2019年高考真题文科数学解析分类汇编16:选考内容
2019年高考数学真题试卷(文)(新课标Ⅲ)含逐题详解

【答案】A
【分析】
根据题意可画出平面区域再结合命题可判断出真命题.
【详解】如图,平面区域D为阴影部分,由 得 即A(2,4),直线 与直线 均过区域D,则p真q假,有 假 真,所以①③真②④假.故选A.
【点睛】本题考点为线性规划和命题的真假,侧重不等式的判断,有一定难度.不能准确画出平面区域导致不等式误判,根据直线的斜率和截距判断直线的位置,通过直线方程的联立求出它们的交点,可采用特殊值判断命题的真假.
2019年全国统一高考数学试卷(文科)(新课标Ⅲ)
一,选择题:本题共12小题,每小题5分,共60分。在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合 ,则
A. B. C. D.
2.若 ,则z=
A. B. C. D.
3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是
A. B. C. D.
3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )
A. B. C. D.
【答案】D
【分析】
男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.
【详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是 .故选D.
【点睛】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.
4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )
2019年高考文科数学北京卷真题及答案详解

2019年普通高等学校招生全国统一考试·北京卷数学(文)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B =(A )(–1,1) (B )(1,2) (C )(–1,+∞) (D )(1,+∞)(2)已知复数z =2+i ,则z z ⋅=(A (B (C )3 (D )5(3)下列函数中,在区间(0,+∞)上单调递增的是 (A )12y x = (B )y =2x - (C )12log y x = (D )1y x =(4)执行如图所示的程序框图,输出的s 值为(A )1 (B )2(C )3 (D )4(5)已知双曲线2221x y a -=(a >0,则a =(A(B )4 (C )2 (D )12(6)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(7)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为k m 的星的亮度为k E (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为(A )1010.1(B )10.1 (C )lg10.1 (D )10.110-(8)如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,APB∠是锐角,大小为β.图中阴影区域的面积的最大值为(A)4β+4cosβ(B)4β+4sinβ(C)2β+2cosβ(D)2β+2sinβ第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
2019年全国卷Ⅰ文数高考真题及答案解析(word精编)

如果你喜欢这份文档,欢迎下载,另祝您成绩进步,学习愉快!绝密★启用前2019年普通高等学校招生全国统一考试全国Ⅰ卷文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =I ð A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年高考数学文真题分类解析(共16部分,138页)

第一章 集合与常用逻辑用语1.【2019高考新课标Ⅰ,文2】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A IA. {}1,6B. {}1,7C. {}6,7D. {}1,6,7【答案】C 【解析】 【分析】先求U A ð,再求U B A ⋂ð.【详解】由已知得{}1,6,7U C A =,所以U B C A ⋂={6,7},故选C .【点睛】本题主要考查交集、补集的运算.渗透了直观想象素养.使用补集思想得出答案.2.【2019高考新课标Ⅱ,文1】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A. (–1,+∞) B. (–∞,2) C. (–1,2) D. ∅【答案】C 【解析】 【分析】本题借助于数轴,根据交集的定义可得. 【详解】由题知,(1,2)A B =-I ,故选C .【点睛】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.3.【2019高考新课标Ⅲ,文1】已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B =I ( )A. {}1,0,1-B. {}0,1C. {}1,1-D. {}0,1,2【答案】A 【解析】 【分析】先求出集合B 再求出交集.【详解】21,x ≤∴Q 11x -≤≤,∴{}11B x x =-≤≤,则{}1,0,1A B =-I , 故选A .【点睛】本题考查了集合交集的求法,是基础题.4.【2019高考北京卷,文1】已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B = A. (–1,1) B. (1,2)C. (–1,+∞)D. (1,+∞)【答案】C 【解析】 【分析】根据并集的求法直接求出结果.【详解】∵{|12},{|1}A x x B x =-<<=> , ∴(1,)A B ⋃=+∞ , 故选C.【点睛】考查并集的求法,属于基础题.5.【2019高考天津卷,文1】设集合{}1,1,2,3,5A =-,{}2,3,4B = ,{|13}C x R x =∈<… ,则()A C B =I UA. {2}B. {2,3}C. {-1,2,3}D. {1,2,3,4}【答案】D 【解析】 【分析】先求A C I ,再求()A C B I U 。
2019年全国统一高考数学试卷(文科)(新课标Ⅲ)【后附:极详细的解析、分析、考点、答案解释等】

【后附:极详细的解析、分析、考点、答案解释等】2019年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题1. 已知集合A={−1,0,1,2},B={x|x2≤1},则A∩B=()A.{−1,0,1}B.{0,1}C.{−1,1}D.{0,1,2}2. 若z(1+i)=2i,则z=()A.−1−iB.−1+iC.1−iD.1+i3. 两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A.1 6B.14C.13D.124. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著. 某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.85. 函数f(x)=2sinx−sin2x在[0,2π]的零点个数为()A.2B.3C.4D.56. 已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3= ()A.16B.8C.4D.27. 已知曲线y=ae x+xlnx在点(1, ae)处的切线方程为y=2x+b,则()A.a=e,b=−1B.a=e,b=1C.a=e−1,b=1D.a=e−1,b=−18. 如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M 是线段ED的中点,则()A.BM=EN,且直线BM, EN是相交直线B.BM≠EN,且直线BM, EN是相交直线C.BM=EN,且直线BM, EN是异面直线D.BM≠EN,且直线BM, EN是异面直线9. 执行下边的程序框图,如果输入的ε为0.01,则输出s的值等于()A.2−124B.2−125C.2−126D.2−12710. 已知F是双曲线C:x24−y25=1的一个焦点,点P在C上,O为坐标原点,若|OP|= |OF|,则△OPF的面积为()A.32B.52C.72D.9211. 记不等式组{x+y≥6,2x−y≥0表示的平面区域为D.命题p:∃(x,y)∈D,2x+y≥9;命题q:∀(x,y)∈D,2x+y≤12.下面给出了四个命题①p∨q②¬p∨q③p∧¬q④¬p∧¬q这四个命题中,所有真命题的编号是()A.①③B.①②C.②③D.③④12. 设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log314)>f(2−32)>f(2−23)B.f(log314)>f(2−23)>f(2−32)C.f(2−32)>f(2−23)>f(log314)D.f(2−23)>f(2−32)>f(log314)二、填空题已知向量a→=(2,2),b→=(−8,6),则cos<a→,b→>=________.记S n为等差数列{a n}的前n项和,若a3=5,a7=13,则S10=________.设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限,若△MF1F2为等腰三角形,则M的坐标为________.学生到工厂劳动实践,利用3D打印技术制作模型. 如图,该模型为长方体ABCD−A1B1C1D1挖去四棱锥O−EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm,3D打印所用原料密度为0.9g/cm3. 不考虑打印损耗,制作该模型所需原料的质量为________g.