简易数字电压表设计报告

合集下载

简易电压表设计实验报告

简易电压表设计实验报告

数字电路与逻辑设计实验实验报告课题名称:简易数字电压表的设计学院:信息与通信工程学院班级:姓名:学号:班内序号:一.设计课题的任务要求设计并实现一个简易数字电压表,要求使用实验板上的串行AD 芯片ADS7816。

1. 基本要求:(1)测量对象:1~2 节干电池。

(2)AD 参考电压:2.5V。

(3)用三位数码管显示测量结果,保留两位小数。

(4)被测信号超过测量范围有溢出显示并有声音提示。

(5)按键控制测量和复位。

2. 提高要求:(1)能够连续测量。

(2)自拟其他功能。

二. 系统设计(包括设计思路、总体框图、分块设计)1. 设计思路本次实验利用ADS7816作为电压采样端口,FPGA作为系统的核心器件,用LED数码管进行已测电压值的显示,先把读取的12位串行二进制数据转换成并行的12位二进制数据,然后再把并行的12位二进制数据转换成便利于输出的3位十进制BCD码送给数码管,以显示当前测量电压值。

这些工作由ADS7816转换控制模块、数据转换控制模块、译码显示模块完成。

2. 总体框图3. 分块设计3.1 ADS7816转换控制模块(1)ADS7816工作原理在ADS7816的工作时序中,串行时钟DCLK用于同步数据转换,每位转换后的数据在DCLK 的下降沿开始传送。

因此,从Dout引脚接收数据时,可在DCLK的下降沿期间进行,也可以在DCLK的上升沿期间进行。

通常情况下,采用在DCLK的上升沿接收转换后的各位数据流。

CS 的下降沿用于启动转换和数据变换,CS有效后的最初1至2个转换周期内,ADS7816采样输入信号,此时输出引脚Dout呈三态。

DCLK的第2个下降沿后,Dout使能并输出一个时钟周期的低电平的无效信号。

在第4个时钟的上升沿,Dout开始输出转换结果,其输出数据的格式是最高有效位(B11位)在前。

当最低有效位(B0位)输出后,若CS变为高电位,则一次转换结束,Dout显三态。

(2)元件设计:en:A/D转换启动键,输入。

简易数字电压表单片机课程设计报告

简易数字电压表单片机课程设计报告

目录摘要及关键词 (2)一、实现方案 (3)1.硬件选择方案 (4)2.程序设计 (12)二、系统的测试与结果 (17)三、调试过程及问题解决方法 (18)四、课题设计的收获及心得 (18)参考文献 (18)摘要:本课题实验主要采用MCU-8088/8086H芯片、8255和ADC0809芯片来完成一个简易的数字电压表,能够对输入的0~5 V的模拟直流电压进展测量,并通过一个4位一体的7段LED数码管进展显示,测量误差约为0.02 V。

该电压表的测量电路主要由三个模块组成:A/D转换模块、数据处理模块及显示控制模块。

A/D转换主要由芯片ADC0809来完成,它负责把采集到的模拟量转换为相应的数字量再传送到数据处理模块。

数据处理那么由芯片MCU-8088/8086H来完成,其负责把ADC0809传送来的数字量经一定的数据处理,产生相应的显示码送到显示模块进展显示;另外它还控制着ADC0809芯片的工作。

显示模块主要由7段数码管及相应的驱动芯片(74HC245)组成,显示测量到的电压值。

关键词:简易数字电压表、ADC0809、MCU-8088/8086H。

.实现方案:本实验采用MCU-8088/8086H单片机芯片配合ADC0809模/数转换芯片构成一个简易的数字电压表,原理电路如图1-1所示。

该电路通过ADC0809芯片采样输入口IN0输入的0~5 V的模拟量电压,经过模/数转换后,产生相应的数字量经过其输出通道D0~D7传送给MCU-8088/8086H芯片的AD0~AD7。

