热分析谱图综合解析
5. 谱图综合解析的方法

2013-8-20
质谱: 在m/z 39,51,77,91,105,119处一系列的强度指示芳 香族的特征; 在m/z 69的最大是非芳香族部分,m/z 59以及和分子离子 的质量相差为80,31和59指示出存在单键键合的氧; 在过渡态中,由亚稳离子(189-*-139,139-*-119)的存在所 证实的质量差为50(CF2)和20(HF)的质量单位指出了氟, 它可能以三氟甲基的形式存在。
2013-8-20
4) 通过谱图解析确定存在的官能团以及结构单元 (1) 红外光谱
IR能给出大部分官能团和某些结构单元存在的信息,从谱图 特征区可以清楚地观察到存在的官能团,从指纹区的某些相 关峰也可以得到某些官能团存在的信息。
(2) 有机质谱
MS除了能够给出分子式和相对分子量的信息,还可以根据 谱图中出现的系列峰﹑特征峰﹑重排峰和高质量区碎片离 子峰确定结构单元
2013-8-20
C-NMR:宽带去偶图上只有四类碳说明分子有对称结构, 偏共振去偶图中处于50~70ppm的3种亚甲基受中等去 屏蔽,表示碳与氮、氧原子相连,1个甲基在高场,为 C-CH3结构。 MS:M-15表示可能含有甲基; H-NMR:由低场到高场的积分比为4∶6∶3,其中4H以 CH20存在,6H以CH2N存在;1.18为CH3 ,裂分为三重 峰,有CH3CH2结构; 4.推定分子结构式 分子中有1个环结构,没有其它不饱和类型,氧和氮原 子上都没质子,同时C-NMR表明分子对称,结构为:
2013-8-20
6) 确定正确结构 以上一步所推出的各种可能结构为出发点,综合 运用所掌握的实验资料,对各种可能的结构逐一对 比分析,采取排除解析方法确定正确结构。 如果对某种结构几种谱图的解析结果均很满意, 说明该结构是合理的和正确的 . 7) 结构验证 (1)质谱验证
谱图综合解析课件

4)核磁共振碳谱 13C NMR
q
t
d
s
δ
偏共振多重性
归属
推断
22
q
CH3
CH3-CH
30
t
CH2
-CH2-C=O
68
d
CH
O-CH-CH3
172
s
C
C=O碳
*
5)推断结构
6)质谱( MS)验证
101
143
119
74
59
43
116据如下谱图确定结构,并说明依据。
*
例7.化合物C11H14O2 ,根据如下谱图确定结构,并说明依据。
q
t
t
t
d
d
s
s
178(M)
133
104
91
77
65
51
*
3H(t)
2H(q)
2H(t)
2H(t)
2H(m)
3H(m)
3028
2982
1736
1601
1497
1455
1373
1242
1040
699
751
*
例7解:
1)分子式: C11H14O2
λmax
εmax
λmax
εmax
268
101
252
153
264
158
248
109
262
147
243
78
257
194
*
3)红外光谱(IR)
3030 cm-1, 1500cm-1, 1500cm-1 芳环特征吸收
01
1225 cm-1, 1100 cm-1,C-O-C伸缩振动
实验12 热谱图分析 OK!

实验十二聚合物的热谱图分析在等速升温(降温)的条件下,测量试样与参比物之间的温度差随温度变化的技术称为差热分析,简称DTA(Differential Thermal Analysis)。
试样在升(降)温过程中,发生吸热或放热,在差热曲线上就会出现吸热或放热峰。
试样发生力学状态变化时(如玻璃化转变),虽无吸热或放热,但比热有突变,在差热曲线上是基线的突然变动。
试样对热敏感的变化能反映在差热曲线上。
发生的热效大致可归纳为:(1)发生吸热反应。
结晶熔化、蒸发、升华、化学吸附、脱结晶水、二次相变(如高聚物的玻璃化转变)、气态还原等。
(2)发生放热反应。
气体吸附、氧化降解、气态氧化(燃烧)、爆炸、再结晶等。
(3)发生放热或吸热反应。
结晶形态转变、化学分解、氧化还原反应、固态反应等。
用DTA方法分析上述这些反应,不反映物质的重量是否变化,也不论是物理变化还是化学变化,它只能反映出在某个温度下物质发生了反应,具体确定反应的实质还得要用其他方法(如光谱、质谱和X光衍射等)。
由于DTA测量的是样品和基准物的温度差,试样在转变时热传导的变化是未知的,温差与热量变化比例也是未知的,其热量变化的定量性能不好。
在DTA基础上增加一个补偿加热器而成的另一种技术是差示扫描量热法。
简称DSC (Differential Scanning Calorimetry)。
因此DSC直接反映试样在转变时的热量变化,便于定量测定。
DTA、DSC广泛应用于:(1)研究聚合物相转变,测定结晶温度T c、熔点T m、结晶度X D。
结晶动力学参数。
(2)测定玻璃化转变温度T g。
(3)研究聚合、固化、交联、氧化、分解等反应,测定反应热、反应动力学参数。
一、目的要求:1.了解DTA、DSC的原理。
2.掌握用DTA、DSC测定聚合物的T g、T c、T m、X D。
二、基本原理:1.DTA图(11-1)是DTA的示意图。
通常由温度程序控制、气氛控制、变换放大、显示记录等部分所组成。
DSC-TGA谱图综合解析教学文稿