三、解答题为了了解甲、乙两种离子在小鼠体内的残留程度,进行如下实验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服用甲离子溶液,B组小鼠给服用乙离子溶液,每只小鼠给服的溶液体积相同,摩尔浓度相同,经过一段时间后,用某种科学方法测算出残留在小鼠体内的离子百分比,根据试验数据分析得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).△ABC的内角A,B,C的对边分别为a,b,c.已知asin A+C2=bsinA.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE= BF=2,∠FBC=60∘,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.已知函数f(x)=2x3−ax2+2.(1)讨论f(x)的单调性.(2)当0<a<3时,记f(x)在区间[0,1]的最大值为M,最小值为m,求M−m的取值范围.已知曲线C:y=x22,D为直线y=−12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.如图,在极坐标系Ox中,A(2, 0),B(√2, π4),C(√2, 3π4),D(2, π),弧AB^,BC^,CD^所在圆的圆心分别是(1, 0),(1, π2),(1, π),曲线M1是弧AB^,曲线M2是弧BC^,曲线M3是弧CD^.(1)分别写出M1,M2,M3的极坐标方程;(2)曲线M由M1,M2,M3构成,若点P在M上,且|OP|=√3,求P的极坐标.设x,y,z∈R,且x+y+z=1.(1)求(x−1)2+(y+1)2+(z+1)2的最小值;(2)若(x−2)2+(y−1)2+(z−a)2≥13成立,证明:a≤−3或a≥−1.参考答案与试题解析2019年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题1.【答案】A【考点】一元二次不等式的解法交集及其运算【解析】此题暂无解析【解答】解:因为B={x|x2≤1},所以B={x|−1≤x≤1},又因为A={−1,0,1,2},所以A∩B={−1,0,1}.故选A.2.【答案】D【考点】复数的运算复数的基本概念【解析】此题暂无解析【解答】解:由z(1+i)=2i得,z=2i 1+i=2i(1−i) (1+i)(1−i)=1+i.故选D.3.【答案】D【考点】排列、组合的应用古典概型及其概率计算公式【解析】此题暂无解析【解答】解:根据题意,两位男同学和两位女同学随机排成一列,共有A44=4×3×2×1=24种方式,两位女同学相邻有2×A33=2×3×2×1=12种方式,所以两位女同学相邻的概率是1224=12,故选D.4.【答案】C【考点】容斥原理古典概型及其概率计算公式【解析】此题暂无解析【解答】解:分析如图,∴70100=0.7.故选C.5.【答案】B【考点】二倍角的正弦公式函数的零点【解析】此题暂无解析【解答】解:由题意得,f(x)=2sinx−sin2x=2sinx−2sinxcosx=2sinx(1−cosx),令f(x)=0,因为x在区间[0,2π]内,所以当sinx=0时,x可以取0,π,2π,当1−cosx=0时,x取0,2π,综上可得零点有3个.故选B.6.【答案】C【考点】等比数列的前n项和【解析】此题暂无解析【解答】解:由a5=3a3+4a1以及等比数列的基本性质,得q4−3q2−4=0,解得q2=4,又各项均为正数的等比数列,故q=2.根据S4=a1+a2+a3+a4=15,解得a1=1,故a3=a1q2=4.故选C.7.【答案】D【考点】利用导数研究曲线上某点切线方程【解析】此题暂无解析【解答】解:由题意得,y′=ae x+lnx+1,所以ae+1=2,解得,a=e−1,又2+b=ae,所以b=−1,故选D. 8.【答案】B【考点】空间中直线与直线之间的位置关系【解析】此题暂无解析【解答】解:建立如图所示坐标系,连接BE,BD,设四边形ABCD边长为2,由图可知,B(0,2,0), E(1,0,√3), N(1,1,0), M(32,0,√32),所以|BM→|=√(32−0)2+(0−2)2+(√32−0)2=√94+4+34=√7,|EN→|=√(1−1)2+(1−0)2+(0−√3)2=√0+1+3=2,∴ EN≠BM,∴BM→=(32,−2,√32),BN→=(1,−1,0),BE→=(1,−2,√3).∵BM→=12BE→+BN→,由平面向量基本定理可知,点B , M , E ,N四点共面,∴BM与EN相交.故选B.9.【答案】C【考点】程序框图【解析】此题暂无解析【解答】解:模拟执行程序,可得:x=1,s=0,不满足条件x<ε,执行循环体,x=12,s=1;不满足条件x<ε,执行循环体,x=14,s=1+12;不满足条件x<ε,执行循环体,x=18,s=1+12+14;不满足条件x<ε,执行循环体,x=116,s=1+12+14+18;不满足条件x<ε,执行循环体,x=132,s=1+12+14+18+116;不满足条件x<ε,执行循环体,x=164,s=1+12+14+18+116+132;不满足条件x<ε,执行循环体,x=1128,s=1+12+14+18+116+132+164;满足条件x<ε,退出循环,输出s=1+12+14+18+116+132+164=1×(1−127)1−12=2−12.故选C.10.【答案】B【考点】双曲线的应用【解析】此题暂无解析【解答】解:由题意得,c=3,因为点P在双曲线C上,所以可设P(−√20+4y25, y),因为|OP|=|OF|,所以(−√20+4y25)2+y2=32,解得,|y|=53,所以△OPF的面积为=12×3×53=52,故选B.11.【答案】A【考点】逻辑联结词“或”“且”“非”简单线性规划【解析】此题暂无解析【解答】解:由题意可作出可行域D,如图所示,可求得交点坐标为(2, 4),而2x+y≥9经过可行域,故命题p为真命题,而2x+y≤12经过可行域但并不是所有点都满足条件,故命题q为假命题,①p∨q为真命题;¬p为假命题,故②¬p∨q为假命题;¬q为真命题,故③p∧¬q为真命题;④¬p∧¬q为假命题,故为真命题的是①③,故选A.12.【答案】C【考点】指数函数与对数函数的关系偶函数函数单调性的性质【解析】此题暂无解析【解答】解:由偶函数的性质得,f (log 314)=f (−log 34)=f (log 34),又∵ log 34>1,1>2−23>2−32>0, ∴ log 34>2−23>2−32>0,∵ f(x)在(0,+∞)上单调递减, ∴ f (2−32)>f (2−23)>f (log 314). 故选C .二、填空题【答案】−√210【考点】平面向量的夹角 【解析】 此题暂无解析 【解答】解:由题意得, cos <a →,b →>=a →⋅b→|a →|⋅|b →|=−√210.故答案为:−√210.【答案】100【考点】等差数列的前n 项和 【解析】 此题暂无解析 【解答】解:根据等差数列的基本性质,由a 3=5,a 7=13,可得a 1=1,d =2, 由S n =na 1+n(n−1)2d,n ∈N ∗,可得S 10=100,故答案为:100.【答案】(3, √15)【考点】椭圆中的平面几何问题 【解析】 此题暂无解析 【解答】解:由题意得,F 1(−4, 0),F 2(4, 0), M 为C 上一点且在第一象限, 所以可设M(t, √180−5t 29)(t >0),又因为△MF 1F 2为等腰三角形, 所以|MF 1|=|F 1F 2|, 所以(t +4)2+180−5t 29=64,解得,t =3或t =−21(舍去), 所以M 的坐标为(3, √15). 故答案为:(3, √15). 【答案】 118.8【考点】柱体、锥体、台体的体积计算 【解析】 此题暂无解析 【解答】解:由题意得,挖去的四棱锥的底面GHEF 是一个菱形, 面积S =12HF ×GE =12cm 2,所以四棱锥的体积V =13Sℎ=13×12×3=12cm 3,所以该模型的体积为V 剩余=6×6×4−12=132cm 3,又因为原料密度为0.9gcm 3,所以该模型所用原料质量为132×0.9=118.8g . 故答案为:118.8. 三、解答题【答案】解:(1)由已知得:0.70=a +0.20+0.15, 故a =0.35,所以b=1−0.05−0.15−0.70=0.10.故a=0.35,b=0.10.(2)甲离子残留百分比的平均值的估计值为:2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05,乙离子残留百分比的平均值的估计值为:3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00. 【考点】众数、中位数、平均数频率分布直方图【解析】此题暂无解析【解答】解:(1)由已知得:0.70=a+0.20+0.15,故a=0.35,所以b=1−0.05−0.15−0.70=0.10.故a=0.35,b=0.10.(2)甲离子残留百分比的平均值的估计值为:2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05,乙离子残留百分比的平均值的估计值为:3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00. 【答案】解:(1)由题设及正弦定理得,sinAsin A+C2=sinBsinA,因为sinA≠0,所以sin A+C2=sinB,由A+B+C=180∘,可得sin A+C2=cos B2,故cos B2=2sin B2cos B2,因为cos B2≠0,故sin B2=12,因此B=60∘.(2)由题设及(1)知△ABC的面积S△ABC=√34a,由正弦定理得,a=csinAsinC=sin(120∘−C)sinC=√32tanC+12,由于△ABC为锐角三角形,故0∘<A<90∘,0∘<C<90∘,由(1)知A+C=120∘,所以30∘<C<90∘,故12<a<2,从而√38<S△ABC<√32,因此,△ABC的面积的取值范围是(√38, √32).【考点】三角恒等变换综合应用正弦定理运用诱导公式化简求值【解析】此题暂无解析【解答】解:(1)由题设及正弦定理得,sinAsin A+C2=sinBsinA,因为sinA≠0,所以sin A+C2=sinB,由A+B+C=180∘,可得sin A+C2=cos B2,故cos B2=2sin B2cos B2,因为cos B2≠0,故sin B2=12,因此B=60∘.