电力系统中性点接地方式与绝缘配合

合集下载

电力系统的中性点接地方式

电力系统的中性点接地方式

电力系统的中性点接地方式电力系统中发电机绕组通常用Y联结、变压器高压绕组通常Y联结,Y联结绕组中性点统称电力系统中性点。

中性点接地方式有直接接地、不接地和经消弧线圈接地。

中性点接地方式要综合考虑电力系统的过电压与绝缘、继电保护与自动装置的配置、短路电流、供电可靠性。

中性点直接接地方式,系统发生单相接地故障时短路电流很大;中性点不接地和中性点经消弧线圈接地方式,系统发生单相接地故障时短路电流小。

1.中性点直接接地系统110kV及以上电网采用中性点直接接地方式。

实际运行时电网中性点并非全部同时接地,只有一部分接地,即合上中性点接地刀开关,其余则不接地即拉开其中性点接地刀开关。

系统单相接地时短路电流在合适范围,满足继电保护动作灵敏度需要,但不能过大。

一般单相短路电流不大于同一地点三相短路电流。

此系统正常运行时,系统中性点没有入地电流或只有极小的三相不平衡电流。

当发生单相接地时,短路电流足够大,继电保护装置动作,迅速切除故障电路;系统非故障部分仍正常运行。

接地故障线路停电,可在线路加装自动重合闸装置,如发生瞬时性接地故障,重合闸成功,停电约0.5s,系统供电可靠。

单相接地电流较大,对邻近通信线路电磁干扰较强。

我国380/220V三相四线系统,中性点直接接地。

2.中性点不接地系统我国3kV、6kV、10kV、35kV系统,当单相接地时根据电容电流中性点不接地,具体规定为3~6kV电网单相接地电容电流不大于30A;10kV电网单相接地电容电流不大于20A;35kV电网单相接地电容电流不大于10A。

因中性点未接地,当发生单相接地时,只能通过线路对地电容构成单相接地回路,故障点流过很小的容性电流(电弧)自行熄灭。

同时,系统三个线电压对称性未变化,用电设备正常工作,可靠性高。

规程规定,中性点不接地系统发生单相接地故障可继续运行2h,在2h内找到接地点并消除。

单相接地时电容电流近似计算公式如下:对架空线IC=UL/350;对电缆IC=UL/10。

中性点接地方式

中性点接地方式

1 中性点直接接地中性点直接接地方式,即是将中性点直接接入大地。

该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。

这种大电流接地系统,不装设绝缘监察装置。

中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。

中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。

当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。

中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。

此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。

对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。

其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。

2 中性点不接地中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。

适用于农村10kV架空线路为主的辐射形或树状形的供电网络。

该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。

中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。

中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。

在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。

由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。

电力系统中性点接地方式与绝缘配合

电力系统中性点接地方式与绝缘配合

文献综述题目:电力系统中性点接地方式与绝缘配合电力系统的中性点接地方式设计要结合系统的安全运行、供电可靠性、过电压和绝缘的配合、继电保护、接地设计等多个因素来考虑。

而且对通信和电子设备的电子干扰、人身安全等方面有重要影响。

电力系统中性点接地方式的确定是一个复杂的系统问题。

应该结合不同地区、不同电网、不同发展阶段和不同的用户统筹考虑。

1.中性点不接地系统中性点不接地方式,即中性点对地绝缘,它具有结构简单,运行方便,不需任何附加设备,投资省的优点。

适用于农村10KV架空线路为主的辐射形或树状形的供电网络。

当一相发生接地故障时,其线电压的大小和相位差仍维持不变。

同时,这种系统中相对地的绝缘水平是根据线电压设计的,虽然未故障相对地的电压升高障时可以继续工作一段时间,供电可靠性高。

若是架空线路由于雷击引起的绝缘闪络,则绝缘可能自行恢复。

但是,不允许长期工作,因为长期运行时可能引起未故障相绝缘薄弱的地方损坏而造成相间短路。

为此,在这种系统中,一般应装设专门的绝缘检查装置或继电保护装置,当发生单相接地时,发出信号通知工作人员,工作人员得到信号后,应采取措施尽快找出故障点,并在最短时间内将故障消除。

