线性代数第三章

合集下载

线性代数第三章总结

线性代数第三章总结

第三章 几何空间一、 向量的运算1. 向量的数量积(1) 在仿射坐标系123{;,,}O e e e 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则112323(,,)y x x x A y y αβ⎛⎫ ⎪⋅= ⎪ ⎪⎝⎭,其中111213212223313233e e e e e e A e e e e e e e e e e e e ⋅⋅⋅⎛⎫ ⎪=⋅⋅⋅ ⎪ ⎪⋅⋅⋅⎝⎭. (2) 在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则131233213(,,)i i i y x x x I y x y y αβ=⎛⎫ ⎪⋅== ⎪ ⎪⎝⎭∑ ∙ =0αβαβ⊥⇔⋅2. 向量的向量积在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则123123i jk x x x y y y αβ⨯=. ∙ //=0αβαβ⇔⨯3. 向量的混合积在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,123(,,)z z z γ=则123123123(,,)x x x y y y z z z αβγ=. ∙ (,,)0αβγαβγ⇔=,,共面例:(1)设=αβγδ⨯⨯, =αγβδ⨯⨯,证明αδ-,βγ-共线.(2)设0αββγγα⨯+⨯+⨯=,证明αβγ,,共面.(3)证明()()βγααγβγ⋅-⋅⊥.证明:(1)因为()()αδβγ-⨯-=αβαγδβδγ⨯-⨯-⨯+⨯=αβγδαγ⨯-⨯-⨯+0βδ⨯=,所以αδ-,βγ-共线.(2)因为()αβγ=,,()αβγ⨯⋅=()βγγ-⨯⋅()γαγ-⨯⋅=()βγγ-,,()γαγ-,,0=,所以αβγ,,共面.(3) 因为(()βγα⋅())αγβγ-⋅⋅=()βγ⋅()αγ⋅()αγ-⋅()βγ⋅0=,所以()βγα⋅()αγβ-⋅γ⊥.二、 位置关系的判断1. 两个向量的共线;三个向量的共面.2. 两条直线异面,共面(相交、平行、重合)3. 两个平面相交、平行、重合4. 直线与平面相交、平行、直线在平面上.三、距离和垂线(在右手直角坐标系中讨论)1. 点到直线的距离,垂线方程垂线方程:设直线过已知点0000,,)P x y z (方向向量为0()X Y Z υ=,,,求过111(,,)P x y z 点直线的垂线方程。

线性代数 第三章 线性方程组与向量的线性相关性

线性代数 第三章 线性方程组与向量的线性相关性

例1 判断下列线性方程组是否有解,若有解,求
出全部解.
x1 3 x 2 3 x 3 2 () 3 x1 x 2 2 x 3 3 1 4x 2x x 2 2 3 1 x1 x 2 x 3 3 x 4 2 ( ) x1 x 2 x 3 5 x4 4 2 4 x 4 x x 1 1 2 3
(c1 、c 2 为 任 意 常 数 )
例2 解线性方程组
解:
1 1 3 2 1 2 1 2 1 1 6 3 1 2 3 0 1 0 0 0 1 1 2 0 1 2 3 1 1 1 0 2
x1 x2 x3 1 x1 2 x2 x3 2 3 x1 x2 6 x3 3 2 x 2 x 3x 0 1 2 3
行 有解 B ( A b ) 行 阶 梯 形 矩 阵 行 最 简 形 矩 阵 行
行最简形矩阵非零行(r 行)的第一非零元取为固定未知量,剩余的未知量 取为自由未知量,令为 c1 , c 2 , c n r ,代回行最简形矩阵所表示的方程组 求出固定未知量,从而得到通解)
R ( 1 , 2 , n ) ( ) R ( 1 , 2 , n , )
例7
判 断 能 否 由 余 下 向 量 线 性 表 ? 若 能 , 给 出 表 示 式 出 .
T T T T
(1) (1,1,1) , 1 (0,1,1) , 2 (1,1,0) , 3 (1,0,2) ( 2) ( 2,2,0) , 1 ( 1,1,1) , 2 (1,1,2)
x1 1 1 x2 1 0 c1 c2 c11 c2 2 x 0 4 3 0 1 x 4 (c1 、c2为任意常数)