固化体系动态DSC曲线分析
exo
Heat Flow(W/g)
0.2
a- 5 ℃/min
0.0
b-10 ℃/min
c-15 ℃/min
-0.2
d-20 ℃/min
a
DGEBF/DDS
-0.4
b
-0.6
c
-0.8
d
-1.0
-1.2
-1.4
150
200
250
300
Temperature(℃)
不同升温速率下的DSC曲线
等温DSC曲线
0.2
d
0.0 c
b
-0.2
a
-0.4
a - 195 oC b - 200 oC c - 205 oC d - 210 oC
-0.6 0
20
40
60
80
T (min)
TGA Kinetics Example
Wire Insulation Thermal
Stability
100
0.5%
1.0 %
2.5%
Conversion
95
5%
size: 60mg
atm.: N 2
90
10%
Weight (%)
10°C
85
5°C 2.0°C
1.0°C
20%
80
200 250 300 350 400 450 500 Temperature (°C)
TGA Kinetics - Heating Rate vs. Temperature
TEMPERATURE (°C)
260 280 300 320
340 360
DSC-TGA谱图综合解析

Conversion
95
5%
size: 60mg
90
atm.: N 2
10%
Weight (%)
10°C
85
5°C 2.0°C
1.0°C
20%
80
200 250 300 350 400 450 500 Temperature (°C)
TGA Kinetics - Heating Rate vs. Temperature
a. 使起始降解温度升高到240C b. 保证稳定时间为1000小时 c. 仅在惰性气氛中有效
案例3 ASB的热稳定性
背景:非极性聚合物如PP作印刷材料时需要极 性 化 。 用 ASB ( 三 -azidosulfonylbenzoic
COOH
acid )羧基化是途径之一。
目的:查明ASB本身及在PP上接枝后的热稳定性。
d Aexp( Ek )(1 )n
dt
RT
对等式两边进行微分,取T=TP,这时,
d dt
d dt
0
得到下式:
dT
Ek dt RTP2
A n(1
P
) n1
exp(
E RTP
)
n(1p )n1 与 无关,其值近似等于1,则上式简化为:
Ek
dt dT
k(T ) Aexp( E ) RT
Kissinger方程
固化模型:n级反应和自催化反应类型
n级反应:
d k(T )(1 )n
dt
自催化反应:
f ( ) (k1 k2 m )(1 )n
m和n为反应级数,k1和k2是具有不同活化能和指前因子的反应速率常数。
热分析谱图综合解析

稳定剂有时间限制,超过1000min失效。
Weight (wt%)
100.0
99.5
PP sample
250C
加稳定剂
等温TG
99.0
98.5
98.0
97.5
PP powder sample
无稳定剂
97.0
96.5 0.0 500 1000 1500 2000 2500 3000 3500 4000
热分解反应
一般化学反应的速度v与浓度、温度等有关,速度与浓 度的关系即质量作用定律:
v = k(1- )n
为失重率,1-为未失重率
某固态聚合物A热分解后生 成固态产物B和气态产物C W0: A起始重量 W∞:B的重量
样品的失重率可表示为:
W0 W W
W0 W W
(1)
由质量作用定律得到
d k(1- )n (2)
Weight (%)
100
90
80
70
12.5C/min
60
10C/min
7.5C/min
50
5C/min
2.5C/min
40
30
Nitrogen
47%
100 200 300 400 500 600 700
Temperature C
氮气中失重也分两个阶段。第一阶段也到430C,失重47% 第二阶段失重慢于第一阶段,至700C重量保持>30%
1.氧气促进降解 2.稳定剂仅在惰性环境中有效
结论
1. 聚丙烯热失重有两种主要机理:脱低聚物与降解 2. 纯PP的起始降解温度为190C 3. 恒温条件下线性降解,升温条件下降解加速 4. 氧气促进降解 5. 稳定剂的作用:
热重分析 图解