(2)由题设及(1)知△ABC的面积S△ABC=√34a,由正弦定理得,a=csinA sinC=sin(120∘−C)sinC=√32tanC +12,由于△ABC为锐角三角形,故0∘<A<90∘,0∘<C<90∘,由(1)知A+C=120∘,所以30∘<C<90∘,故12<a<2,从而√38<S△ABC<√32,因此,△ABC的面积的取值范围是(√38, √3 2).【答案】(1)证明:由已知得AD//BE,CG//BE,所以AD//CG,故AD,CG确定一个平面,从而A,C,G,D四点共面,由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE,又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM,如图所示,因为AB//DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG. 由已知,四边形BCGE是菱形,且∠EBC=60∘,得EM⊥CG,故CG⊥平面DEM,因此DM⊥CG在Rt△DEM中,DE=1,EM=√3,故DM=2,所以四边形ACGD的面积为4.【考点】直线与平面垂直平面与平面垂直的判定【解析】此题暂无解析【解答】(1)证明:由已知得AD//BE,CG//BE,所以AD//CG,故AD,CG确定一个平面,从而A,C,G,D四点共面,由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE,又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM,如图所示,因为AB//DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60∘,得EM⊥CG,故CG⊥平面DEM,因此DM⊥CG,在Rt△DEM中,DE=1,EM=√3,故DM=2,所以四边形ACGD的面积为4.【答案】解:(1)f′(x)=6x2−2ax=2x(3x−a)令f′(x)=0,得x=0或x=a3,若a >0,当x ∈(−∞,0)∪(a3,+∞)时,f ′(x)>0, 当x ∈(0,a3)时,f ′(x)<0,故f(x)在(−∞,0),(a3,+∞)单调递增,在(0,a3)单调递减, 若a =0,f(x)在(−∞,+∞)上单调递增,若a <0,则当x ∈(−∞,a3)∪(0,+∞)时,f ′(x)>0; 当x ∈(a3,0)时,f ′(x)<0,故f(x)在(−∞,a3),(0,+∞)单调递增,在(a3,0)单调递减.(2)当0<a <3时,由(1)知,在(0,a3)单调递减,在(a3,1)单调递增,所以f(x)在[0,1]的最小值为f (a3)=−a 327+2, 最大值为f(0)=2或f(1)=4−a ,于是 m =−a 327+2,M ={4−a,0<a <22,2≤a <3,所以M −m ={2−a +a 327,0<a <2a 327,2≤a <3,当0<a <2时,可知2−a +a 327单调递减,所以M −m 的取值范围是(827,2), 当2≤a <3时,a 327单调递增,所以M −m 的取值范围是[827,1), 综上,M −m 的取值范围是[827,2).【考点】利用导数研究函数的最值利用导数研究函数的单调性 【解析】 此题暂无解析【解答】解:(1)f ′(x)=6x 2−2ax =2x(3x −a) 令f ′(x)=0,得x =0或x =a3,若a >0,当x ∈(−∞,0)∪(a 3,+∞)时,f ′(x)>0, 当x ∈(0,a3)时,f ′(x)<0,故f(x)在(−∞,0),(a3,+∞)单调递增,在(0,a3)单调递减, 若a =0,f(x)在(−∞,+∞)上单调递增,若a <0,则当x ∈(−∞,a3)∪(0,+∞)时,f ′(x)>0; 当x ∈(a3,0)时,f ′(x)<0,故f(x)在(−∞,a3),(0,+∞)单调递增,在(a3,0)单调递减.(2)当0<a <3时,由(1)知,在(0,a3)单调递减,在(a3,1)单调递增, 所以f(x)在[0,1]的最小值为f (a3)=−a 327+2,最大值为f(0)=2或f(1)=4−a ,于是 m =−a 327+2,M ={4−a,0<a <22,2≤a <3,所以M −m ={2−a +a 327,0<a <2a 327,2≤a <3,当0<a <2时,可知2−a +a 327单调递减,所以M −m 的取值范围是(827,2), 当2≤a <3时,a 327单调递增,所以M −m 的取值范围是[827,1), 综上,M −m 的取值范围是[827,2).【答案】(1)证明:设D(t,−12), A(x 1,y 1),则x 12=2y 1,由于y ′=x ,所以切线DA 的斜率为x 1, 故y 1+12x 1−t=x 1, 整理得2tx 1−2y 1+1=0,设B(x 2,y 2),同理可得2tx 2−2y 2+1=0, 故直线AB 的方程为2tx −2y +1=0, 所以直线AB 过定点(0,12).(2)解:由(1)得直线AB 的方程为y =tx +12, 由{y =tx +12,y =x 22可得x 2−2tx −1=0, 于是x 1+x 2=2t,y 1+y 2=t(x 1+x 2)+1=2t 2+1, 设M 为线段AB 的中点,则M(t,t 2+12),由于EM →⊥AB →,而EM →=(t,t 2−2), AB →与向量(1,t)平行, 所以t +(t 2−2)t =0,解得t =0或t =±1, 当t =0时,|EM →|=2,所求圆的方程为x 2+(y −52)2=4;当t =±1时,|EM →|=√2,所求圆的方程为x 2+(y −52)2=2.【考点】直线恒过定点利用导数研究曲线上某点切线方程 平行向量的性质 点与圆的位置关系 中点坐标公式 斜率的计算公式 【解析】 此题暂无解析 【解答】(1)证明:设D(t,−12), A(x 1,y 1),则x 12=2y 1,由于y ′=x ,所以切线DA 的斜率为x 1, 故y 1+12x 1−t=x 1, 整理得2tx 1−2y 1+1=0,设B(x 2,y 2),同理可得2tx 2−2y 2+1=0, 故直线AB 的方程为2tx −2y +1=0, 所以直线AB 过定点(0,12).(2)解:由(1)得直线AB 的方程为y =tx +12, 由{y =tx +12,y =x22可得x 2−2tx −1=0, 于是x 1+x 2=2t,y 1+y 2=t(x 1+x 2)+1=2t 2+1, 设M 为线段AB 的中点,则M(t,t 2+12),由于EM →⊥AB →,而EM →=(t,t 2−2), AB →与向量(1,t)平行, 所以t +(t 2−2)t =0,解得t =0或t =±1,当t =0时,|EM →|=2,所求圆的方程为x 2+(y −52)2=4; 当t =±1时,|EM →|=√2,所求圆的方程为x 2+(y −52)2=2.【答案】解:(1)由题设可得,弧AB^,BC ^,CD ^所在圆的极坐标方程分别为 ρ=2cosθ,ρ=2sinθ,ρ=−2cosθ.所以M 1的极坐标方程为ρ=2cosθ(0≤θ≤π4), M 2的极坐标方程为ρ=2sinθ(π4≤θ≤3π4),M 3的极坐标方程为ρ=−2cosθ(3π4≤θ≤π). (2)设P(ρ, θ),由题设及(1)知, 若0≤θ≤π4,则2cosθ=√3,解得θ=π6; 若π4≤θ≤3π4,则2sinθ=√3,解得θ=π3或θ=2π3;若3π4≤θ≤π,则−2cosθ=√3,解得θ=5π6.综上,P的极坐标为(√3,π6)或(√3, π3)或(√3, 2π3)或(√3, 5π6).【考点】圆的极坐标方程【解析】此题暂无解析【解答】解:(1)由题设可得,弧AB^,BC^,CD^所在圆的极坐标方程分别为ρ=2cosθ,ρ=2sinθ,ρ=−2cosθ.所以M1的极坐标方程为ρ=2cosθ(0≤θ≤π4),M2的极坐标方程为ρ=2sinθ(π4≤θ≤3π4),M3的极坐标方程为ρ=−2cosθ(3π4≤θ≤π).(2)设P(ρ, θ),由题设及(1)知,若0≤θ≤π4,则2cosθ=√3,解得θ=π6;若π4≤θ≤3π4,则2sinθ=√3,解得θ=π3或θ=2π3;若3π4≤θ≤π,则−2cosθ=√3,解得θ=5π6.综上,P的极坐标为(√3,π6)或(√3, π3)或(√3, 2π3)或(√3, 5π6).【答案】(1)解:由于[(x−1)+(y+1)+(z+1)]2=(x−1)2+(y+1)2+(z+1)2+2[(x−1)(y+1)+(y+1)(z+1)+(z+1)(x −1)]≤3[(x−1)2+(y+1)2+(z+1)2]故由已知得(x−1)2+(y+1)2+(z+1)2≥43,当且仅当x=53, y=−13, z=−13时等号成立,所以(x−1)2+(y+1)2+(z+1)2的最小值为43.(2)由于[(x−2)+(y−1)+(z−a)]2=(x−2)2+(y−1)2+(z−a)2+2[(x−2)(y−1)+(y−1)(z−a)+(z−a)(x −2)]≤3[(x−2)2+(y−1)2+(z−a)2]故由已知得(x−2)2+(y−1)2+(z−a)2≥(2+a)23,当且仅当x=4−a3,y=1−a3,z=2a−23时等号成立,因此(x−2)2+(y−1)2+(z−a)2的最小值为(2+a)23.由题设知(2+a)23≥13,解得a≤−3或a≥−1.【考点】一般形式的柯西不等式【解析】此题暂无解析【解答】(1)解:由于[(x−1)+(y+1)+(z+1)]2=(x−1)2+(y+1)2+(z+1)2+2[(x−1)(y+1)+(y+1)(z+1)+(z+1)(x −1)]≤3[(x−1)2+(y+1)2+(z+1)2]故由已知得(x−1)2+(y+1)2+(z+1)2≥43,当且仅当x=53, y=−13, z=−13时等号成立,所以(x−1)2+(y+1)2+(z+1)2的最小值为43.(2)由于[(x−2)+(y−1)+(z−a)]2=(x−2)2+(y−1)2+(z−a)2+2[(x−2)(y−1)+(y−1)(z−a)+(z−a)(x −2)]≤3[(x−2)2+(y−1)2+(z−a)2]故由已知得(x−2)2+(y−1)2+(z−a)2≥(2+a)23,当且仅当x=4−a3,y=1−a3,z=2a−23时等号成立,因此(x−2)2+(y−1)2+(z−a)2的最小值为(2+a)23.由题设知(2+a)23≥13,解得a≤−3或a≥−1.。