中性点不接地系统中发生单相接地故障时,一般允许继续工作最多不超过两个小时。

但是随供电线路长度的增加和出现大量的电缆线路时,系统总的接地电容电流较大,在接地处引起的电弧就很难自行熄灭。

在接地处还可能出现所谓间隙电弧,即周期的熄灭与重燃的电弧。

间歇电弧将引起相对地的过电压,对设备的绝缘造成威胁。

优点:系统发生单相接地故障时,三相用电设备仍能正常工作,允许暂时继续运行两小时之内,因此供电可靠性高。

缺点:系统发生单相接地故障时,其他两条完好相对地电压升到线电压,是2.中性点经消弧线圈接地中性点经消弧线圈接地系统,即在中性点和大地之间接入一个电感消弧线圈。

消弧线圈主要有带气隙的铁芯和套在铁芯上的绕组组成,绕组的电阻很小,电抗很大。

3~66kV电网中性点接地方式解析

3~66kV电网中性点接地方式解析

3~66kV电网中性点接地方式解析从3-66kV电网供电的安全可靠性、电气设备的绝缘水平以及对通信系统的干扰等方面,综合分析、解读了中性点电阻接地与中性点谐振(消弧线圈)接地等系统以及中性点不接地(绝缘)系统的优缺点。

标签:中性点接地方式;过电压;电阻0 引言3~66kV电网中性点接地方式是涉及电力系统诸多方面的综合性技术问题。

本文对3~66kV配电网历史上使用的接地方式的优缺点进行了比对分析,同时简要介绍了我国电气设备的绝缘配合情况。

1 电力系统中性点接地系统介绍国家曾出台有关规定:对电力系统内中性接地方式划分成小接地短路系统和大接地短路电流系统2类,后期由于对电流大小的界定关系不好实施,从而改成中性点有效接地和中性点非有效接地两大系统[1]。

通常在电力系统内,中性点非有效接地的方式主要包括不接地(绝缘)和经消弧线圈(谐振)接地。

消弧线圈接地系统使用历史。

早先一些发达国家的配电网正式不再使用消弧线圈进行接地,一些国家也对配电网中的中性点减少了谐振接地的方式,这些方式对当时的接地方式产生很大影响,后经分析这并不是由于谐振接地方式不好而造成的。

(1)根据升压的要求和需要。

根据绝缘水平的原因,同时满足降低过电压的需要,需要把中性点从不接地和谐振接地系统更改为经电阻接地系统。

(2)复杂电网中的使用消弧线圈效果不佳。

(3)电网对地电容电流越大,消弧线圈容量越大,设备不经济。

2 各种接地系统的过电压情况以及我国电气设备的绝缘水平DL_T_620-1997《交流电气装置的过电压保护和绝缘配合》中,4.2.8 66kV 及以下系统发生单相间歇性电弧接地故障时,可产生过电压,过电压的高低随接地方式不同而异。

一般情况下最大过电压不超过下列数值:不接地系统 3.5p.u.消弧线圈接地系统 3.2p.u.电阻接地系統 2.5p.u.GB_311~1-1997《高压输变电设备的绝缘配合》规定,我国3~66kV输变电设备短时工频耐受过电压倍数Kp(P.U)如表1所示。

第6章 电力系统的绝缘配合

第6章  电力系统的绝缘配合

第6章电力系统的绝缘配合6.1 电力系统的绝缘配合一、绝缘配合1、绝缘配合:是指合理地确定系统中各个设备的绝缘水平,使综合性能、价格最优。

2、考虑因素:1)作用于电气设备上的各种电压:长期工作电压、内部过电压、外部过电压。

在某一额定电压下,绝缘水平U越小投资越省,但可能导致频繁的闪络和绝缘击穿;绝缘水平U越大,则投资大大增加,造成浪费。

2)保护装置的性能。

如改善避雷器的性能和断路器的性能以限制过电压的数值,对于降低系统绝缘水平意义非常重大。

3)设备绝缘承受各种电压的能力。

如改善电气设备绝缘结构和绝缘材料的电气性能。

4)系统中性点接地方式。

中性点不接地系统的长期工作电压为线电压;中性点直接接地系统的长期工作电压为相电压。

3、绝缘配合的根本任务是:正确处理过电压和绝缘这一矛盾,以达到优质、安全、经济供电的目的。

绝缘配合的基本原则是:综合考虑电气设备在系统中可能承受的各种作用电压、保护装置的特性和设备绝缘对各种作用电压的耐受特性,合理地确定设备必要的绝缘水平,以使设备的造价、维护费用和设备绝缘故障引起的事故损失,达到经济上和安全运行上总体效益最高目的。