无定型的材料。淬火冷却后的聚酯再升温时、无规则的分子构型又可变为高
度规则的结晶排列,因此会出现冷结晶的放热峰。
经淬火处理后的聚酯的DSC图。
81℃的玻璃化转变温度;
137℃左右的放热峰,这是冷结晶峰;
250℃左右的结晶熔融吸热峰。
薄膜的拉伸加工条件:
拉伸温度必须选择在Tg以上和 冷结晶开始的温度(117℃)
10
DTA在微晶玻璃中的研究 晶化与核化
转变温度与晶化温度
核化温度:接近Tg温度 而低于膨胀软化点。 晶化温度:放热峰上升 点至峰顶温度范围。
核化峰不明显,且与晶 化峰分开较大,结晶较 细,可一步法析晶
核化峰和晶化放热峰较 明显,典型微晶玻璃差热 曲线,可采用二步法
11
晶化放热峰显著,但在 其峰前有一较大的吸热 峰(软化变形),制品 易变形,结晶能力不 好,性能不优良。 晶化放热峰明显,且有 两个以上的放热峰,如 核化峰不明显,可采取 一步法工艺;如核化峰 明显,可采用二步法处 理工艺,制品多为多晶 微晶玻璃
TS
= T0
−
RT02 x ΔH f
1 F
TS为样品瞬时的温度(K); T0为纯样品的熔点(K); R为气体常数; ΔHf为样品熔融热; x为杂质摩尔数; F为总样品在TS熔化的分数 1/F是曲线到达TS的部分面积 除以总面积的倒数
(2)比热测定
dH / dt = mC pdT / dt
式中,为热流速率(J·s-1);m为样品质量(g);CP为比热(J·g-1℃-1);为 程序升温速率(℃·s-1)
DTA面临的问题
定性分析,灵敏度不高
差示扫描量热分析法(DSC)
Differential Scaning Calarmeutry
谱图的综合解析

等离子体物理
等离子体物理中的谱图主要用于研究 等离子体的离子和电子成分、能量分 布以及与电磁场的相互作用等。
例如,通过微波干涉仪可以测量等离 子体的电磁波传播特性,通过质谱仪 可以分析等离子体的成分和化学性质 。
天体物理
天体物理中的谱图主要用于研究天体的化学组成、温度、 密度和运动状态等。通过分析天体发出的光谱,可以深入 了解天体的演化历程和宇宙的起源与演化。
谱图综合解析
contents
目录
• 谱图基础知识 • 谱图解析方法 • 谱图在信号处理中的应用 • 谱图在化学领域的应用 • 谱图在物理领域的应用 • 谱图解析的未来发展
01 谱图基础知识
谱图定义
谱图是一种用于表示数据点在多维空间中分布情况的图形表示方法。它将多维数 据点映射到二维平面上,通过颜色、形状、大小等视觉元素来表示数据的特征和 差异。
医学影像处理
利用谱图技术可以对医学影像进行增强和分析, 用于医学影像诊断和治疗。
04 谱图在化学领域的应用
分子光谱学
红外光谱
用于检测分子中的振动和转动能级跃迁,从而推断分子的结构和 化学键信息。
拉曼光谱
通过散射光的频率变化分析分子振动和转动信息,常用于研究分 子结构和化学反应过程。
紫外可见光谱
通过测量物质对紫外和可见光的吸收来分析分子中的电子跃迁, 用于研究分子结构和电子性质。
谱图应用领域
01
谱图在数据挖掘、机器学习 、生物信息学、社交网络分 析等领域有着广泛的应用。
02
03
04
在数据挖掘和机器学习中, 谱图可用于数据降维、聚类 分析、异常检测等任务。
在生物信息学中,谱图可 用于基因表达分析、蛋白 质相互作用分析等。