2019年普通高等学校招生全国统一考试文科数学(北京卷)(含解析)

六大注意1 考生需自己粘贴答题卡的条形码考生需在监考老师的指导下,自己贴本人的试卷条形码。
粘贴前,注意核对一下条形码上的姓名、考生号、考场号和座位号是否有误,如果有误,立即举手报告。
如果无误,请将条形码粘贴在答题卡的对应位置。
万一粘贴不理想,也不要撕下来重贴。
只要条形码信息无误,正确填写了本人的考生号、考场号及座位号,评卷分数不受影响。
2 拿到试卷后先检查有无缺张、漏印等拿到试卷后先检查试卷有无缺张、漏印、破损或字迹不清等情况,尽管这种可能性非常小。
如果有,及时举手报告;如无异常情况,请用签字笔在试卷的相应位置写上姓名、考生号、考场号、座位号。
写好后,放下笔,等开考信号发出后再答题,如提前抢答,将按违纪处理。
3 注意保持答题卡的平整填涂答题卡时,要注意保持答题卡的平整,不要折叠、弄脏或撕破,以免影响机器评阅。
若在考试时无意中污损答题卡确需换卡的,及时报告监考老师用备用卡解决,但耽误时间由本人负责。
不管是哪种情况需启用新答题卡,新答题卡都不再粘贴条形码,但要在新答题卡上填涂姓名、考生号、考场号和座位号。
4 不能提前交卷离场按照规定,在考试结束前,不允许考生交卷离场。
如考生确因患病等原因无法坚持到考试结束,由监考老师报告主考,由主考根据情况按有关规定处理。
5 不要把文具带出考场考试结束,停止答题,把试卷整理好。
然后将答题卡放在最上面,接着是试卷、草稿纸。
不得把答题卡、试卷、草稿纸带出考场,试卷全部收齐后才能离场。
请把文具整理好,放在座次标签旁以便后面考试使用,不得把文具带走。
6 外语听力有试听环外语考试14:40入场完毕,听力采用CD 播放。
14:50开始听力试听,试听结束时,会有“试听到此结束”的提示。
听力部分考试结束时,将会有“听力部分到此结束”的提示。
听力部分结束后,考生可以开始做其他部分试题。
2019年普通高等学校招生全国统一考试(北京卷)文科数学一、选择题共8小题,每小题5分,共40分.1、(2019•北京)已知集合A={x|-1<x<2},B={x|x>1},则AUB=( ) A. (-1,1) B. (1,2) C. (-1,+∞) D. (1,+∞) 【答案】C【解析】【解答】因为{}{}12,1,A x x B x x =-<<=> 所以{}1,A B x x =>-U 故答案为:C.【分析】本题考查了集合的并运算,根据集合A 和B 直接求出交集即可. 2、(2019•北京)已知复数z=2+i ,则·z z =( )【答案】D【解析】【解答】根据2z i =+,得2z i =-, 所以(2)(2)415z z i i ⋅=+⋅-=+=, 故答案为:D.【分析】根据z 得到其共轭,结合复数的乘法运算即可求解.3、(2019•北京)下列函数中,在区间(0,+∞)上单调递增的是( )A. 12y x = B. y=2-xC.12log y x = D. 1y x= 【答案】A【解析】【解答】A :12y x =为幂函数,102α=>,所以该函数在()0,+∞上单调递增; B:指数函数xx1y 22-⎛⎫== ⎪⎝⎭,其底数大于0小于1,故在()0,+∞上单调递减; C :对数函数12log y x =,其底数大于0小于1,故在()0,+∞上单调递减; D :反比例函数1y x=,其k=1>0,故在()0,+∞上单调递减; 故答案为:A.【分析】根据幂函数、指数函数、对数函数及反比例函数的单调性逐一判断即可. 4、(2019•北京)执行如图所示的程序框图,输出的s 值为( )A. 1B. 2C. 3D. 4 【答案】B【解析】【解答】k=1,s=1, s=2212312⨯=⨯-,k<3,故执行循环体k=1+1=2,2222322s ⨯==⨯-; 此时k=2<3,故继续执行循环体k=3,2222322s ⨯==⨯-,此时k=3,结束循环,输出s=2. 故答案为:B.【分析】根据程序框图,依次执行循环体,直到k=3时结束循环,输出s=2即可.5、(2019•北京)已知双曲线2221x y a-=(a>0a=( )B. 4C. 2D. 12【答案】D【解析】【解答】双曲线的离心率c e a ===, 故2251,a a =+解得211,42a a ==, 故答案为:D.【分析】根据双曲线的标准方程,表示离心率,解方程,即可求出a 的值.6、(2019•北京)设函数f (x )=cosx+bsinx (b 为常数),则“b=0”是“f (x )为偶函数”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】C【解析】【解答】若b=0,则()cos f x x =为偶函数, 若()cos sin f x x b x =+为偶函数,则()()()cos sin cos sin ()cos sin f x x b x x b x f x x b x -=-+-=-==+, 所以2sin 0,b x =B=0,综上,b=0是f (x )为偶函数的充要条件. 故答案为:C.【分析】根据偶函数的定义,结合正弦函数和余弦函数的单调性,即可确定充分、必要性. 7、(2019•北京)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 1-m 2=125lg 2E E ,其中星等为m k 的星的亮度为E k (k=1,2).己知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A. 1010.1B. 10.1C. lg10.1D. 10-10.1 【答案】A【解析】【解答】解:设太阳的亮度为1E ,天狼星的亮度为2E , 根据题意1251.45(26.7)lg 2E E ---=, 故122g25.2510.15E l E =⨯=, 所以10.11210E E =;故答案为:A.【分析】根据已知,结合指数式与对数式的转化即可求出相应的比值.8、(2019•北京)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β.图中阴影区域的面积的最大值为( )A. 4β+4cos βB. 4β+4sin βC. 2β+2cos βD. 2β+2sin β 【答案】B【解析】【解答】设圆心为O ,根据,APB β∠=可知AB 所对圆心角2,AOB β∠=故扇形AOB 的面积为22242πββπ⋅⋅=,由题意,要使阴影部分面积最大,则P 到AB 的距离最大,此时PO 与AB 垂直,故阴影部分面积最大值4,AOB PAB S S S β=-+V V 而2sin 22cos 4sin cos 2AOB S ββββ⨯⨯==V ,()2sin 222cos 4sin 4sin cos 2PAB S βββββ⨯⨯+==+V ,故阴影部分面积最大值444sin ,AOB PAB S S S βββ=-+=+V V 故答案为:B.【分析】根据圆周角得到圆心角,由题意,要使阴影部分面积最大,则P 到AB 的距离最大,此时PO 与AB 垂直,结合三角函数的定义,表示相应三角形的面积,即可求出阴影部分面积的最大值. 二、填空题共6小题,每小题5分,共30分,9、(2019•北京)已知向量a r =(-4.3),b r =(6,m ),且a b ⊥r r,则m= . 【答案】8【解析】【解答】根据两向量垂直,则数量积为0,得()4630,m -⨯+= 解得m=8. 故答案为8.【分析】根据两向量垂直,数量积为0,结合平面向量的数量积运算即可求解.10、(2019•北京)若x ,y 满足214310x y x y ≤⎧⎪≥-⎨⎪-+≥⎩.则y-x 的最小值为 ,最大值为 . 【答案】-3|1【解析】【解答】作出可行域及目标函数相应的直线,平移该直线,可知在经过(2,-1)时取最小值-3,过(2,3)时取最大值1. 故答案为-3;1.【分析】作出可行域和目标函数相应的直线,平移该直线,即可求出相应的最大值和最小值. 11、(2019•北京)设抛物线y 2=4x 的焦点为F ,准线为l.则以F 为圆心,且与l 相切的圆的方程为 .【答案】()2214x y -+=【解析】【解答】由题意,抛物线的焦点坐标F (1,0),准线方程:x=-1, 焦点F 到准线l 的距离为2, 故圆心为(1,0),半径为2, 所以圆的方程为()2214x y -+=;故答案为()2214x y -+=.【分析】根据抛物线方程求出焦点坐标和准线方程,即可得到圆心和半径,写出圆的标准方程即可. 12、(2019•北京)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为 .【答案】40【解析】【解答】根据三视图,可知正方体体积31464V ==,去掉的四棱柱体积()22424242V +⨯=⨯=,故该几何体的体积V=64-24=40. 故答案为40.【分析】根据三视图确定几何体的结构特征,求出相应的体积即可.13、(2019•北京)已知l ,m 是平面α外的两条不同直线.给出下列三个论断: ①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: . 【答案】若②③,则①【解析】【解答】若l α⊥,则l 垂直于α内任意一条直线, 若m αP ,则l m ⊥; 故答案为若②③,则①.14、(2019•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 . 【答案】130|15【解析】【解答】①草莓和西瓜各一盒,总价60+80=140元, 140>120,故顾客可少付10元,此时需要支付140-10=130元;②要保证每笔订单得到的金额均不低于促销前总价的七折,则最低消费满足条件即可, 根据题意,买草莓两盒,消费最低,此时消费120元, 故实际付款(120-x )元,此时李明得到()12080%x -⨯, 故()12080%1200.7x -⨯≥⨯,解得15x ≤; 故最大值为15. 故答案为①130;②15.【分析】①根据已知,直接计算即可;②根据题意,要保证每笔订单得到的金额均不低于促销前总价的七折,则最低消费满足条件即可,因此选最低消费求解,即可求出相应的最大值. 