 的结果为( )A .θ4sinB .θ4cosC .θ2sinD .θ2cos 10、在ABC ∆中,若B A B A cos cos sin sin <,则ABC ∆一定是( )A .等边三角形B .直角三角形C .钝角三角形D .锐角三角形 二、填空题(每小题5分,共20分)11、=+167cos 43sin 77cos 43cos _______________. 12、在△ABC中,=2,=a c B 150°,则b =13、在△ABC 中,若SinA :SinB :SinC=5:7:8,则B 大小为______________.14、把函数)62s i n (π-=x y 的图象向左平移3π个单位,所得图象的函数解析式为_____________________________. 三、解答题15.已知,在△ABC 中,A=45°,C=30°,c=10cm ,求a 、b 和B 。

(完整版)高中数学必修4测试题(附答案).docx

(完整版)高中数学必修4测试题(附答案).docx

数学必修 4一 . 选择题:1. 的正弦值等于()3( A ) 3( B )1( C )3 ( ) 1222D22.215°是 ()(A )第一象限角 (B )第二象限角 (C )第三象限角(D )第四象限角3.角 的终边过点 P ( 4,- 3),则 cos 的值为()(A )4(B )- 3(C )4( D )3 4.若 sin <0,则角 的终边在 55()(A )第一、二象限 (B )第二、三象限 (C )第二、四象限(D )第三、四象限5.函数 y=cos2x 的最小正周期是 ()(A ) ( B )2(C )(D ) 246.给出下面四个命题:① AB BA0 ;② ABBCAC ;③ AB -AC BC ;④ 0 AB 0 。

其中正确的个数为()(A )1 个( B ) 2 个 ( C ) 3 个(D )4 个7.向量 a (1, 2) , b (2,1) ,则()(A ) a ∥ b(B ) a ⊥ b(C ) a 与 b 的夹角为 60° ( D ) a 与 b 的夹角为 30°8. 化简 1sin 2 160 的结果是()(A ) cos160(B ) cos160( C ) cos160( D ) cos160领军教育二 . 填空题11.已知点 A (2,- 4),B (- 6,2 ),则 AB 的中点 M 的坐标为12.若 a (2,3) 与 b ( 4, y) 共线,则 y = ;13.若 tan1,则sincos=;22sin3cos14.已知 a1, b 2 , a 与 b 的夹角为 ,那么 a b a b =315.函数 y sin 2 x 2 sin x 的值域是 y;三.解答题16.(1) 已知 cosa = -4,且 a 为第三象限角,求 sina 的值54sin 2cos(2) 已知 tan3,计算的值 .5cos3sinv v v v1 ,17.已知向量 a , b 的夹角为 60o , 且 | a | 2 , | b | v v (2)v v (1) 求 a gb ;求 | a b |.9. 函数 y2 sin(2 x ) cos[2( x)] 是()(A )(B )r(1,2) , b ( 3,2) , 当 k 为何值时, 周期为的奇函数周期为的偶函数18. 已知 a44r r r r(C ) 周期为的奇函数 ( D )周期为的偶函数(1) ka b 与 a 3b 垂直?22(2)r r r r平行?平行时它们是同向还是反向?10.函数 y A sin( x) 在一个周期内的图象如下,此函数的解析式ka b 与 a 3b为()(A ) y2sin( 2x2 ) ( ) y2 sin(2x)33(C )x )( )y2sin(Dy2 sin( 2x)2331领军教育.设 OA(3,1) , OB ( 1,2) ,OC OB,BC∥OA,试求满足19OD OA OC 的 OD 的坐标(O为坐标原点)。

人教A版高中数学必修四测试题及答案全套

人教A版高中数学必修四测试题及答案全套

人教A版高中数学必修四测试题及答案全套人教A版高中数学必修四测试题及答案全套阶段质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.在0°~360°的范围内,与-510°终边相同的角是()A。

330° B。

210° C。

150° D。

30°2.若sinα = 3/3,π/2 < α < π,则sin(α+π/2) = ()A。

-6/3 B。

-1/2 C。

16/2 D。

33.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A。

2 B。

2sin1 C。

2sin1 D。

sin24.函数f(x) = sin(x-π/4)的图象的一条对称轴是()A。

x = π/4 B。

x = π/2 C。

x = -π/4 D。

x = -π/25.化简1+2sin(π-2)·cos(π-2)得()A。

sin2+cos2 B。

cos2-sin2 C。

sin2-cos2 D。

±cos2-sin26.函数f(x) = tan(x+π/4)的单调增区间为()A。

(kπ-π/2.kπ+π/2),k∈Z B。

(kπ。

(k+1)π),k∈ZC。

(kπ-4π/4.kπ+4π/4),k∈Z D。

(kπ-3π/4.kπ+3π/4),k∈Z7.已知sin(π/4+α) = 1/√2,则sin(π/4-α)的值为()A。

1/3 B。

-1/3 C。

1/2 D。

-1/28.设α是第三象限的角,且|cosα| = α/2,则α的终边所在的象限是()A。

第一象限 B。

第二象限 C。

第三象限 D。

第四象限9.函数y = cos2x+sinx在[-π/6.π/6]的最大值与最小值之和为()A。

3/4 B。

2 C。

1/3 D。

4/310.将函数y = sin(x-π/3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移一个单位,得到的图象对应的解析式为()A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)
……………………………9分
当 …………………………………………12分
22、解:如右图,设该市为A,经过t小时后台风开始影响该城市,则t小时后台风经过的路程PC=(20t)km,台风半径为CD=(10+10t)km,需满足条件:CD≥AC