线性代数第3章向量空间

线性代数第3章向量空间
1 1 22 2 31 42 则 1 , 2 , 3 必相关 3 51 62 如果 B : 1, 2 ,, m 可由 A : 1,2 ,,n
表示, 又 m>n, 由表示不等式
r(Blm ) r( Aln ) n m 从而 B 必相关.
-26-
(6) “短的无关, 则长的也无关.等价地… ” P101推论3
无穷多种表示, 并求所有表示方法.
解 记 A [1,2 ,3 ] 只需讨论 Ax 解的情况.
具体解方程组过程略。
0 时,方程组无解, 不能由 A 表示. 0 且 3时, 方程组有唯一解, 可由 A 唯一表示.
-12-
3 时, 方程组有无穷多解, 可由 A 无穷多种表示.
1
1 2
,
2
3 4
是无关的.
1
3
n r( Amn ) r(Bln ) n
1 , 2 也是无关的.
2
4
r(Bln ) n
1
再如:1
2 0 0
,
0
2
101,
0
3
9 0 1
.
-27-
(7)含有n个向量的n元向量组线性相关(无关)
由它构成的n阶矩阵的行列式 | A | 0 (| A | 0) 例4 t 取何值时,下列向量组线性相关 ? P101推论2
(用矩阵的秩) r( A) n
把向量组排成矩阵,如果矩阵的秩等于向量的个数就线性 无关,否则如果矩还阵是的转秩换小!于转向换量线的性个无数关就…线性相关。
-18-
例1
1
0
2
1 1,2 2,3 4,
1
5
7
问向量组 {1,2 ,3 } 和 {1,2 }的线性相关性?

线性代数第三章

线性代数第三章

Am n 的各阶子式的总数:
min( m , n )

k 1
k k CmCn .
任意非零矩阵都至少有一个1阶非零子式(其每个非零元都可构成一个
1阶非零子式), 更高阶子式(如有)中还可能有非零的.
一个矩阵所具有的非零子式的最高阶数这一 数字与该矩阵的多方面性质有关, 将这一数字定
1 A 0 0 2 2 0 1 8 0 0 8 0
0
由此知A可逆, 故系数 行列式非零,于是克莱 默法则也适用本题.
3
行最简形矩阵
2
(29,16, 3)
1
x1 2 x2 x3 0 x2 4 x3 4 . 例3.4.2 求解线性方程组 4 x 5 x 8 x 9 1 2 3
由性质 5
ci c n i i 1, 2,, n
~
( A, B )

R ( A) R ( B ).
证毕.
例3.3.4 设A为n阶方阵,证明: R( A E) R( A E) n. 证明:
A E
ri ( 1) i 1, 2, , n
~
EA
练习 设A2=E,证明: R(A+E)+R(A-E)=n.
B的各非零行的首个非零元处在第1,2,3行、第1,2,4列, 分别对应于A 的第4,2,3行、第1,2,4列, 其交叉点处的元素构成的行列式
3 2 D 2 1 0 6
6 5 1
A的第2,3,4行、第1,3,4 列交叉点处的元素也可构成A 的最高阶非零子式.想想为什 么?还可以怎么取?
就是A的一个最高阶非零子式.
R( A) R( B) 3 .
例3.3.2 解:(2)求A的一个最高阶非零子式.事实上