三、解答题共6小题,共80分.15、(2019•北京)在△ABC 中,a=3,b-c=2,cosB=-12. (I )求b ,c 的值:(II )求sin (B+C )的值.【答案】解:(I )根据余弦定理2222cos b a c ac B =+-, 故()22129232c c c ⎛⎫+=+-⨯⨯-⎪⎝⎭, 解得c=5,B=7;(II )根据1cos 2B =-,得sin B =,根据正弦定理,sin sin b cB C=,5sin C=,解得sin C =,所以11cos 14C =,所以()111sin sin cos cos sin 21421414B c BC B C ⎛⎫+=+=+-⨯=⎪⎝⎭【解析】【分析】(I )根据余弦定理,解方程即可求出c 和b ;(II )根据同角三角函数的平方关系,求出sinB ,结合正弦定理,求出sinC 和cosC ,即可依据两角和的正弦公式,求出sin (B+C ).16、(2019•北京)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(I )求{a n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求S n 的最小值. 【答案】解:(I )根据三者成等比数列,可知()()()23248106a a a +=++,故()()()2102810101036d d d -++=-++-++, 解得d=2,故()1021212n a n n =-+-=-; (Ⅱ)由(I )知()210212112n n n S n n -+-⋅==-,该二次函数开口向上,对称轴为n=5.5, 故n=5或6时,n S 取最小值-30.【解析】【分析】(I )根据等比中项,结合等差数列的通项公式,求出d ,即可求出n a ;(Ⅱ)由(1),求出n S ,结合二次函数的性质,即可求出相应的最小值.17、(2019•北京)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(II )从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率; (III )已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中,随机抽查1人,发现他本月的支付金额大于2000元,结合(II )的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】解:(I )据估计,100人中上个月A 、B 两种支付方式都使用的人数为100-5-27-3-24-1=40人,故该校学生中上个月A 、B 两种支付方式都使用的人数为400人;(II )该校学生上个月仅使用B 支付的共25人,其中支付金额大于2000的有一人,故概率为125; (III )不能确定人数有变化,因为在抽取样本时,每个个体被抽到法机会是均等的,也许抽取的样本恰为上个月支付抄过2000的个体,因此不能从抽取的一个个体来确定本月的情况有变化. 【解析】【分析】(I )根据题意,结合支付方式的分类直接计算,再根据样本估计总体即可; (II )根据古典概型,求出基本事件总数和符合题意的基本事件数,即可求出相应的概率; (III )从统计的角度,对事件发生的不确定性进行分析即可.18、(2019•北京)如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若∠ABC=60°,求证:平面PAB ⊥平面PAE ;(Ⅲ)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由. 【答案】(Ⅰ)证明:因为ABCD 为菱形,所以BD AC ⊥, 又因为PA ABCD ⊥平面,所以BD PA ⊥,而PA AC A =I , 故BD PAC ⊥平面;(Ⅱ)因为60ABC ∠=︒,所以60ADC ∠=︒,故ADC V 为等边三角形, 而E 为CD 的中点,故AE CD ⊥,所以AE AB ⊥, 又因为PA ABCD ⊥平面,所以AB PA ⊥, 因为PA AE A =I ,所以AB PAE ⊥平面,又因为AB PAB ⊂平面,所以PAB PAE ⊥平面平面; (Ⅲ)存在这样的F ,当F 为PB 的中点时,CF PAE P 平面; 取AB 的中点G ,连接CF 、CG 和FG ,因为G 为AB 中点,所以AE 与GC 平行且相等,故四边形AGCE 为平行四边形,所以AE GC P ,故GC PAE P 平面 在三角形BAP 中,F 、G 分别为BP 、BA 的中点,所以FG PA P , 故FG PAE P 平面,因为GC 和FG 均在平面CFG 内,且GC FG G =I , 所以CGF PAE P 平面平面,故CF PAE P 平面.【解析】【分析】(Ⅰ)根据线面垂直的判定定理,证明直线与平面内两条相交直线垂直即可; (Ⅱ)根据面面垂直的判定定理,证明直线与平面垂直,即可得到面面垂直;(Ⅲ)根据面面平行的判定定理,证明面面平行,即可说明两平面没有公共点,因此,一个平面内任意一条直线与另一平面均无公共点,即可说明线面平行.19、(2019•北京)已知椭圆C :22221x y a b+=的右焦点为(1.0),且经过点A (0,1).(I )求椭圆C 的方程;(II )设O 为原点,直线l :y=kx+t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,|OM|·|ON|=2,求证:直线l 经过定点. 【答案】解:(I )根据焦点为(1,0),可知c=1, 根据椭圆经过(0,1)可知b=1,故2222a b c =+=,所以椭圆的方程为2212x y +=; (II )设()()1122,,,P x y Q x y , 则直线111:1y AP y x x -=+,直线221:1y AQ y x x -=+, 解得1212,0,,011x x M N y y ⎛⎫⎛⎫⎪ ⎪--⎝⎭⎝⎭,故()1212121212111x x x x OM ON y y y y y y ⋅=⋅=---++, 将直线y=kx+t 与椭圆方程联立, 得()222124220k x ktx t +++-=,故2121222422,1212kt t x x x x k k --+==++,所以22221212228282,1212k t t k t k t y y y y k k+-++==++, 故()2121t OM ON t +⋅==-,解得t=0,故直线方程为y=kx ,一定经过原点(0,0).【解析】【分析】(I )根据焦点坐标和A 点坐标,求出a 和b ,即可得到椭圆的标准方程; (II )设出P 和Q 的坐标,表示出M 和N 的坐标,将直线方程与椭圆方程联立,结合韦达定理,表示OM 与ON ,根据2OM ON ⋅=,解得t=0,即可确定直线恒过定点(0,0). 20、(2019•北京)已知函数f (x )=14x 3-x 2+x. (I )求曲线y=f (x )的斜率为1的切线方程; (II )当x ∈[-2,4]时,求证:x-6≤f (x )≤x ;(Ⅲ)设F (x )=|f (x )-(x+a )|(a ∈R ),记F (x )在区间[-2,4]上的最大值为M (a ).当M (a )最小时,求a 的值. 【答案】解(I )()23'214f x x x =-+,令()'1f x =, 则1280,3x x ==,因为()8800,327f f ⎛⎫==⎪⎝⎭, 故斜率为1的直线为y=x 或88273y x -=-, 整理得,斜率为1的直线方程为x-y=0或64027x y --=; (II )构造函数g (x )=f (x )-x+6, 则()23'24g x x x =-,令()'0g x =,则1280,3x x ==, 故g (x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增,故g (x )的最小值为g (-2)或83g ⎛⎫ ⎪⎝⎭,而g (-2)=0,8980327g ⎛⎫=> ⎪⎝⎭,故()min (2)0g x g =-=⎡⎤⎣⎦, 所以()0g x ≥,故在[-2,4]上,()6x f x -≤; 构造函数h (x )=f (x )-x , 则()23'24h x x x =-,令()'0h x =,则1280,3x x ==,故h (x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增,故h (x )的最大值为h (0)或h (4),因为h (0)=0,h (4)=0,所以()0h x ≤,故在[-2,4]上,()f x x ≤, 综上在[-2,4]上,()6x f x x -≤≤; (Ⅲ)令()()()3214x f x x a x x a ϕ=-+=--, 则()23'24x x x ϕ=-,令()'0x ϕ=,则1280,3x x ==, 故ϕ(x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增,所以ϕ(x )的最小值为ϕ(-2)=-6-a 或864327a ϕ⎛⎫=-- ⎪⎝⎭, 最大值为ϕ(0)=-a 或ϕ(4)=12-a , 故()()F x x ϕ=其最大值()12,36,3a a M a a a -≤⎧=⎨+>⎩,故当a=3时,M (a )有最小值9.【解析】【分析】(I )求导数,根据导数的几何意义,结合斜率为1,求出切点坐标,利用点斜式,即可求出相应的切线方程;(II )构造函数,要证()6x f x x -≤≤,只需要证在[-2,4]上6()0f x x g x -≥+=()和()()0h x f x x =-≤即可,求导数,利用导数确定函数单调性,求出函数极值即可证明;(Ⅲ)求导数,利用导数确定函数单调性,求出函数的最值,确定M (a )的表达式,即可求出M (a )取最小值时相应的a 值.。
2019高考数学全国一卷(文科)高考真题(解析版)