MCU-8088/8086H负责把接收到的数字量经过数据处理送给8255的PA口在送给数码管的KD0~KD7,产生正确的7段数码管的显示段码。

同时8255的PB0~PB3还通过控制数码管的KL1~KL4产生位选信号,控制数码管的亮灭。

另外,还控制着ADC0809的工作。

图1-1 电路原理图图1-2 系统框图硬件选择方案:一.实验所需元器件:1. MCU-8088/8086H芯片1块2. ADC0809芯片1块3. 8255芯片1块4. 4位一体数码1个15.导线假设干课程设计---简易数字电压表〔二〕二.主要元器件的介绍课程设计---简易数字电压表〔三〕2)ADC0809芯片介绍1.模数转换芯片ADC0809:ADC0809是典型的8位8通道逐次逼近式A/D转换器,其实物如图1-3所示。

数字电压表实验报告

数字电压表实验报告

简易数字电压表设计报告姓名:***班级:自动化1202学号:****************:***2014年11月26日一.设计题目采用C8051F360单片机最小系统设计一个简易数字电压表,实现对0~3.3V 直流电压的测量。

二.设计原理模拟输入电压通过实验板PR3电位器产生,A/D转换器将模拟电压转换成数字量,并用十进制的形式在LCD上显示。

用一根杜邦实验线将J8口的0~3.3V输出插针与J7口的P2.0插针相连。

注意A/D转换器模拟输入电压的范围取决于其所选择的参考电压,如果A/D 转换器选择内部参考电压源,其模拟电压的范围0~2.4V,如果选择外部电源作为参考电压,则其模拟输入电压范围为0~3.3V。

原理框图如图1所示。

图1 简易数字电压表实验原理框图三.设计方案1.设计流程图如图2所示。

图2 简易数字电压表设计A/D转换和计时流程图2.实验板连接图如图3所示。

图3 简易数字电压表设计实验板接线图3.设计步骤(1)编写C8051F360和LCD初始化程序。

(2)AD转换方式选用逐次逼近型,A/D转换完成后得到10位数据的高低字节分别存放在寄存器ADCOH和ADC0L中,此处选择右对齐,转换时针为2MH Z。

(3)选择内部参考电压2.4V为基准电压(在实际单片机调试中改为3.311V),正端接P2.0,负端接地。

四、测试结果在0V~3.3V中取10组测试数据,每组间隔约为0.3V左右,实验数据如表1所示:显示电压(V)0.206 0.504 0.805 1.054 1.406实际电压(v)0.210 0.510 0.812 1.061 1.414相对误差(%) 1.905 1.176 0.862 0.659 0.565显示电压(V) 2.050 2.383 2.652 2.935 3.246实际电压(v) 2.061 2.391 2.660 2.943 3.253相对误差(%)0.421 0.334 0.301 0.272 0.215表1 简易数字电压表设计实验数据(注:其中显示电压指LCD显示值,实际电压指高精度电压表测量值)五.设计结论1.LCD显示模块的CPLD部分由FPGA充当,芯片本身自带程序,所以这个部分不用再通过quartus软件进行编程。

简易数字电压表课程设计

简易数字电压表课程设计

《数字逻辑》课程设计报告题目简易数字电压表学院(部)信息工程学院专业计算机科学与技术班级学生姓名学号6 月18日至6 月21 日共 1 周指导教师(签字)前言关于数字式简易电压测试仪的设计,我们提出了三种设计方法和思路,分别是ADC0809的A/D转换电路、LM331V/F转换电路、555定时器的V/F转换电路。

在具体操作中,经过对资料的收集、分析,研究与对比,最终选择了简单易懂,而且精度较高的方法,即LM331压频转换法。

本方法的基本理论是LM331的输入电压幅值与输出脉冲的频率成正比,再通过一系列的控制,计数,锁存,显示电路实现了对电压的一般测试与数字显示。

每学期的课程设计是综合检验我们所学知识的时候,在这期间我们需要将自己所学的知识进行综合,然后运用到我们所要完成的任务中。

此次课程设计我们完成的任务是制作简易数字电压表,我们在拿到这个题目时是没有一点思路的,在仔细研究和向老师请教后终于有了一点头绪,在小组两外两个成员杨羽丰和侯理想的共同努力下,我们初步实现了数字电压表的制作的方案制作,但是由于仿真软件中缺少我们所需元件的原因,我们的方案没能进行模拟仿真,这是此次课程设计的遗憾之处。

