氮气辅助成型技术讲义共48页

合集下载

经典氮气辅助成型技术讲义.ppt

经典氮气辅助成型技术讲义.ppt

輸出控制壓力
Output Control Pressure (bar/psi)
氣輔控制迴路
Gas Control Circuit
GCU-1 7/100~350/5000
1
GCU-2 7/100~350/5000
2
GCU-3 7/100~350/5000
3
GCU-4 7/100~350/5000
4
优选文档
14
進氣位置 (一) 由射嘴進氣
資料來源: 〝Gas-assisted Injection Molding Design and Processing Guide for GEPLASTICS Resins〞---GE PLASTICS
优选文档
• 須用特製的切斷式 (shut-off)噴嘴
• 所有氣道須和料頭 連 接,氣道設計易 受限制
氣輔控制在射出成型的應用
Gas-Assistant Control in the Application
of Injection Mold Process
報 告 人:林 進 生 J a s o n L i n
資 料 來 源:富 益 成 科 技 有 限 公 司
( V i t e k T e c h. , L T D , B. C. C A N A D A )
正常保養與使用情況下,可無限期使 用(壹年僅需更換兩支前置過濾器)
使用16~18個月後性能下降30%,24個 月後即須更換分子篩,而更換分子篩 的費用約為機台售價的1/3~1/2
一般在99%下為3:1
99%下為4.5:1
35℃
由於須使水分子蒸發為最小直徑,所 以必須要求至少在50℃以上


容易

气体辅助注塑成型技术

气体辅助注塑成型技术

气体辅助注塑成型技术第一章: 气体辅助注塑成型简介1、气体辅助注塑成型的发明及发展概述: 多年来,人们一直在研究中空塑料制品的成型加工技术及对塑料产品的质量改善作出研究。

1944年,Opavsky将气体或液体通过注射器注入到树脂中以达到改善产品质量为目的,但未获成功,这是最早的气辅概念研究。

我们今天所知道的气体辅助注塑成型技术是从20世纪70年代中期发展起来的,德国人Ernst Friederich是第一个发明气体辅助注塑成型工艺的人(1975年)(他的原理是将已加压的气体通过喷嘴注射到熔融物料当中,使熔融物料与模具内壁表面充分接触)。

由于当时的技术存在相当的局限性,并没有得到一定的重视。

直到80年代中期,该项技术才开始得到真正的发展及运用。

后来在欧洲出现了包括: Cinpress, Battenfeld, Ferromatik, Stork, Engel 及Johnson Controls 一批设备生产商,并在不断地改良这种技术。

到了90年代后期,气体辅助注塑成型技术得到飞速的发展及运用。

2、气体辅助注塑成型制品的两个主要类型:●封闭式气道(SINGEL GAS CHANNEL) ●开放式气道(GAS CHANNEL) 封闭式气道制品主要由一个厚壁截面和气体穿行的通道组成,如门把手、扶手、管状把手等都属于这种结构。

因为气体的扩散有一条设定好的路线(即胶料较厚,温度较高,流动性较好的部分,亦即是气体流动的方向),制品能达到最佳的节省材料的目的,而且由于制品中空结构使刚性加强而不用增加质量。

开放式气道制品主要是薄壁制品(壁厚不能少于2MM),类似于传统的加强筋结构制品。

气体会从较厚的加强筋向前扩散(及气体流动的方向:胶料相对较厚的部分,形成气道GAS CHANNEL),但气体可能会穿透制品的薄壁部分(有时会出现指形扩散:指纹效应FINGERING),即高压气体往较厚胶料或密度较低的部分渗入。

3、气体辅助注塑成型方法的优点:●制品残余应力降低●翘曲变形较小●减少/消除缩痕●简化模具设计●制品综合性能提高●缩短成型周期●合模力吨位要求降低●射胶压力降低4、气体辅助注塑成型适用材料: ABS、ABS/PC、HIPS、PA、PBT、PC、PS、PVC、PET、PP、PPE等第二章: 气体辅助注塑成型的方法及原理 1、气体辅助注塑成型的原理:通过管道与模具连接,把高压气体(氮气)注入到模腔的塑料熔体中,形成局部的中空,加速产品冷却成型。