2019年普通高等学校招生全国统一考试(全国 I 卷)文科数学1. 设312iz i-=+,则z =( ) A.2D.1 答案: C解析: 因为3(3)(12)1712(12)(12)5i i i iz i i i ----===++-所以z ==2. 已知集合}7,6,5,4,3,2,1{=U ,5}43{2,,,=A ,7}63{2,,,=B ,则=A C B U ( ) A. }6,1{ B.}7,1{C.}7,6{D. }7,6,1{ 答案:C解析:}7,6,5,4,3,2,1{=U ,5}43{2,,,=A ,则7}6{1,,=A C U ,又 7}63{2,,,=B ,则7}{6,=A C B U ,故选C.3.已知2log 0.2a =,0.22b =,0.30.2c =,则( ) A.a b c << B.a c b << C.c a b <<D.b c a << 答案: B解答:由对数函数的图像可知:2log 0.20a =<;再有指数函数的图像可知:0.221b =>,0.300.21c <=<,于是可得到:a c b <<.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是215-(618.0215≈-称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是215- .若某人满足上述两个黄金分割比例,且腿长为cm 105,头顶至脖子下端的长度为cm 26,则其身高可能是( )A.cm 165B.cm 175C.cm 185D.cm 190 答案: B解析: 方法一:设头顶处为点A ,咽喉处为点B ,脖子下端处为点C ,肚脐处为点D ,腿根处为点E ,足底处为F ,t BD =,λ=-215, 根据题意可知λ=BD AB ,故t AB λ=;又t BD AB AD )1(+=+=λ,λ=DFAD,故t DF λλ1+=; 所以身高t DF AD h λλ2)1(+=+=,将618.0215≈-=λ代入可得t h 24.4≈.根据腿长为cm 105,头顶至脖子下端的长度为cm 26可得AC AB <,EF DF >;即26<t λ,1051>+t λλ,将618.0215≈-=λ代入可得4240<<t 所以08.1786.169<<h ,故选B.方法二:由于头顶至咽喉的长度与头顶至脖子下端的长度极为接近,故头顶至脖子下端的长度cm 26可估值为头顶至咽喉的长度;根据人体的头顶至咽喉的长度与咽喉至肚脐的长度之比是215-(618.0215≈-称为黄金分割比例)可计算出咽喉至肚脐的长度约为cm 42;将人体的头顶至咽喉的长度与咽喉至肚脐的长度相加可得头顶至肚脐的长度为cm 68,头顶至肚脐的长度与肚脐至足底的长度之比是215-可计算出肚脐至足底的长度约为110;将头顶至肚脐的长度与肚脐至足底的长度相加即可得到身高约为cm 178,与答案cm 175更为接近,故选B. 5. 函数2sin ()cos x xf x x x+=+在[,]ππ-的图像大致为( ) A.B.C.D.答案: D解答: ∵()()()2sin ()cos x x f x x x ---=-+-=2sin cos x xx x+-+()f x =-, ∴()f x 为奇函数,排除A.又22sin 4222()02cos22f πππππππ++==>⎛⎫+ ⎪⎝⎭,排除C ,()22sin ()01cos f πππππππ+==>++,排除B ,故选D.6.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,3,,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是( ). A.8号学生B.200号学生C.616号学生D.815号学生 答案: C解答:从1000名学生中抽取100名,每10人抽一个,46号学生被抽到,则抽取的号数就为106(099,)n n n N +≤≤∈,可得出616号学生被抽到.7. tan 255︒=( )A.2-B.2-C.2D.2 答案: D解析:因为tan 255tan(18075)tan 75︒=︒+︒=︒tan 45tan 30tan(4530)1tan 45tan 30︒+︒=︒+︒=-︒⋅︒化简可得tan 2552︒=+8. 已知非零向量a ,b 满足||2||b a =,且b b a⊥-)(,则a 与b 的夹角为( )A.6πB.3πC.32πD.65π答案: B解答:||2||b a =,且b b a ⊥-)(,∴0)(=⋅-b b a ,有0||2=-⋅b b a ,设a 与b 的夹角为θ,则有0||cos ||||2=-⋅b b a θ,即0||c o s ||222=-b b θ,0)1cos 2(||2=-θb , 0||≠b ,∴21cos =θ,3πθ=,故a 与b的夹角为3π,选B . 9. 右图是求112+12+2的程序框图,图中空白框中应填入( )A.12A A =+ B.12A A =+C.112A A =+D.112A A=+答案: A解答:把选项代入模拟运行很容易得出结论选项A 代入运算可得1=12+12+2A ,满足条件,选项B 代入运算可得1=2+12+2A ,不符合条件, 选项C 代入运算可得12A =,不符合条件,选项D 代入运算可得11+4A =,不符合条件. 10.双曲线)0,0(12222>>=-b a by a x C :的一条渐近线的倾斜角为︒130,则C 的离心率为( )A.︒40sin 2B.︒40cos 2C.︒50sin 1D.︒50cos 1 答案: D解答: 根据题意可知︒=-130tan a b ,所以︒︒=︒=50cos 50sin 50tan a b , 离心率︒=︒=︒︒+︒=︒︒+=+=50cos 150cos 150cos 50sin 50cos 50cos 50sin 1122222222a b e . 11. ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知s i n s i n 4s i n a A b B c C-=,1cos 4A =-,则bc=( )A. 6B. 5C. 4D. 3答案: A解答:由正弦定理可得到:222sin sin 4sin 4a A b B c C a b c -=⇒-=,即2224a c b =+,又由余弦定理可得到:2221cos 24b c a A bc +-==-,于是可得到6b c =12. 已知椭圆C 的焦点坐标为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点,若222AF F B =,1AB BF =,则C 的方程为( )A. 2212x y +=B. 22132x y +=C. 22143x y +=D. 22154x y +=答案: B解答:由222AF F B =,1AB BF =,设2F B x =,则22AF x =,13BF x =,根据椭圆的定义21212F B BF AF AF a +=+=,所以12AF x =,因此点A 即为椭圆的下顶点,因为222AF F B =,1c =所以点B 坐标为3(,)22b ,将坐标代入椭圆方程得291144a +=,解得223,2a b ==,故答案选B.13.曲线23()xy x x e =+在点(0,0)处的切线方程为 . 答案:3y x =解答:∵23(21)3()xxy x e x x e '=+++23(31)xx x e =++,∴结合导数的几何意义曲线在点(0,0)处的切线方程的斜率3k =,∴切线方程为3y x =.14. 记n S 为等比数列{}n a 的前n 项和,若11a =,334S =,则4S = . 答案:58解析:11a =,312334S a a a =++=设等比数列公比为q ∴211134a a q a q ++=∴12q =-所以4S =5815.函数3()sin(2)3cos 2f x x x π=+-的最小值为___________. 答案: 4- 解答:23()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x π=+-=--=--+, 因为cos [1,1]x ∈-,知当cos 1x =时()f x 取最小值, 则3()sin(2)3cos 2f x x x π=+-的最小值为4-. 16.已知90ACB ∠=︒,P 为平面ABC 外一点,2PC =,点P 到ACB ∠两边,AC BC 的,那么P 到平面ABC 的距离为 . 答案:解答:如图,过P 点做平面ABC 的垂线段,垂足为O ,则PO 的长度即为所求,再做,PE CB PF CA ⊥⊥,由线面的垂直判定及性质定理可得出,OE CB OF CA ⊥⊥,在Rt PCF ∆中,由2,PC PF ==1CF =,同理在Rt PCE ∆中可得出1CE =,结合90ACB ∠=︒,,OE CB OF CA ⊥⊥可得出1O E O F ==,OC =,PO ==17.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1) (2) 能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc a b c d a c b d κ-=++++(1)男顾客的的满意概率为404505P == 女顾客的的满意概率为303505P == (2) 有95%的把握认为男、女顾客对该商场服务的评价有差异.解答:(1) 男顾客的的满意概率为404505P == 女顾客的的满意概率为303505P ==. (2) 22100(40201030) 4.762(4010)(3020)(4030)(1020)κ⨯-⨯==++++ 4.762 3.841>有95%的把握认为男、女顾客对该商场服务的评价有差异.18.记n S 为等差数列{}n a 的前n 项和,已知59a S -=; (1)若43=a ,求{}n a 的通项公式;(2)若01>a ,求使得n n a S ≥的n 的取值范围. 答案:(1)102+-=n a n(2){}N n n n ∈≤≤,101 解答:(1)由59a S -=结合591992)(9a a a S =+=可得05=a ,联立43=a 得2-=d ,所以102)3(3+-=-+=n d n a a n(2)由59a S -=可得d a 41-=,故d n a n )5(-=,2)9(dn n S n -=.由01>a 知0<d ,故n n a S ≥等价于010112≤+-n n ,解得101≤≤n ,所以n 的取值范围是{}N n n n ∈≤≤,101 19. 