我们现在正在试图用另外的仿真软件进行此方案的仿真。

在本次课程设计过程中得到了各方面的支持和帮助,在此特别向数子电子技术老师表示由衷的感谢。

由于设计时间和水平的限制,如有不足之处,敬请指正!目录前言 (1)报告正文 (3)第一章:系统概述............................................................................错误!未定义书签。

1.1 设计目的 (4)1.2 数字电压表简介 (4)1.3方案分析 (4)1.4 V/F转换电路方案比较与论证 (4)1.4.1 采用ADC0809的A/D转换电路 (4)1.4.2 采用LM331V/F转换电路..................................................错误!未定义书签。

数字电压表设计实验报告

数字电压表设计实验报告

基于51单片机数字电压表设计实验报告一、设计要求用51单片机控制AD0808进行数模转换,当调节滑动变阻器RV1时,在数码管上显示当前数值,并用电压表测的此时电压与数码管显示电压对比,计算数字电压表的精度二、方案设计数字电压表设计框图 模拟信号可以通过改变滑动变阻器阻值以改变输入电压;A/D 转换将模拟量转换数字量,再送给单片机处理,处理的结果由数码管显示。

三、硬件设计模拟信号 51单片机 A/D 转换数码管显示proteus硬件仿真电路图四、软件设计(1)设计数码管显示电压2.50v程序设计如下(数码显示2.5)#include<reg51.h>void delayms(int x){int i,j;for(i=x;i>0;i--)for(j=110;j>0;j--);}void main(){while(1){P1=0x00;P2=0xfb;P1=0xdb;delayms(10);P1=0x00;P2=0xfd;P1=0x6d;delayms(10);P1=0x00;P2=0xfe;P1=0x3f;delayms(10);}}运行结果如下:(2)设计采集总程序老师参考程序如下:/******************************************************#include <reg51.h>int AD_Result=187;sbit AD_Start=P3^0;sbit AD_EOC=P3^1;sbit AD_OE=P3^2;Unsigned char DisCode[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};void DelayTime10ms(unsigned int DelayValue){unsigned int x,y;for(x=0;x<DelayValue;x++)for(y=0;y<1827;y++);}void Display(){char one,ten,hundred;AD_Result=AD_Result*5.0/255*100;one=AD_Result%10;ten=AD_Result/10%10;hundred=AD_Result/100;P2=0xfb;P1=DisCode[hundred]|0x80;DelayTime10ms(1);P2=0xfd;P1=DisCode[ten];DelayTime10ms(1);P2=0xfe;P1=DisCode[one];DelayTime10ms(1);}void AD_Test(){if(AD_EOC==1){AD_OE=1;AD_Result=P0;AD_OE=0;AD_Start=0;AD_Start=1;AD_Start=0;}}void main(){AD_OE=0;AD_Start=0;AD_Start=1;AD_Start=0;while(1){Display();AD_Test();}}************************************************************************/ 自己编写程序如下:#include <reg51.h>#include <intrins.h>#define uint unsigned int#define uchar unsigned charuchar A1=5,A2,A3;uchar adval;sbit ST=P3^0; //定义AD的启动start端口;sbit EOC=P3^1; //定义EOC引脚,EOC转换完成sbit OE=P3^2; //定义AD允许数据输出端uchar code table[10] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};void delayms(int x){ int i,j;for(i=x;i>0;i--)for(j=110;j>0;j--);}void display(){P2=0xff;P2=0xfb;P1=table[A1];delayms(2);P2=0xff;P2=0xfd;P1=table[A2];delayms(2);P2=0xff;P2=0xfe;P1=table[A3];delayms(2);}void AD_measure(){if(EOC==1){OE=1;adval=P0;OE=0;A1=adval/100;A2=adval%100/10;A3=adval%10;ST=0;ST=1;ST=0;}}void main(){OE=0;ST=0;ST=1;ST=0;while(1){AD_measure();display();}}五、总结在此次实验中遇到以下问题,首先是写显示程序,画原理图时把数码管接口顺序接反了导致显示结果出现乱码;其次在编写A/D转换程序时容易出错A/D0808引脚功能不会用;最后是显示整个量程数据时不容易理解,在这里要特别注意。