线性代数 第三章

线性代数  第三章

( b1 , b2 ,, bm 为不全为零的常数) (3-1-1)
在上一章知道,它的矩阵表达式为 常数项与未知阵。
a11 a 21 A , B 将系数矩阵与常数项矩阵放在一起构成的矩阵 ~ 称为方程组(3-1-1)的增广矩阵(也可记作 A )。 a m1
第三章 向量组与线性方程组
• 3.1 线性方程组及其矩阵表示
设非齐次线性方程组的一般形式为
a11 x1 a12 x 2 a1n x n b1 a x a x a x b 21 1 22 2 2n n 2 a m1 x1 a m 2 x 2 a mn x n bm
Ax B与 Sx T 同解。(证)
证明 由于对矩阵作一次初等行变换等价于矩阵左乘一个初等矩阵,因此存在初等矩 阵 P 记 Pk Pk 1 P1 P 显然 P 可逆。 1, P 2 ,, P k 使得 P kP k 1 P 1 ( A, B) ( S , T )
x x1 为 Ax B 的解,即 Ax1 B Sx1 T 于是 x x1 为 Sx T 的解。
21 1
22
2
2n
n
x1 2 x 2 2 x3 x 4 1 【例1】把线性方程组 2 x1 x 2 2 x 2 5 x 4 2 表示为矩阵方程的形式。 x 3 x 7 x 4 x 0 2 3 4 1 x1 1 2 2 1 1 解 设 A x2 B 2 1 2 5 2 则原方程组可表示为 Ax B x 1 3 7 4 0 x3 x 4
Ax B 其中 A, B, x 分别是系数阵、