绝缘配合的核心问题是:确定各种电气设备的绝缘水平,它是绝缘设计的首要前提。

二、绝缘水平绝缘水平:指电气设备的绝缘可以承受的试验电压值,在此值下设备不发生火花放电闪络或击穿。

试验电压是模拟各种实际电压的,故有以下三种:工频交流试验电压、雷闪冲击试验电压、操作冲击试验电压。

绝缘水平的确定:一般情况下,绝缘水平由长期工作电压、内部过电压、外部过电压中最严格的一个决定。

220KV及以下系统,绝缘水平主要由大气过电压决定。

330KV及以上超高压系统,在绝缘配合中,操作过电压起主导作用。

污秽严重地方的电网处绝缘水平主要由系统最大运行电压决定。

三、绝缘配合的方法:惯用法、统计法、简化统计法。

我国主要采用惯用法。

惯用法:首先确定设备上可能出现的最大过电压Umax,再乘以安全系数K,使之等于设备绝缘的最小耐受水平U W。

电力系统中性点接地方式

电力系统中性点接地方式

电力系统中性点接地方式概述在电力系统中,中性点接地方式是指将电力系统中的中性点直接接地或通过特定的接地装置接地。

中性点接地方式的选择对电力系统的平安运行和人身平安至关重要。

本文将介绍电力系统中性点接地方式的常见类型和其特点。

直接接地方式直接接地方式是最常见的中性点接地方式之一。

它通过将电力系统中的中性点直接接地,使中性点与地之间形成低阻抗的电气连接。

直接接地方式有以下特点:1.简单:直接接地方式的接地装置相对简单,仅需将中性点与地之间连接即可。

2.易于检测故障:由于中性点直接接地,当系统中发生接地故障时,电流会通过接地装置流入地,形成接地电流,容易被检测到。

3.易产生大地电流:直接接地方式容易导致大地电流的产生,对于电力系统的线路和设备会产生一定的烧毁和损坏风险。

4.容易产生人身伤害:直接接地方式下,接地电阻较低,因此会产生较大的接触电压,存在人身触电的风险。

直接接地方式适用于施工本钱低、电力系统规模较小、对电网故障检测要求较高的场景。

绝缘中性点接地方式绝缘中性点接地方式是在电力系统中采用绝缘装置将中性点与地之间隔离,以实现中性点接地的方式。

绝缘中性点接地方式有以下特点:1.较低的接触电阻:绝缘中性点接地方式中,中性点与地之间存在绝缘装置,可以降低接地电阻,减小接触电压。

2.减少地电流:由于绝缘装置的隔离作用,绝缘中性点接地方式可以降低地电流的产生,减小对电力系统的烧毁和损坏风险。

3.难以检测故障:由于中性点与地之间的隔离,当系统发生接地故障时,可能无法轻易检测到接地电流,增加了故障诊断的难度。

绝缘中性点接地方式适用于电力系统规模较大、对地电流要求较低、对接触电压要求较高的场景。

高阻中性点接地方式高阻中性点接地方式是在电力系统中采用高阻抗装置将中性点与地之间接地的方式。

高阻中性点接地方式有以下特点:1.高接地电阻:高阻中性点接地方式中,通过引入高阻抗装置,使中性点与地之间形成高阻抗连接,有效提高了接地电阻。

第08章 电力系统中性点接地方式

第08章  电力系统中性点接地方式

第八章电力系统中性点接地方式8-1 概述电力系统三相交流发电机、变压器接成星形绕组的公共点,称为电力系统中性点。

电力系统中性点与大地间的电气连接方式,称为电力系统中性点接地方式。

我国电力系统广泛采用的中性点接地方式主要有三种,即:不接地,经消弧线圈接地和直接接地。

根据主要运行特征,可将电力系统按中性点接地方式归纳为两大类:(1)非有效接地系统或小接地电流系统。

含中性点不接地、经消弧线圈接地及经高阻抗接地的系统。

通常这类系统有X0X1>3,R0X1>1。

当发生单相接地故障时,接地电流被限制到较小数值,非故障相的对地稳态电压可能达到线电压。

(2)有效接地系统或大接地电流系统。

含中性点直接接地及经低阻抗接地的系统。

通常这类系统有X0X1≤3,R0X1≤1。

当发生单相接地故障时,接地电流有较大数值,非故障相的对地稳态电压不超过线电压的80%。