开题报告(简易数字电压表的设计)

开题报告(简易数字电压表的设计)
研究的主要内容:
1绪论
2数字仪表设计原理
3芯片介绍
4系统硬件设计
5系统软件设计与说明
6程序调试
7总结
8参考文献

预期目标:
简易数字电压表可以测量0~5V的8路输入电压值,并在四位LED数码管上轮流显示或单路选择显示
三、拟采用的研究方法、步骤
研究方法:
A/D转换模块:采用ADC0809转换芯片,其中A/D转换器用于实现模拟量数字量的转换,单电源供电。
目前数字电压表的内部核心部件是A/D转换器,转换器的精度很大程度上影响着数字电压表的准确度,本毕业设计A/D转换器采用ADC0809对输人模拟信号进行转换,控制核心AT89C51再对转换的结果进行运算和处理,最后驱动输出装置显示数字电压信号。
二、研究的主要内容和预期目标(研究的框架,要求列到一级提纲)
DVM的高速发展,使它已成为实现测量自动化、提高工作效率不可缺少的仪表,数字化是当前计量仪器发展的主要方向之一,而高准度的DC-DVC的出现,又使DVM进入了精密标准测量领域。随着现代化技术的不断发展,数字电压表的功能和种类将越来越强,越来越多,其使用范围也会越来越广泛。采用智能化的数字仪器也将是必然的趋势,它们将不仅能提高测量准确度,而且能提高电测量技术的自动化程序,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表(如:温度计、湿度计、酸度计、重量、厚度仪等),几乎覆盖了电子电工测量、工业测量、自动化仪表等各个领域。从而提高计量检定人员的工作效。
毕业论文(设计)开题报告
论文题目
简易数字电压表的设计
一、选题的背景与意义(本研究的现状综述、理论价值与实际意义)
电压表已经有100多年的发展历史,虽然不断改进与完善,仍然无法满足现代电子测量的需求,近二十年,微电子技术,计算机技术,集成技术,网络技术等高新技术得到了迅猛发展。这一背景和形势,不断地向仪器仪表提出了更高、更新、更多的要求,如要求速度更快、灵敏度更高、稳定性更好、样品量更少、遥感遥测更远距、使用更方便、成本更低廉、无污染等。同时也为仪器仪表科技与产业的发展提供了强大的推动力,并成了仪器仪表进一步发展的物质、知识和技术基础。数字电压表(Digital Voltmeter简称DVM)自1952年问世以来,显示出强大的生命力,现已成为在电子测量领域中应用最广泛的一种仪器。数字电压表可以显示清晰、直观,读数准确,准确度高,分辨力强,测量范围广,扩展能力强,测量速度快,输入阻抗高,集成度高,微功耗和抗干扰能力强等优点,独占电压表产品的熬头。

实验五 数字电压表设计报告

实验五   数字电压表设计报告

实验五数字电压表设计报告一、设计目的通过电子技术的综合设计,熟悉一般电子电路综合设计过程、设计要求、应完成的工作内容和具体的设计方法。

通过设计有助于复习、巩固以往的学习内容,达到灵活应用的目的。

设计完成后在实验室进行自行安装、调试,从而加强学生的动手能力。

在该过程中培养从事设计工作的整体概念。

二、设计要求1、利用所学的知识,通过上网或到图书馆查阅资料,设计三个实现数字万用表的方案;只要求写出实验原理,画出原理功能框图,描述其功能。

2、其中对将要实验方案3 1/2数字电压表,需采用中、小规模集成电路、MC14433 A/D转换器等电路进行设计,写出已确定方案详细工作原理,计算出参数。

3、技术指标:Ⅰ、测量直流电压1999-1V;199.9-0.1V;19.99-0.01V;1.999-0.001V;Ⅱ、测量交流电压1999-199V;Ⅲ、三位半显示;Ⅳ、比较设计方案与总体设计;Ⅴ、根据设计过程写出详细的课程设计报告;三、设计方案及原理数字显示电压表将被测模拟量转换为数字量,并进行实时数字显示。