《线性代数》课件-第3章 矩阵

《线性代数》课件-第3章 矩阵

§3.1 矩阵的运算(1)第三章矩阵矩阵的加法定义1111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b +++⎡⎤⎢⎥+++⎢⎥+=⎢⎥⎢⎥+++⎣⎦A B 设有两个 矩阵 和 n m ⨯[]ij a =A [],ij b =B 那么矩阵与 的和 A B 记作 规定为,+A B 只有当两个矩阵是同型矩阵时,才能进行加法运算.(可加的条件)注矩阵的加法235178190, 645, 368321-⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设矩阵矩阵则A B 213758169405336281+-++⎡⎤⎢⎥=+-++⎢⎥⎢⎥+++⎣⎦3413755.689⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦对应元相加例1+A B矩阵的加法;+=+A B B A ()()++=++A B C A B C ;+=+=;A OO A A 矩阵加法的运算律 [],ij a =A 设矩阵 (交换律)(结合律)(加法单位元)(1)(2) (3) (4) 规定 [],ija -=-A 称之为 的负矩阵.A ()(),+-=-+=A A A A O ().-=+-A B A B (加法逆元)规定矩阵的减法为:+=+⇒=.A B A C B C (5) 加法消去律成立,即数量乘法111212122211[].n nij m n m m mn ka ka ka kaka ka k ka ka ka ka ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦A 规定数 k 与矩阵 A 的数量乘积为定义2数量乘法()();k l kl =A A ()k l k l +=+A A A ;()k k k +=+.A B A B 数量乘法的运算规律(1) (2)(3)矩阵的加法和数量乘法统称为矩阵的线性运算 .设为A , B 为矩阵,k, l 为数: m n ⨯矩阵的乘法(矩阵与矩阵相乘)定义3设 是一个 矩阵, m n ⨯[]ij a =A 记作 C =AB.[]ij b =B 是一个 矩阵, n s ⨯规定矩阵 与 的乘积是一个 的矩阵 A Bm s ⨯[],ij c =C 其中 11221nij i j i j in nj ikkjk c a b a b a b ab ==+++=∑()1,2,;1,2,,,i m j s ==矩阵的乘法1212[,,,]j j i i in nj b b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1122i j i j in nj a b a b a b =+++1n ik kj ij k a b c ===∑行乘列法则可乘条件:左矩阵的列数=右矩阵的行数11211300514-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦设,A 034121.311121⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦B 例20311212113031051412⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦-⎣⎦C AB .⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5-61022-17乘积矩阵的“型” ? A m n ⨯B n s ⨯C m s⨯=1111⎡⎤=⎢⎥--⎣⎦设,A 例300,00⎡⎤=⎢⎥⎣⎦AB 22,22⎡⎤=⎢⎥--⎣⎦BA .BA AB ≠故1111-⎡⎤=⎢⎥-⎣⎦,B 则矩阵的乘法(1)矩阵乘法一般不满足交换律; 若 ,则称矩阵 与是乘法可交换的. =AB BA A B 定义3=AB O ⇒;==或A O B O (2) ()≠-=若而A O A B C O,⇒=B C.注意:(),+=+A B C AB AC ();+=+B C A BA CA ()()()k k k ==AB A B A B (其中 k 为数);n m ;m n m n m n ⨯⨯⨯==A E E A A 矩阵的乘法()();=AB C A BC 矩阵乘法的运算规律 (1) (2) (3) (4) (结合律) (左分配律)(右分配律)(乘法单位元)11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩,,,11121121222212n n m m mn n a a a x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111122121122221122n n n n m m mn n a x a x a x a x a x a x a x a x a x ⎡⎤+++⎢⎥+++⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦12m b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦=AX =β⇔=(矩阵形式)AX β ==00(齐次线性方程当时组的矩阵形式),AX β .例4cos sin ,,sin cos OP ϕϕϕϕ-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦设矩阵平面向量x A y cos ,sin ,x r y r θθ=⎧⎨=⎩于是x y ⎡⎤⎢⎥⎣⎦A cos sin sin cos x y ϕϕϕϕ-⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦cos()sin()r r θϕθϕ+⎡⎤=⎢⎥+⎣⎦例5cos cos sin sin cos sin sin cos r r r r θϕθϕθϕθϕ-⎡⎤=⎢⎥+⎣⎦,,OP r θ设的长度为幅角为则cos sin sin cos x y x y ϕϕϕϕ-⎡⎤=⎢⎥+⎣⎦111x OP y ⎡⎤==⎢⎥⎣⎦.OP ϕ这是把向量按逆(或顺)时针旋转角的旋转变换xyopp 1θϕ11cos sin ,sin cos .x x y y x y ϕϕϕϕ=-⎧⎨=+⎩(线性变换)小结(1)只有当两个矩阵是同型矩阵时,才能进行加法运算;(2) ≠=若而A O AB AC ,⇒;=B C 且矩阵相乘一般不满足交换律;(3)只有当左矩阵的列数等于右矩阵的行数时,两个矩阵才能相乘,矩阵的数乘运算与行列式的数乘运算不同; 可交换的典型例子:同阶对角阵;数量阵与任何同阶方阵. k n E ≠=若而A O BA CA ,⇒=B C.( 4 )§3.1 矩阵的运算(2)方阵的幂·矩阵多项式·迹第三章矩阵定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.一般地, (),,.AB A B A B ⨯≠∈k k k n n注2 注3时,以下结论成立:AB BA =当 (1)();AB A B =kkk222(2)()2;A B A AB B +=++22(3)()();A B A B A B +-=-,,A B ⨯∈n n11(4)()C C .A B A AB AB B --+=+++++mmm k m kkmmm例1解 ,A ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2121214=01010112.01A A ⎡⎤=⎢⎥⎣⎦设求其中为正整数mm ,()32141216,010101A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()122.01A ⎡⎤=≥⎢⎥⎣⎦mm m 由此归纳出方阵的幂112(1)1212,010101A A A --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦k k k k ()122.01A ⎡⎤=≥⎢⎥⎣⎦m m m 用数学归纳法证明当 时,显然成立.2=m 假设 时成立, 1=-m k 所以对于任意的m 都有=m k 则时,方阵的幂解法二 利用二项式定理122()m m m mA EB EC B=+=+202,.00⎡⎤=⎢⎥⎣⎦B B O 其中=且这种方法适用于主对角元全相同的三角形矩阵求幂 2,=+A E B ,E B 显然与乘法可交换由二项式定理有2E B=+m 100212.010001m ⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦m1110()A A A A E --=++++m m m m n f a a a a 为方阵 A 的矩阵多项式.