电力系统的中性点接地方式是一个涉及到多方面的综合性技术问题。

包括:短路电流大小、供电可靠性、过电压大小及绝缘配合、继电保护合自动装置的配置及动作状态、系统稳定、通信干扰等等。

8-2 中性点非有效接地系统一、中性点不接地系统中性点不接地又叫做中性点绝缘。

在这种系统中,中性点对地的电位是不固定的,在不同的情况下,它可能具有不同的数值。

中性点对地的电位偏移称为中性点位移。

中性点位移的程度,对系统绝缘的运行条件来说是至为重要的。

1.中性点不接地系统的正常运行中性点不接地系统正常运行时,中性点的对地电位,称为不对称电压,用U no表示。

U nO =−UU Y U +U V Y V +U W Y W Y U +Y V +Y W(8−2) 取UU 为参考量,即 UU =U U =U ph , U V =a 2U ph , U W =aU ph (8−3) 其中:a =e j120°=1+j 3, a 2=e −j120°=−1−j 3,1+a +a 2=0 考虑到三相泄漏电导g U 、g V 、g W 大致相同,以g 表示: U nO =−U ph ρ1(8−4) ρ=C U +a 2C V +aC W U V W (8−5) d =3g U V W(8−6) ρ近似地代表中性点不接地系统正常运行时不对称电压UnO 与相电压U ph 的比值(因d ≪1),称为系统的不对称度。

交流电气装置的过电压保护和绝缘配合设计系统中性点接地方式和电气装置绝缘上作用的电压

交流电气装置的过电压保护和绝缘配合设计系统中性点接地方式和电气装置绝缘上作用的电压

交流电气装置的过电压保护和绝缘配合设计系统中性点接地方式和电气装置绝缘上作用的电压3 系统中性点接地方式和电气装置绝缘上作用的电压3.1 系统中性点接地方式3.1.1 中性点有效接地方式应符合下列规定:1 110kV~750kV系统中性点应采用有效接地方式。

在各种条件下系统的零序与正序电抗之比(X0/X1)应为正值并且不应大于3,而其零序电阻与正序电抗之比(R0/X1)不应大于1;2 110kV及220kV系统中变压器中性点可直接接地;部分变压器中性点也可采用不接地方式;3 330kV~750kV系统变压器中性点应直接接地或经低阻抗接地。

3.1.2 中性点非有效接地方式可分为中性点不接地方式、中性点低电阻接地方式、中性点高电阻接地方式和中性点谐振接地方式。

3.1.3 中性点不接地方式应符合下列规定:1 35kV、66kV系统和不直接连接发电机,由钢筋混凝土杆或金属杆塔的架空线路构成的6kV~20kV系统,当单相接地故障电容电流不大于10A时,可采用中性点不接地方式;当大于10A又需在接地故障条件下运行时,应采用中性点谐振接地方式。

2 不直接连接发电机、由电缆线路构成的6kV~20kV系统,当单相接地故障电容电流不大于10A时,可采用中性点不接地方式;当大于10A又需在接地故障条件下运行时,宜采用中性点谐振接地方式。

3 发电机额定电压6.3kV及以上的系统,当发电机内部发生单相接地故障不要求瞬时切机时,采用中性点不接地方式时发电机单相接地故障电容电流最高允许值应按表3.1.3确定;大于该值时,应采用中性点谐振接地方式,消弧装置可装在厂用变压器中性点上或发电机中性点上。

表3.1.3 发电机单相接地故障电容电流最高允许值注:*对额定电压为13.80kV~15.75kV的氢冷发电机,电流允许值为2.5A。

4 发电机额定电压6.3kV及以上的系统,当发电机内部发生单相接地故障要求瞬时切机时,宜采用中性点电阻接地方式,电阻器可接在发电机中性点变压器的二次绕组上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文献综述
题目:电力系统中性点接地方式与绝缘配合
电力系统的中性点接地方式设计要结合系统的安全运行、供电可靠性、过电压和绝缘的配合、继电保护、接地设计等多个因素来考虑。