该系统(如图1 所示)可采用MC14433—三位半A/D 转换器、MC1413七路达林顿驱动器阵列、CD4511 BCD到七段锁存-译码-驱动器、能隙基准电源MC1403和共阴极LED发光数码管组成。

本系统是三位半数字电压表,三位半是指十进制数0000~1999。

所谓3位是指个位、十位、百位,其数字范围均为0~9,而所谓半位是指千位数,它不能从0变化到9,而只能由0变到l,即二值状态,所以称为半位。

各部分的功能如下:三位半A/D转换器(MC14433):将输入的模拟信号转换成数字信号。

基准电源(MC1403):提供精密电压,供A/D 转换器作参考电压。

译码器(MC4511):将二—十进制(BCD)码转换成七段信号。

驱动器(MC1413):驱动显示器的a,b,c,d,e,f,g七个发光段,驱动发光数码管(LED)进行显示。

数字电压表设计与制作报告

数字电压表设计与制作报告

江阴职业技术学院项目设计报告项目:数字电压表设计与制作摘要本文介绍了一种基于单片机的简易数字电压表的设计。

该设计主要由三个模块组成:A/D转换模块,数据处理模块及显示模块。

A/D转换主要由芯片ADC0832来完成,它负责把采集到的模拟量转换为相应的数字量在传送到数据处理模块。

数据处理则由芯片AT89C51来完成,其负责把ADC0832传送来的数字量经过一定的数据处理,产生相应的显示码送到显示模块进行显示;此外,它还控制着ADC0832芯片工作。

该系统的数字电压表电路简单,所用的元件较少,成本低,且测量精度和可靠性较高。

此数字电压表可以测量0-5V的1路模拟直流输入电压值,并通过一个四位一体的7段数码管显示出来。

关键词单片机;数字电压表;A/D转换;AT89C51;ADC0832.AbstractThis paper which introduces a kind of simple digital voltmeter is based on single-chip microcontroller design. The circuit of the voltage meter is mainly consisted of three mould pieces: A/D converting mould piece, A/D converting is mainly completed by the ADC0832, it converts the collected analog data into the digital data and transmits the outcome to the manifestation controlling mould piece. Data processing is mainly completed by the AT89C51 chip, it processes the data produced by the ADC0832 chip and generates the right manifestation codes, also transmits the codes to the manifestation controlling mould piece. Also, the AT89C51 chip controls the ADC0832 chip to work.The voltmeter features in simple electrical circuit, lower use of elements, low cost, moreover, its measuring precision and reliability. The voltmeter is capable of measuring voltage inputs from 1 route ranging from 0 to 5 volt, and displaying the measurements though a digital code tube of 7 pieces of LED.Keywords Single-chip microcontroller; Digital voltmeter; A/Dconverter; AT89C51; ADC0832目录摘要 (II)Abstract (II)目录 (III)第一章绪论 (1)1.1 课题的应用场合 (1)1.2 系统的功能和性能指标 (1)第二章总体方案 (2)2.1 方案设计与选择 (2)2.2 系统的总体结构 (3)第三章硬件电路设计 (5)3.1 硬件电路框图 (5)3.2 主要器件选择与应用 (5)3.3 单片机小系统设计 (5)3.4 键盘与显示电路设计 (6)第四章软件设计 (9)4.1 软件组成框图 (9)4.2 软件流程图设计 (9)4.3 主要程序设计 (10)第五章系统调试 (12)5.1 调试的方法与工具 (13)5.2 Proteus仿真调试及效果 (13)5.3 软硬件联合调试 (13)5.4 系统运行 (14)5.5 调试心得 (14)第六章展望与拓展 (16)致谢 (16)参考资料 (16)附录 (17)附录Ⅰ系统电原理图 (17)附录Ⅱ系统仿真效果图 (18)附录Ⅲ样机实物图 (18)附录Ⅳ软件流程图 (19)附录Ⅴ源程序清单 (20)第一章绪论1.1 课题的应用场合在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要--------------------------------------------------------2 1.数字电压表的简介------------------------------------------31.1数字电压表的发展--------------------------------------31.2数字电压表的分类--------------------------------------42.设计的目的------------------------------------------------53.设计的内容及要求------------------------------------------54.数字电压表的基本原理--------------------------------------54.1数字电压表各模块的工作原理----------------------------54.2数字电压表各模块的功能--------------------------------54.3数字电压表的工作过程----------------------------------65.实验器材--------------------------------------------------76.电路设计实施方案------------------------------------------76.1.实验步骤---------------------------------------------76.2各个模块设计------------------------------------------86.2.1 基准电压模块-----------------------------------86.2.2 3 1/2位A/D电路模块---------------------------106.2.3 字形译码驱动电路模块--------------------------126.2.4 显示电路模块----------------------------------136.2.5 字位驱动电路模块------------------------------167.总结-----------------------------------------------------17 参考文件---------------------------------------------------18 附录-------------------------------------------------------19本文介绍了一种简易数字电压表的设计。