例如 2()524,f x x x =--12,11⎡⎤=⎢⎥-⎣⎦A 22524A A E --1412101116524211101811--⎡⎤⎡⎤⎡⎤⎡⎤=--=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦定义2A ⨯∈设n n ,称()A =f:注f g g fA A A A()()()()运算性质 定义3设A 是n 阶方阵,称A 的主对角线上所有元素之和为方阵的迹(trace ),记为11221tr .A ==+++=∑nnn ii i a a a a (1) tr()tr tr ;A B A B ⨯⨯⨯⨯+=+n n n n n n n n (2) tr()tr();A A ⨯⨯=n n n n k k (3) tr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m ntr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m n设A , B 为 n 阶方阵, 求证.AB BA E -≠n tr()tr()tr()0,--AB BA =AB BA = 证明: tr()0,n n =≠E 故 . n -≠AB BA E 例2§3.1 矩阵的运算(3)矩阵的转置·方阵的行列式第三章矩阵例 123,458A ⎡⎤=⎢⎥⎣⎦T ;A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦142538叫做 的转置矩阵, m n A ⨯m n A ⨯把矩阵的行依次变为同序数的列得到的新矩阵, 定义1T A 记作. 思考 T A A 与的关系?⨯→⨯的变化型m n n m(1) : '(,)=元的变化ij ji i j a a (2) :TA A 与的关系?矩阵的转置()()T T 1;=A A ()()T T T 2;+=+A B A B ()()T T 3;A A =k k 注 性质(2)和(4)可推广到有限个矩阵的情形()()T T T T12122;s s '+=+A A ++A A A ++A ()()T T T T 12114.s s s -'=A A A A A A ()()T T T 4.=AB B A (倒序)矩阵的转置与其它矩阵运算的关系若矩阵A 满足 A A =T ,()n ,,,j ,i a a ji ij 21==201035.157A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦例为对称阵如注:对称矩阵为方阵,元素以主对角线为对称轴 对应相等 .例1 (对称矩阵)则称 A 为对称矩阵 .注 对任意矩阵 A,和 均是对称矩阵. T A A T AA对称矩阵的数乘、和、乘积是否为对称矩阵?思考:练习1 对任意实矩阵 A, 若 则 . T A A =O ,A =O练习2 若实对称矩阵 A 满足 则 . 2A =O ,A =O 设A ,B 为同阶实对称矩阵,则AB 为实对称矩阵当且仅当AB =BA .若矩阵A 满足 A A =-T ,013105.350A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦例为反对称阵如注:反对称矩阵为方阵,且例2 (反对称矩阵)则称 A 为反对称矩阵 . 0-≠⎧=⎨=⎩ji ij a i j a i j证明任一 n 阶方阵 A 都可表示成一个对称矩阵与一个反对称矩阵之和. 证明: ()T T A A +T A A =+()T T A A -T A A =-22T T A A A A A -++=证毕.例3所以 为对称矩阵.T A A +T ,A A =+T ()A A =-- 所以 为反对称矩阵. T A A -方阵的行列式设 A 与 B 都是数域 上的 n 阶方阵, 则()T1;A A =()3;AB A B =()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系方阵的行列式n n n n n A O E B ⨯⨯-A B =n n nO AB E B ⨯=-2(1)n n E AB =--2(1)n n AB +=-.AB =证明: 22222A O E B ⨯⨯-111221221112212200001001a a a a b b b b =--12111111122122111221220001001a a b a b a a b b b b =--111112211112122221221112212200001001a b a b a b a b a a b b b b ++=--111112211112122221112221211222221112212200001001a b a b a b a b a b a b a b a b b b b b ++++=--222O AB E B ⨯=-设 A 与 B 都是数域 上的 n 阶方阵, 则 ()T 1;A A =()3;AB A B =(可推广到有限个) 一般的, +.A B A B ≠+特别地 ,A A =mm ()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系 其中m 为非负整数.24000200,00430034A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦设2.A 求k 22A A =k k2242443()(4(25))10.0234=⋅=⋅-=-k k k 解 例4证明奇数阶反对称矩阵的行列式为零.例5§3.2 初等矩阵第三章矩阵定义1elementary matrix 阶单位矩阵经过一次矩阵的初等变换所得到的矩阵称为阶即初等矩阵n n (),E B −−−−−→一次初等变换行或列为一个初等矩阵n 1,23100010010100.001001E B ⎡⎤⎡⎤⎢⎥⎢⎥=−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦对换行为一个初等矩阵例如初等矩阵的类型及表示方法1[()],0E ≠初等倍乘矩阵n i k k ) .0E ≠即以数乘单位矩阵的第行(或第列).n k i i i i r c 11[()]11E E ⨯⨯⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦kn n ki k k 或i ←第行初等矩阵的类型及表示方法2[()],0E +≠初等倍加矩阵n i j k k ) .0E ≠即将的某行元素的倍加到另一行(或列)上去.n k 11[())]11E E ++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i jj ir kr n n c kc k i j k 或←i 第行←j 第行[()]E >+n i j k i j 当时,为下三角 .初等矩阵的类型及表示方法3[,],E 初等对换矩阵n i j ) E n 即对调的某两行或某两列.11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行11[()]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n i k k i ←第行1[()],0E ≠初等倍乘矩阵n i k k ) .2[()],0E +≠初等倍加矩阵n i j k k ) .11[())]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n k i j k ←i 第行←j 第行()i j <3[,],E 初等对换矩阵n i j ) 11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行注初等矩阵的转置矩阵仍为同类型的初等阵.Ti k i k=1)[()][()];E En nT+=+i j k j i kE E2)[()][()];n nTi j i j=3)[,][,].E En n初等矩阵的应用揭示: 初等矩阵与矩阵的初等变换的关系.11121314212223243132333411⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦a a a a a a a a k a a a a 111213142122232313233434⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦k a a a a a a a a a ka ka ka 111213142122232431323334111a a a a a a a a k a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111214212221323343133234a a a a a a a a a ka ka a k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦()i k A i r k ⨯相当于以数乘的第行;111211212[()]E A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦n m m m m i i in n a a a i k a ka ka a a a k i ←第行[()]E A 左以矩阵乘m i k ,[()]n E i k A 右乘而以矩阵,其结果结论: 相当于以数k 乘A 的第i 列 .()i c k ⨯。