如图直四棱柱1111ABCD A B C D -的底面是菱形,14,2AA AB ==,60BAD ∠=,,,E M N 分别是11,,BC BB A D 的中点.(1)证明://MN 平面1C DE (2)求点C 到平面1C DE 的距离.答案:见解析 解答:(1)连结1111,AC B D 相交于点G ,再过点M 作1//MH C E 交11B C 于点H ,再连结GH ,NG .,,E M N 分别是11,,BC BB A D 的中点.于是可得到1//NG C D ,//GH DE , 于是得到平面//NGHM 平面1C DE , 由MN ⊂平面NGHM ,于是得到//MN 平面1C DE(2)E 为BC 中点,ABCD 为菱形且60BAD ∠=DE BC ∴⊥,又1111ABCD A B C D -为直四棱柱,1DE CC ∴⊥1DE C E ∴⊥,又12,4AB AA ==,1DE C E ∴,设点C 到平面1C DE 的距离为h由11C C DE C DCE V V --=得1111143232h ⨯=⨯⨯解得h =所以点C 到平面1C DE 20. 已知函数()2sin cos f x x x x x =--,()f x '是()f x 的导数.(1)证明:()f x '在区间(0,)π存在唯一零点;(2)若[0,]x π∈时,()f x ax ≥,求a 的取值范围.答案:略解答:(1)由题意得()2cos [cos (sin )]1f x x x x x '=-+--cos sin 1x x x =+-令()cos sin 1g x x x x =+-,∴()cos g x x x '= 当(0,]2x π∈时,()0g x '>,()g x 单调递增,当(,)2x ππ∈时,()0g x '<,()g x 单调递减,∴()g x 的最大值为()122g ππ=-,又()2g π=-,(0)0g = ∴()()02g g ππ⋅<,即()()02f f ππ''⋅<, ∴()f x '在区间(0,)π存在唯一零点.(2)令()()F x f x ax =-2sin cos x x x x ax =---,∴()F x 'cos sin 1x x x =+-a -,由(1)知()f x '在(0,)π上先增后减,存在(,)2m ππ∈,使得()0f m '=,且(0)0f '=,()=1022f ππ'->,()2f π'=-, ∴()F x '在(0,)π上先增后减,(0)F a '=-,()122F a ππ'=--,()2F a π'=--, 当()02F π'≤时,()F x '在(0,)π上小于0,()F x 单调递减, 又(0)0F =,则()(0)0F x F ≤=不合题意, 当()02F π'>时,即102a π-->,12a π<-时, 若(0)0F '≥,()0F π'≤,()F x 在(0,)m 上单调递增,在(,)m π上单调递减,则(0)0()0F F π≥⎧⎨≥⎩解得0a ≤, 而(0)0()20F a F a π'=-≥⎧⎨'=--≤⎩解得20a -≤≤,故20a -≤≤, 若(0)0F '≥,()0F π'≥,()F x 在(0,)π上单调递增,且(0)0F =,故只需(0)0()20F a F a π'=-≥⎧⎨'=--≥⎩解得2a ≤-; 若(0)0F '≤,()0F π'≤,()F x 在(0,)2π上单调递增,且(0)0F =, 故存在(0,)2x π∈时,()(0)0F x F ≤=,不合题意, 综上所述,a 的取值范围为(],0-∞.21. 已知点,A B 关于坐标原点O 对称,4AB =,M e 过点,A B 且与直线20x += 相切.(1)若A 在直线0x y +=上,求M e 的半径;(2)是否存在定点P ,使得当A 运动时,MA MP -为定值?并说明理由.答案:(1)2或6;(2)见解析.解答:(1)∵M e 过点,A B ,∴圆心在AB 的中垂线上即直线y x =上,设圆的方程为 222()()x a y a r -+-=,又4AB =,根据222AO MO r +=得2242a r +=;∵M e 与直线20x +=相切,∴2a r +=,联解方程得0,2a r ==或4,6a r ==.(2)设M 的坐标为(,)x y ,根据条件22222AO MO r x +==+即22242x y x ++=+ 化简得24y x =,即M 的轨迹是以(1,0)为焦点,以1x =-为准线的抛物线,所以存在定点(1,0)P ,使(2)(1)1MA MP x x -=+-+=. 22.在直角坐标系xOy 中,曲线C 的参数方程为22211()41t x t t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩为参数.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos sin 110ρθθ++=.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.答案:略解答:(1)曲线C :由题意得22212111t x t t-==-+++即2211x t +=+,则2(1)y t x =+,然后代入即可得到2214y x += 而直线l :将cos ,sin x y ρθρθ==代入即可得到2110x +=(2)将曲线C 化成参数方程形式为则d==所以当362ππθ+=23.已知a,b,c为正数,且满足1=abc,证明:(1)222111cbacba++≤++;(2)24)()()(333≥+++++accbba.答案:(1)见解析;(2)见解析.解析:(1) abba222≥+,bccb222≥+,acac222≥+,∴acbcabcba222222222++≥++,即acbcabcba++≥++222,当且仅当cba==时取等号. 1=abc且a,b,c都为正数,∴cab1=,abc1=,bac1=,故222111cbacba++≤++.(2) 3333333)()()(3)()()(accbbaaccbba+++≥+++++,当且仅当333)()()(accbba+=+=+时等号成立,即cba==时等号成立.又))()((3)()()(33333accbbaaccbba+++=+++acbcab2223⋅⋅⨯≥abc42=,当且仅当cba==时等号成立, 1=abc,故2424)()()(33333=≥+++abcaccbba,即得24)()()(333≥+++++accbba.。
2019年山东省高考文科数学试卷及答案解析(word版)

数学试卷2019年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I卷和第II 卷两部分,共4页。
满分150分,考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如果改动,用橡皮擦干净后,再选涂其他答案标号、答案写在试卷上无效。
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分. . 在每小题给出的四个选项中,只在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知,,a b R i Î是虚数单位. 若a i +=2bi -,则2()a bi +=(A) 34i -(B) 34i +(C) 43i-(D) 43i+(2) 设集合2{|20},{|14}A x x x B x x =-<=££,则AB =(A) (0,2](B) (1,2)(C) [1,2)(D) (1,4)(3) 函数21()log 1f x x =-的定义域为的定义域为(A) (0,2) (B) (0,2] (C) (2,)+¥ (D) [2,)+¥ (4) 用反证法证明命题:“设,a b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是做的假设是 (A) 方程30x ax b ++=没有实根没有实根(B) 方程30x ax b ++=至多有一个实根实根 (C) 方程30x ax b ++=至多有两个实根至多有两个实根(D) 方程30x ax b ++=恰好有两个实根实根(5) 已知实数,x y 满足(01)xya a a <<<, 则下列关系式恒成立的是则下列关系式恒成立的是 (A) 33x y > (B) sin sin x y > (C) 22ln(1)ln(1)x y +>+(D) 221111x y >++ (6) 已知函数log ()(,0,1)a y x c a c a a =+>¹为常数,其中的图象如右图,则下列结论成立的是立的是(A) 0,1a c >> (B) 1,01a c ><< (C) 01,1a c <<> (D) 01,01a c <<<< (7) 已知向量(1,3),(3,)a b m ==. 若向量,a b 的夹角为6p ,则实数m = (A) 23 (B) 3 (C) 0 (D) 3- (8) 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的xEO顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019高考文科试题解析分类汇编:选考内容1.【2019高考陕西文15】(不等式选做题)若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是 .【答案】42≤≤-a .【解析】不等式3|1|||≤-+-x a x 可以表示数轴上的点x 到点a 和点1的距离之和小于等于3,因为数轴上的点x 到点a 和点1的距离之和最小时即是x 在点a 和点1之间时,此时距离和为|1|-a ,要使不等式3|1|||≤-+-x a x 有解,则3|1|≤-a ,解得42≤≤-a .2.【2019高考陕西文15】(几何证明选做题)如图,在圆O 中,直径AB 与弦CD 垂直,垂足为E ,EF DB ⊥,垂足为F ,若6AB =,1AE =,则DF DB ⋅= .【答案】5.【解析】5,1,6=∴==EB AE AB .连接AD ,则AED ∆∽DEB ∆,BE DE DE AE =∴, 5=∴DE , 又DFE ∆∽DEB ∆,DBDE DE DF =∴,即52==⋅DE DB DF . 3.