整理得
即 解得
∴7小时后台风开始影响该市,持续时间达12小时。
山东茌平县第二中学袁振红(252111)
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)
1.下列命题中正确的是( )
A.第一象限角一定是锐角 B.终边相同的角相等
C.相等的角终边必相同 D.不相等的角其终边不相同
2.将分针拨慢5分钟,则分钟转过的弧度数是( )
20、已知函数
(1)求 的最小正周期及 取得最大值时x的集合;
(2)在平面直角坐标系中画出函数 在 上的图象.
21、(本题满分12分)设 、 是两个不共线的非零向量( )
(1)记 那么当实数t为何值时,A、B、C三点共线
(2)若 ,那么实数x为何值时 的值最小
22、(本题满分14分)某沿海城市附近海面有一台风,据观测,台风中心位于城市正南方向200km的海面P处,并正以20km/h的速度向北偏西 方向移动(其中 ),台风当前影响半径为10km,并以10km/h的速度不断增大,问几小时后该城市开始受到台风影响影响时间多长
而 , , 则 ,
解得 ,故D坐标为(2,-10)
由图(2)有 , , ,则
解得 ,故D坐标为(-2,-8)
综上所述,D点的坐标为(2,-10)或(-2,-8)。
19解:(Ⅰ)由 ,得 ,即 .…………4分
则 ,得 .…………………………………5分
∴ 为所求.…………………………………6分
(Ⅱ) ,……………10分
三、解答题(本大题共6小题,共74分,解答应有证明或演算步骤)
17、18.(本小题满分12分)
已知 , , , ,求 的值.
18(本题满分12分)已知一个平行四边形三个顶点为A(0,-9),B(2,6),C(4,5),求第四个顶点的坐标.
19.(本题满分12分)已知向量 , , ,
其中 . (Ⅰ)当 时,求 值的集合; (Ⅱ)求 的最大值.
10. 在 中,已知 ,那么 一定是()
A.直角三角形B.等腰直角三角形C.等腰三角形D.正三角形
11. 函数 的最小正周期为()
A. B. C.8D.4
12. 2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为 ,大正方形的面积是1,小正方形的面积是 的值等于()
所以 有最大值为3.……………………………………………………12分
20解:(I)
= ………………………………………………5分
所以 的最小正周期是 ……………………………………………………6分
R,所以当 Z)时, 的最大值为 .
即 取得最大值时x的集合为 Z}……………………8分
(II)图象如下图所示:(阅卷时注意以下3点)
1.最小值 ,
最小值 .………………10分
2.增区间
减区间 ……………………12分
3.图象上的特殊点:(0,-1),( ),( ), ………14分
[注:图象上的特殊点错两个扣1分,最多扣2分]
21、解:(1)A、B、C三点共线知存在实数
即 ,…………………………………………………4分
则 ………………………………………………………………6分
数学必修4综合复习参考答案
1.C2.D3.B4、B5、B6、C7、A8、D9、C.10、B11、A12、D
13、 , 14、 15.-816. ④②或②⑥
17、解:∵
∴ 又 ∴
∵ ∴ 又

∴sin(+) =sin[+ (+)] =
18.解:设D坐标为(x,y),依题意,可能出现右图两种情形,
由图(1)有

A.1B. C. D.-
二、填空题(本大题共4小题,每小题4分,共16分)
13. 已知 ,那么 的值为, 的值为。
14.函数y= 的单调递减区间为.
15. 已知向量 上的一点(O为坐标原点),那么 的最小值是______________所有点的纵坐标不变,横坐标缩短到原来的 ;②图像上所有点的纵坐标不变,横坐标伸长到原来的2倍;③图像向右平移 个单位;④图像向左平移 个单位;⑤图像向右平移 个单位;⑥图像向左平移 个单位。请写出用上述变换将函数y = sinx的图像变换到函数y = sin ( + )的图像的一个变换______________.(按变换顺序写上序号即可)
A. B.- C. D.-
3.已知角 的终边过点 , ,则 的值是( )
A.1或-1 B. 或 C.1或 D.-1或
4、若点 在第一象限,则在 内 的取值范围是()
A. B.
C. D.
5. 若| , 且( )⊥ ,则 与 的夹角是()
(A) (B) (C) (D)
6.已知函数 的一部分图象如右图所示,如果 ,则( )
A. B. C. D.
7.设集合 ,集合 ,则( )
A. 中有3个元素 B. 中有1个元素 C. 中有2个元素 D.
8.已知 ( )
A. B. C. D.
9.同时具有以下性质:“①最小正周期实π;②图象关于直线x= 对称;③在[- ]上是增函数”的一个函数是( )A.y=sin( )B.y=cos(2x+ )C.y=sin(2x- )D.y=cos(2x- )
相关文档
最新文档