线性代数课件第三章矩阵的秩课件

线性代数课件第三章矩阵的秩课件

VS
矩阵的秩可以用于判断两个矩阵是否相似。如果两个矩阵相似,则它们的秩相同。
特征值和特征向量
矩阵的秩还可以用于确定矩阵的特征值和特征向量的个数。对于给定的矩阵,其秩等于其非零特征值的个数。
矩阵相似
矩阵的秩可以用于矩阵分解,如奇异值分解(SVD)和QR分解等。这些分解方法将一个复杂的矩阵分解为几个简单的、易于处理的矩阵,有助于简化计算和解决问题。
1 2 3 | 0 0 -3
7 8 9 | 0 0 0`
```
由于非零行的行数为2,所以矩阵B的秩为2。
题目3
求矩阵C=[1 -2 3; -4 5 -6; 7 -8 9]的秩。
解答
首先,将矩阵C进行初等行变换,得到行阶梯矩阵
```
继续进行初等行变换,得到
1 -2 3 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0
矩阵秩的应用
03
线性方程组的解
矩阵的秩可以用来判断线性方程组是否有解,以及解的个数。如果系数矩阵的秩等于增广矩阵的秩,则方程组有唯一解;否则,方程组无解或有无数多个解。
最小二乘法
矩阵的秩还可以用于最小二乘法,通过最小化误差平方和来求解线性方程组。最小二乘法的解就是使残差矩阵的秩等于其行数或列数的最小二乘解。

线性代数_第三章

线性代数_第三章
lts ks 0
这与1,2, . . .,s与线性无关矛盾.

推论1 两个等价的且线性无关的向量组,含有相 同个数的向量。

推论2 等价的向量组有相同的秩。

推论3 向量组(I)的秩为r1,向量组(II)的秩为r2,且
组(I)可由组(II)线性表出,则r1≤r2。
lts ks 0
于是
1 , 2 ,
k1 k2 b1 , b 2 , , s ks
l11 l12 l21 l22 , bt lt1 lt 2
l1s k1 0 l2 s k 2 0
第三章 向量组与线性方程组
§3.1 向量组的线性相关性
2 x1 3 x2 3 x3 5 x1 2 x2 x3 2 7 x2 x3 1
2 3 3 5 1 2 1 2 0 7 1 1

显然第三行是前两行的代数和; 也就是说,第三个方程能由前两 个方程“表示”;
4, (III) 1, 2, 3, 5, 且向量组的秩分别
为R(I)=R(II)=3, R(III)=4. 证明:向量组1, 2, 3, 5-4的秩为4.