该设计主要由五个模块组成:A/D转换模块、译码器模块、数据处理模块、驱动模块及显示模块。

A/D转换主要由芯片MC14433来完成,它负责把采集到的模拟量转换为相应的数字量在传送到数据处理模块。

数据处理则由芯片CD4511来完成,其负责把MC14433传送来的数字量经过一定的数据处理,产生相应的显示码送到显示模块进行显示;该系统的数字电压表电路简单,所用的元件较少,成本低,且测量精度和可靠性较高。

此数字电压表可以测量0-1.999V的1路模拟直流输入电压值,并通过一个四位一体的7段数码管显示出来。

关键词:数字电压表、A/D转换、MC1403、MC14433、CD4511、MC14433、LEDAbstractThis paper introduces the design of a simple digital voltage meter. The design consists of five modules: A/D module, decoding module, data processing module, driver module and display module. A/D conversion is mainly completed by the MC14433, it is responsible to collect the analog conversion to digital quantity corresponding to the transmitted to the data processing module. Data processing is mainly completed by the CD4511 chip, which is responsible for the digital MC14433 transmission after data processing, the generated code to display the display module to display the corresponding; the system of the digital voltage meter circuit is simple, the use of fewer components, low cost, and high measuring accuracy and reliability. The digital voltmeter to measure the 1 0-1.999V DC analog input voltage value, and displayed on the 7 segment digital tube is an integration of the four.Keywords:Digital voltage meter, A/D conversion, MC1403, MC14433, CD4511, MC14433, LED一、数字电压表简介:1.1数字电压表的发展数字电压表出现在50年代初,60年代末发起来的电压测量仪表,简称DVM。

它采用的是数字化测量技术,把连续的模拟量,也就是连续的电压值转变为不连续的数字量,加以数字处理然后再通过显示器件显示。

这种电子测量的仪表之所以出现,一方面是由于电子计算机的应用逐渐推广到系统的自动控制信实验研究的领域,提出了将各种被观察量或被控制量转换成数码的要求,即为了实时控制及数据处理的需要;另一方面,也是电子计算机的发展,带动了脉冲数字电路技术的进步,为数字化仪表的出现提供了条件。

所以,数字化测理仪表的产生与发展与电子计算机的发展是密切相关的;同时,为革新电子测量中的烦锁和陈旧方式也催促了它的飞速发展,如今,它又成为向智能化仪表发展的必要桥梁。