【2019高考陕西文15】(坐标系与参数方程)直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为 . 【答案】3.【解析】直线1cos 2=θρ与圆θρcos 2=的普通方程为1)1(1222=+-=y x x 和,圆心到直线的距离为21211=-,所以弦长为3)21(122=-. 4.【2019高考天津文科13】如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于D .过点C 作BD 的平行线与圆交于点E ,与AB 相交于点F ,3AF =,1FB =,32EF =,则线段CD 的长为 .【答案】34 【解析】如图连结BC ,BE ,则∠1=∠2,∠2=∠A1A ∠=∠∴,又∠B=∠B ,CBF ∆∴∽AB C ∆,ACCF AB CB BC BF AB CB ==∴,,代入数值得BC=2,AC=4,又由平行线等分线段定理得FB AF CD AC =,解得CD=34. 5.【2019高考湖南文11】某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,实验范围定为29℃~63℃.精确度要求±1℃.用分数法进行优选时,能保证找到最佳培养温度需要最少实验次数为_______.【答案】7【解析】用分数法计算知要最少实验次数为7.【点评】本题考查优选法中的分数法,考查基本运算能力.6.【2019高考湖南文10】在极坐标系中,曲线1C :sin )1ρθθ+=与曲线2C :a ρ=(0)a >的一个交点在极轴上,则a =_______.【答案】2【解析】曲线1C 1y +=,曲线2C 的普通方程是直角坐标方程222x y a +=,因为曲线C 1:sin )1ρθθ+=与曲线C 2:a ρ=(0)a >的一个交点在极轴上,所以1C 与x 轴交点横坐标与a 值相等,由0,y x ==a . 【点评】本题考查直线的极坐标方程、圆的极坐标方程,直线与圆的位置关系,考查转化的思想、方程的思想,考查运算能力;题型年年有,难度适中.把曲线1C 与曲线2C 的极坐标方程都转化为直角坐标方程,求出与x 轴交点,即得.7.【2019高考广东文14】(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线1C 和2C的参数方程分别为x y θθ⎧=⎪⎨=⎪⎩(θ为参数,02πθ≤≤)和122x y ⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数),则曲线1C 和2C 的交点坐标为 .【答案】(2,1)【解析】 2212:5(,0),:1C x y x y C y x +=≥=- 解得:交点坐标为(2,1).8【2019高考广东文15】(几何证明选讲选做题)如图3所示,直线PB 与圆O 相切于点B , D 是弦AC 上的点,PBA DBA ∠=∠. 若AD m =,AC n =,则AB = .【解析】,PBA DBA ACB BAD CAB BADCAB ∠=∠=∠∠=∠⇒∆∆得:2AB AD AB AC AD mn AB AC AB=⇔=⨯=⇔=9.【2019高考新课标文22】(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交△ABC 的外接圆于F ,G 两点,若CF//AB ,证明:FG(Ⅰ)CD=BC ;(Ⅱ)△BCD ∽△GBD【命题意图】本题主要考查线线平行判定、三角形相似的判定等基础知识,是简单题.【解析】(Ⅰ) ∵D ,E 分别为AB,AC 的中点,∴DE ∥BC ,∵CF ∥AB , ∴BCFD 是平行四边形,∴CF=BD=AD ,连结AF ,∴ADCF 是平行四边形,∴CD=AF ,∵CF ∥AB, ∴BC=AF, ∴CD=BC ;(Ⅱ) ∵FG ∥BC ,∴GB=CF ,由(Ⅰ)可知BD=CF ,∴GB=BD,∵∠DGB=∠EFC=∠DBC, ∴△BCD ∽△GBD.10.【2019高考新课标文23】(本小题满分10分)选修4—4;坐标系与参数方程已知曲线C 1的参数方程是⎩⎨⎧==ϕϕsin 3cos 2y x (φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 以逆时针次序排列,点A 的极坐标为(2,π3) (Ⅰ)求点A 、B 、C 、D 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+ |PD|2的取值范围.【命题意图】本题考查了参数方程与极坐标,是容易题型.【解析】(Ⅰ)由已知可得(2cos,2sin )33A ππ,(2cos(),2sin())3232B ππππ++, (2cos(),2sin())33C ππππ++,33(2cos(),2sin())3232D ππππ++, 即A(1,B1),C (―1,D,-1),(Ⅱ)设(2cos ,3sin )P ϕϕ,令S =2222||||||||PA PB PC PD +++,则S =2216cos 36sin 16ϕϕ++=23220sin ϕ+,∵20sin 1ϕ≤≤,∴S 的取值范围是[32,52].11.【2019高考新课标文24】(本小题满分10分)选修4—5:不等式选讲已知函数f (x ) = |x + a | + |x -2|.(Ⅰ)当a =-3时,求不等式f (x )≥3的解集;(Ⅱ)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.【命题意图】本题主要考查含绝对值不等式的解法,是简单题. 【解析】(Ⅰ)当3a =-时,()f x =25,21, 2325,3x x x x x -+≤⎧⎪<<⎨⎪-≥⎩,当x ≤2时,由()f x ≥3得253x -+≥,解得x ≤1;当2<x <3时,()f x ≥3,无解;当x ≥3时,由()f x ≥3得25x -≥3,解得x ≥8,∴()f x ≥3的解集为{x |x ≤1或x ≥8};(Ⅱ) ()f x ≤|4|x -⇔|4||2|||x x x a ---≥+,当x ∈[1,2]时,|||4||2|x a x x +≤---=42x x -+-=2,∴22a x a --≤≤-,有条件得21a --≤且22a -≥,即30a -≤≤,故满足条件的a 的取值范围为[-3,0].12.【2019高考辽宁文22】(本小题满分10分)选修4-1:几何证明选讲如图,⊙O 和⊙/O 相交于,A B 两点,过A 作两圆的切线分别交两圆于C ,D 两点,连接DB 并延长交⊙O 于点E 。
证明(Ⅰ)AC BD AD AB ⋅=⋅;(Ⅱ) AC AE =。
【命题意图】本题主要考查圆的切线的性质、三角形相似的判断与性质,考查推理论证能力和数形结合思想,重在考查对平面几何基础知识、基本方法的掌握,难度较小。
证明:(1)由AC 与O 相切于A ,得=CAB ADB ∠∠,同理=ACB DAB ∠∠,所以ACBDAB ∆∆。
从而=AC AB AD BD ,即=AC BD AD AB ……4分(2)由AD 与O 相切于A ,得=A E D B A D ∠∠,又=A D E B D A ∠∠,得E A D A B D ∆∆ 从而=AE AD AB BD,即=AE BD AD AB ,综合(1)的结论,=AC AE ……10分13.【2019高考辽宁文23】(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标xOy 中,圆221:4C x y +=,圆222:(2)4C x y -+=。
(Ⅰ)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆12,C C 的极坐标方程,并求出圆12,C C 的交点坐标(用极坐标表示);(Ⅱ)求圆12C C 与的公共弦的参数方程。
【命题意图】本题主要考查点的极坐标表示、圆的极坐标方程、参数方程的表示及参数方程与一般方程的转换、解方程组的知识,难度较小。
【解析】圆1C 的极坐标方程为=2ρ,圆2C 的极坐标方程为=4cos ρθ,解=2=4cos ρρθ⎧⎨⎩得=2,=3πρθ±,故圆1C 与圆2C 交点的坐标为2,,2,-33ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ ……5分注:极坐标系下点的表示不唯一(2)(解法一)由=cos =sin x y ρθρθ⎧⎨⎩,得圆1C 与圆2C 交点的直角坐标为((,故圆1C 与圆2C 的公共弦的参数方程为=1=x y t ⎧≤⎨⎩(或参数方程写成=1=x y y y⎧≤≤⎨⎩ … 10分(解法二) 将=1x 代入=cos =sin x y ρθρθ⎧⎨⎩,得cos =1ρθ,从而1=cos ρθ 于是圆1C 与圆2C 的公共弦的参数方程为=1-=tan 33x y ππθθ⎧≤≤⎨⎩ 【点评】本题要注意圆221:4C x y +=的圆心为)0,0(半径为21=r ,圆222:(2)4C x y -+=的圆心为)0,2(半径为22=r ,从而写出它们的极坐标方程;对于两圆的公共弦,可以先求出其代数形式,然后化成参数形式,也可以直接根据直线的参数形式写出。
14.【2019高考辽宁文24】(本小题满分10分)选修4-5:不等式选讲已知()|1|()f x ax a R =+∈,不等式()3f x ≤…的解集为{|2x -剎≤1x ≤…}。
(Ⅰ)求a 的值;(Ⅱ)若|()2()|2x f x f k -≤…恒成立,求k 的取值范围。
【命题意图】本题主要考查分段函数、不等式的基本性质、绝对值不等式及其运用,考查分类讨论思想在解题中的灵活运用.【解析】(Ⅰ)由+13ax ≤得-42ax ≤≤,又()3f x ≤的解集为{}-21x x ≤≤,所以 当0a ≤时,不合题意 当>0a 时,42-x a a≤≤,得=2a …5分 (Ⅱ)记()()=-22x h x f x f ⎛⎫ ⎪⎝⎭,则()1,-11=-4-3,-1<<-21-1,-2x h x x x x ⎧⎪≤⎪⎪⎨⎪⎪≥⎪⎩, 所以()1h x ≤,因此1k ≥ ……10分 【点评】本题主要考查分段函数、不等式的基本性质、绝对值不等式及其运用,考查分类讨论思想在解题中的灵活运用,第(Ⅰ)问,要真对a 的取值情况进行讨论,第(Ⅱ)问要真对)2(2)(x f x f -的正负进行讨论从而用分段函数表示,进而求出k 的取值范围。