证明: 由R(I)=R(II)=3得知向量组(I)线性无关,向
量组(II)线性相关,且4可由1, 2, 3,线性表出,
lm m 0
定理3 设m≤n,则m个n维向量1 ,2 ,
,m 线性无关的充
分必要条件是,其组成的矩阵的秩R(A)=m.即A为列满秩。
证:必要性. 因为Q可逆,必有l1,l2,…,lm不全为零, 这与1,2,…,m线性无关矛盾。 因此,R(A)=m。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

补充例题
首页
上页
返回
下页
结束

矩阵A可逆AP1P2 Pl 其中P1 P2 Pl都是初等矩阵.
求逆矩阵的初等行变换法
设A为n阶可逆矩阵 B为ns矩阵. 显然A1也可逆 所以存
在初等矩阵P1 P2 Pl 使 A1P1P2 Pl
于是有
A1AP1P2 Pl A

E P1P2 Pl A

1 0
1 2 1 1
1 1
4 0
r43r1
0 5 0 3
5 3 6 3 4 3
r43r2
0 0
0 0
0 2 6 0 1 3
~ ~ r3r4
r42r3
1 0
1 2 1 1
1 1
4 0
r1r2 r2r3
1 0
0 1 1 1
0 0
4 3
0 0 0 1 3
0 0 0 1 3
0 0 0 20 06
P1P2 Pl (A B)(E A1B). 上式的意义
(i)取BE时 上式成为 P1P2 Pl (A E)(E A1).
(ii)当A为可逆矩阵时 方程AXB的解为XA1B. 求AXB 的解可以对(A B)进行初等行变换 使之成为(E A1B) 此时即 得XA1B.
补充例题
首页
上页
返回
下页
结束

❖矩阵的等价关系 如果矩阵A经有限次初等行变换变成矩阵B 就称矩阵A
与B行等价 记作 A ~r B.
如果矩阵A经有限次初等列变换变成矩阵B 就称矩阵A 与B列等价 记作 A ~c B.
如果矩阵A经有限次初等变换变成矩阵B 就称矩阵A与B 等价 记作 A ~ B.
❖等价关系的性质 (i)反身性 A~A (ii)对称性 若A~B 则B~A (iii)传递性 若A~B B~C 则A~C .
3 1
6 6
3 2
2 9
1 1
2 7
9446
显然 把B的第2行乘以(2)加到第1行即得B3.
补充例题
首页
上页
返回
下页
结束

❖方程组的同解变换与增广矩阵的关系 在解线性方程组的过程中 我们可以把一个方程变为另
一个同解的方程 这种变换过程称为同解变换. 同解变换有 交换两个方程的位置 把某个方程乘以一个
1 1 0 0
0 0 1 0
43 03
.
❖行最简形矩阵与线性方程组的解
因为有上述等价关系 所以有同解线性方程组
2x1 x2 x3 x4 2 x1
43xxx111
x2 6x2 6x2
2x3 2x3 9x3
x4 2x4 7 x4
4 4 9

x3 x2 x3
4
x4
3 3
行阶梯形矩阵
行最简形矩阵
补充例题
首页
上页
返回
下页
结束

❖矩阵初等变换举例
~ 21
1 1
1 2
1 1
42
r1r2 r32
1 2
1 1
2 1
1 1
4 2
43
6 6
2 9
2 7
94
2 3 1 1 2 3 6 9 7 9
~ ~ r2r3
r32r1
1 0
1 2 2 2
1 2
4 0
r22 r35r2
2x3 2x3 9x3
x4 2x4 7 x4
4 4 9
①2②
①2②
3x2 3x3 x4 6
43xxx111
x2 6x2 6x2
2x3 2x3 9x3
x4 2x4 7x421 43
1 1
6 6
1 2
2 9
1 1 2 7
42 94
B3
0 1 4 3
例如