如今,数字电压表已绝大部分取代了传统的模拟指针式电压表。

因为传统的模拟指针式电压表功能单一、精度低,读数的时候也非常不方便,很容易出错。

而采用单片机的数字电压表由于测量精度高、速度快,读数时也非常方便,抗干扰能力强,可扩展性强等优点已被广泛的应用于电子及电工的测量、工业自动化仪表、自动测试系统等智能化测量领域,显示出强大的生命力。

数字电压表最初是伺服步进电子管比较式,其优点是准确度比较高,但是采样速度慢,重量达几十公斤,体积大。

继之出现了斜波式电压表,它的速度方面稍有提高,但是准确度低,稳定性差,再后来出现了比较式仪表改进逐次渐近式结构,它不仅保持了比较式准确度高的优点,而且速度也有了很大的提高,但它有一缺点是抗干扰能力差,很容易受到外界各种因素的影响。

随后,在斜波式的基础上双引伸出阶梯波式,它的唯一的进步是成本降低了,可是准确宽,速以及抗干扰能力都未能提高。

而现在,数字电压表的发展已经是非常的成熟,就原理来讲,它从原来的一,二种已发展到多种,在功能上讲,则从测单一参数发展到能测多种参数;从制作元件来看,发展到了集成电路,准确度已经有了很大的提高,精度高达1NV;读数每秒几万次,而相对以前,它的价格也有了降低了很多。

1.2数字电压表的分类目前实现电压数字化测量的方法仍然模-数(A/D)转换的方法,而数字电压表种类繁多,型号新异,目前国际仍未有统一的分类方法。

而常用的分类方法有如下几种:1.按用途来分:有直流数字电压表,交、直流数字电压表,交直流万用表等。

2.按显示位数来分:有4位,5位,6位,7位,8位等。

3.按测量速度来分:有低准确度,中准确度,高准确度等。

4.按测量速度来分:有低速,中速,高速,超高速等。

但在日常生活中,数字电压表一般是按照原理不同进行分类的,目前大致分为以下几类:比较式,电压——时间变换式,积分式等。

在电量的测量中,电压、电流和频率是最基本的三个被测量。

其中,电压量的测量最为经常。

随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。

另外,由于数字式仪器具有读数准确方便、精度高、误差小、灵敏度高和分辨率高、测量速度快等特点而倍受用户青睐,数字式电压表就是基于这种需求而发展起来的,是一种必不可少的电子测量仪表。

二、实验目的(1)掌握数字电压表的设计、组装与调试方法.(2)熟悉集成电路MCl4433,MCl413,CD451l 和MCl403 的使用方法,并掌握其工作原理。

三、设计的内容与要求数字电压表是一种直接用数字显示的电压测量仪器。

本课题要求设计制作一个3 1/2位的数字电压表.所谓3 1/2位是能测量显示出十进数0000~1999,即个位,十位,百位的范围为0~9.而千位为0和1两种状态,称为半位.四、数字电压表的基本原理4.1数字电压表各模块的工作原理数字电压表将被测模拟量转换为数字量,并进行实时数字显示。

该系统(如图1 所示)可采用MC14433——3 1/2 位A/D 转换器、MC1413 七路达林顿驱动器阵列、CD4511 BCD到七段锁存-译码-驱动器、能隙基准电源MCl403 和共阴极LED 发光数码管组成。

本系统是3 1/2 位数字电压表,3 1/2 位是指十进制数0000~1999。

所谓3 位是指个位、十位、百位,其数字范围均为0~9,而所谓半位是指千位数,它不能从0 变化到9,而只能由0 变到l,即二值状态,所以称为半位。

4.2数字电压表各模块的功能3 1/2 位A/D 转换器(MC14433):将输入的模拟信号转换成数字信号。

基准电源(MC1403):提供精密电压,供A/D 转换器作参考电压。

译码器(MC4511):将二—十进制(BCD)码转换成七段信号。

驱动器(MC1413):驱动显示器的a,b,c,d,e,f,g 七个发光段,驱动发光数码管(LED)进行显示。

显示器:将译码器输出的七段信号进行数字显示,读出A/D 转换结果。

相关文档
最新文档