分子间作用力和氢键

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子间作用力和氢键

一、分子间作用力

NH3、Cl2、CO2等气体,在降低温度、增大压强时,能凝结成液态或固态。在这个过程中,气体分子间的距离不断缩短,最后由不规则运动的混乱状态转变为有规则排列的固态。这说明物质的分子之间必定存在着某种作用力,能把它们的分子聚集在一起。这种作用力叫做分子间作用力,又称范德华力。

我们知道,化学键是原子结合成分子时,相邻原子间强烈的相互作用,而分子间作用力与化学键比起来要弱得多。分子间作用力随着分子极性和相对分子质量的增大而增大。

分子间作用力的大小,对物质的熔点、沸点、溶解度等有影响。对于组成和结构相似的物质来说,相对分子质量越大,分子间作用力越大,物质的熔点、沸点也越高。例如,卤素单质,随着相对分子质量的增大,分子间作用力增大,它们的熔点、沸点也相应升高(见图1-8),四卤化碳也有类似的情形(见图1-9)。

二、氢键

前面已介绍过某些结构相似的物质随着相对分子质量的增大分子间作用力增大,以及它们的熔点和沸点也随着升高的事实。但是有些氢化物的熔点和沸点的递变与以上事实不完全符合。让我们来看一下图

1-10。从图上可以看出,NH3、H2O和HF的沸点反常。例如,HF的沸点按沸点曲线的下降趋势应该在-90℃以下,而实际上是20℃;H2O的沸点按沸点曲线下降趋势应该在-70℃以下,而实际上是100℃。

为什么HF、H2O和NH3的沸点会反常呢?这是因为它们的分子之间存在着一种比分子间作用力稍强的相互作用,使得它们只能在较高的温度下才能汽化。经科学研究证明,上述物质的分子之间存在着的这种相互作用,叫做氢键。

氢键是怎样形成的呢?现在以HF为例来说明。在HF分子中,由于F 原子吸引电子的能力很强,H——F键的极性很强,共用电子对强烈地偏

向F原子,亦即H原子的电子云被F原子吸引,使H原子几乎成为“裸露”的质子。这个半径很小、带部分正电荷的H核,与另一个HF分子带部分负电荷的F原子相互吸引。这种静电吸引作用就是氢键。它比化学键弱得多,但比分子间作用力稍强。通常我们也可把氢键看作是一种比较强的分子间作用力。分子间形成的氢键会使物质的熔点和沸点升高,这是因为固体熔化或液体汽化时必须破坏分子间的氢键,从而需要消耗较多能量的缘故。为了与化学键相区别,在图1-11中用“…”来表示氢键。

水结冰时体积膨胀,密度减小,是水的另一反常性质,也可以用氢键来解释。在水蒸气中水是以单个的H2O分子形式存在;在液态水中,经常以几个水分子通过氢键结合起来,形成(H2O)n(见图1-12);在固态水(冰)中,水分子大范围地以氢键互相联结,形成相当疏松的晶体,从而在结构中有许多空隙,造成体积膨胀,密度减小,因此冰能浮在水面上(见图1-13)。水的这种性质

对于水生动物的生存有重要的

作用,如DNA的结构和生理活到

性都与氢键的作用有关等。

相关文档
最新文档