A 103
0 1 1
112
则有
~~~ A
A103
103101101112112rc11c1r222cc33103
51 02 50 1 21 11
112
3 AE3(31(2)) 10
0 1 1
112102
0 1 0
100
552
0 1 1
112 .
补充例题
首页
上页
返回
下页
结束

❖定理1(初等矩阵在矩阵乘法中的作用 ) 设A是一个mn矩阵. 对A施行一次初等行变换 相当于在
E(i(k))表示用非零数k乘单位矩 阵E的第i行(列)得到初等矩阵.
E(i j)1E(i j)
E(i(k))1 E(i(1)) k
E(ij(k))1E(ij(k)).
E(ij(k))表示把单位矩阵E的第j
行的k倍加到第i行上 或把单位矩阵
E的第i列的k倍加到第j列上得到初
等矩阵.
补充例题
首页
上页
返回
下页
结束

❖定理1(初等矩阵在矩阵乘法中的作用 ) 设A是一个mn矩阵. 对A施行一次初等行变换 相当于在
A的左边乘以相应的m阶初等矩阵 对A施行一次初等列变换 相当于在A的右边乘以相应的n 阶初等矩阵.
例如

A 103
0 1 1
112
则有
~~~ A
A103
103101101121112rr11rr12rr22103
2 4 9
增广矩阵的比较
B
21 43
1 1
6 6
1 2
2 9
1 1 2 7
42 94
1 1 2 1 4
B1
2 4 3
1 6
6
1 2 9
1 2
7
2 94
显然 交换B的第1行与第2行即得B1.
补充例题
首页
上页
返回
下页
结束

❖方程组的同解变换与增广矩阵的关系 在解线性方程组的过程中 我们可以把一个方程变为另
下页
结束

❖方程组的同解变换与增广矩阵的关系 在解线性方程组的过程中 我们可以把一个方程变为另
一个同解的方程 这种变换过程称为同解变换. 同解变换有 交换两个方程的位置 把某个方程乘以一个
非零数 某个方程的非零倍加到另一个方程上.
例如
2x1 x2 x3 x4 2
43xxx111
x2 6x2 6x2
一个同解的方程 这种变换过程称为同解变换. 同解变换有 交换两个方程的位置 把某个方程乘以一个
非零数 某个方程的非零倍加到另一个方程上.
例如
2x1 x2 x3 x4 2
43xxx111
x2 6x2 6x2
2x3 2x3 9x3
x4 2x4 7 x4
4 4 9
③2
③2
2x1 x2 x3 x4 2
23xxx111
x2 3x2 6x2
2x3 x3 9x3
x4 x4 7 x4
4 2 9
增广矩阵的比较
B
21 43
1 1
6 6
1 2
2 9
1 1 2 7
42 94
B2
2231
1 1 3 6
2 1
1 9
1 1 1 7
9224
显然 把B的第3行乘以(1/2)即得B2.
补充例题
首页
上页
返回
0 0
其解为
xx21
x3 x3
4 3
其 x3 为自由未知数.>>>完整解题过程
x4 3
补充例题
首页
上页
返回
下页
结束

❖矩阵初等变换举例
~ ~ 21
1 1
1 2
1 1
42
43
6 6
2 9
2 7
94
r
0001
1 1 0 0
2 1 0 0
1 1 1 0
0043
r
01 00
0 1 0 0
1 1 0 0
0 0 1 0
43 03
.
❖行最简形矩阵与线性方程组的解
所有行等价的矩阵组成的一个集合 集合中矩阵所对应
的线性方程组都是同解的 其中行最简形矩阵所对应的线性
方程组是最简单的 而且是最容易求解的.
补充例题
首页
上页
返回
下页
结束

§3.2 初等矩阵
矩阵的初等变换是矩阵的一种最基本的运算 这有着广泛的应用.
0 0 0 0 0
可以证明 对于任何矩阵A 总可经过有限次初等行变换
把它变为行阶梯形矩阵和行最简形矩阵.
补充例题
首页
上页
返回
下页
结束

❖矩阵初等变换举例
~ ~ 21
1 1
1 2
1 1
42
43
6 6
2 9
2 7
94
r
0001
1 1 0 0
2 1 0 0
1 1 1 0
0043
r
01 00
0 1 0 0
4 0
r43r1
0 5 0 3
5 3 6 3 4 3
r43r2
0 0
0 0
0 2 6 0 1 3
~ ~ r3r4
r42r3
1 0
1 2 1 1
1 1
4 0
r1r2 r2r3
1 0
0 1 1 1
0 0
4 3
0 0 0 1 3
0 0 0 1 3
0 0 0 20 06
0 0 0 0 0
补充例题
相关文档
最新文档