而且对通信和电子设备的电子干扰、人身安全等方面有重要影响。

电力系统中性点接地方式的确定是一个复杂的系统问题。

应该结合不同地区、不同电网、不同发展阶段和不同的用户统筹考虑。

1.中性点不接地系统
中性点不接地方式,即中性点对地绝缘,它具有结构简单,运行方便,不需任何附加设备,投资省的优点。

适用于农村10KV架空线路为主的辐射形或树状形的供电网络。

当一相发生接地故障时,其线电压的大小和相位差仍维持不变。

同时,这种系统中相对地的绝缘水平是根据线电压设计的,虽然未故障相对地的电压升高
障时可以继续工作一段时间,供电可靠性高。

若是架空线路由于雷击引起的绝缘闪络,则绝缘可能自行恢复。

但是,不允许长期工作,因为长期运行时可能引起未故障相绝缘薄弱的地方损坏而造成相间短路。

为此,在这种系统中,一般应装设专门的绝缘检查装置或继电保护装置,当发生单相接地时,发出信号通知工作人员,工作人员得到信号后,应采取措施尽快找出故障点,并在最短时间内将故障消除。

中性点不接地系统中发生单相接地故障时,一般允许继续工作最多不超过两个小时。

但是随供电线路长度的增加和出现大量的电缆线路时,系统总的接地电容电流较大,在接地处引起的电弧就很难自行熄灭。

在接地处还可能出现所谓间隙电弧,即周期的熄灭与重燃的电弧。

间歇电弧将引起相对地的过电压,对设备的绝缘造成威胁。

优点:系统发生单相接地故障时,三相用电设备仍能正常工作,允许暂时继续运行两小时之内,因此供电可靠性高。

缺点:系统发生单相接地故障时,其他两条完好相对地电压升到线电压,是
2.中性点经消弧线圈接地
中性点经消弧线圈接地系统,即在中性点和大地之间接入一个电感消弧线圈。

消弧线圈主要有带气隙的铁芯和套在铁芯上的绕组组成,绕组的电阻很小,电抗很大。

消弧线圈的电感,可用改变接入绕组的匝数加以调节。

显然,在正常的运行状态下,由于系统中性点的电压三相不对称电压数值很小,所以通过消弧线圈的电流也很小。

采用过补偿方式,即使系统的电容电流突然的减少(如某回线路切除)也不会引起谐振,而是离谐振点更远。

采用中性点经消弧线圈接地后,发生单相接地故障时,流经消弧线圈的电流为电感性电流,此电流和系统中的接地电容电流相互抵消,即可减小经故障点的电流。

所以,一般情况下,接地电弧不能重燃或根本不产生。

自动跟踪补偿消弧线圈装置可以自动适时地监测跟踪电网运行方式的变化,快速地调节消弧线圈的电感值,以跟踪补偿变化的电容电流,使失谐度始终处于规定的范围内。

大多数自动跟踪消弧装置在可调的电感线圈下并串有阻尼电阻,它可以限制在调节电感量的过程中可能出现的中性点电压升高,以满足规程要求不超过相电压的15%。

当电网发生永久性单相接地故障时,阻尼电阻可由控制器将其短路,以防止损坏。

自动跟踪补偿消弧线圈按改变电感方法的不同,大致可分为调匝式、调气隙式、调容式、调直流偏磁式、可控硅调节式等。

优点:除中性点不接地系统的优点外,还可以减少接地电流。

缺点:与中性点不接地系统类同,对绝缘要求高,增加了绝缘费用。

3.中性点直接接地
随着电力系统电压等级的增高和系统容量增大,设备绝缘费用所占比重越来越大。

中性点不接地方式的优点已居于次要地位,主要考虑降低绝缘投资。

所以,100KV以上系统均采用中性点直接接地方式。

对于高压系统,如110KV以上的供电系统,电压高,设备绝缘考虑成本不
会做得很大,如果中性点不接地,当单相接地时,为接地的两相就要能够承受
倍的过电压,瓷绝缘子体积就要增大近一倍,不但制造起来不容易,安装也是问题,会使设备投资大大增加,另外中性点直接接地系统,发生单相接地故障后,要立即跳闸,对线路的绝缘水平要求也就相应的较低。

因而从投资的经济性考虑,在110KV以上供电系统,多采用中性点直接接地方式。

优点:发生单相接地时,其他两相对地电压不升高,因此可降低绝缘费用,
保证安全。

缺点:发生单相接地故障时,短路电流大,要迅速切除故障部分,从而供电可靠性差。

参考文献
[1]陈南定.电力网中性点接地方式可行性分析[J].电气应用,2010,29(22):24-30.
[2]曹伟,邱波.中性点接地方式分析与比较[J].科技信息,2008,11:247.。

相关文档
最新文档