气辅注射成型技术

气辅注射成型技术
Courtesy Power Line mould Engineering, Ltd.
Gas entrance
“Gas fingering”
30.00
22.50
15.00
7.50
0.00
Low pressure area
Pressure prior to gas transition for TV Bezel (1/2 model)
氣輔設計原則 Design Principles for Gas -asist Mould Design
• 製品公稱厚度以不小於2mm為原則。 但有薄到 0.75mm厚度的氣輔塑件被開發出來。 • 氣體進口(Gas Entrance)和澆口(Gate)距離若大於 25mm,Shut-off valve就不一定要裝。 • 溢流井的體積 = 流道去掉2~3mm塑膠皮層之斷面積 x 流道長度 2004. 4. 11. 徐昌煜摘錄自”氣體輔助射出成型手冊 “ (塑膠世界雜誌社譯自日文書刊) -
塑膠皮層比-原始設計 Skin-polymer Fraction, Original Design
熔膠前沿推進 - 更改設計 Melt-front Advancement, Revised Design
塑膠皮層比 - 更改設計 Skin-polymer Fraction, Revised Design
型腔部份短射 Partial Shot in Cavity
氣輔注射成型 Gas-assisted Injection Moulding
模壁 Mould Wall
塑膠凝結層 Frozen Layer of Polymer
氣體 Gas
熔膠 Polymer Melt
模壁 Mould Wall 氣體穿透熔膠的斷面圖 Cross-section of gas penetration through molten plastic

气体辅助成型技术

气体辅助成型技术

三.進氣嘴
1.根據進氣位置的不同可分為兩類: (1) 一類是特殊結構的注塑機噴嘴,氣體與熔體都通過
這個噴嘴進行注射. (2) 另一類是有獨特氣體通道的專用氣嘴.
2.進氣嘴結構
進氣嘴結構可分為彈簧復位型和間隙出氣型兩類.
5. 技術關鍵
1. 模具及制品設計
* 氣體入口位置及氣道設計是氣輔注射成型模具和制品設計的關鍵. 入口位置設計時應注意:入口位置應盡可能靠近澆口部位,不能形成 氣體環流狀態;注氣口注入氣體流動方向應與樹脂流動方向一致.
(2) 轉換時間 當注射結束時,合理選擇氣體的轉換時間,可以避免流動前沿停止流 動和在制件表面出現可見的滯留痕或形不成氣道.因為注入氣體過 早,熔體外表無充分冷卻,氣體易穿破熔體;過晚,熔體冷卻,氣體不 能形成氣道或在制件表面形成滯流痕.
(3) 氣體壓力 注氣開始時較高的壓力和以后稍低的壓力為氣體通道成型和定型所需.
1.壓力生成設備. 它必須保證注氣系統可得到高壓氣體.一般使用氮氣,氮氣提供方式 有三種:瓶裝氮氣,液體氮氣和氮氣發生器.氣體壓力一般為5~32MPa, 最高可達100MPa.
2.氣體注射控制單元 新工藝參數:氣體起射時間,氣體注射延遲時間,氣體注射壓力或流 量,氣體射入時間. 其中氣體起射時間由螺杆位置觸發. 所有工藝參數中,氣體充填,保壓過程中氣體壓力控制的精度對產品 質量的影響最大.
* 連續壓力產生法 利用專門壓縮裝置來產生高壓氣體,包括壓縮機和儲壓罐,壓縮機的運 轉保證了儲壓罐的壓力恆定,壓力一般為30MPa .
優點: 1. 壓力分布可以用壓力控制裝置來自由選擇. 2. 具有不同壓力需求的幾個註射點或幾台氣體輔助注 射成型機可用同一套注氣系統.
二.注氣系統
注氣系統包括壓力生成設備用氣體注射控制單元.

气成型知

气成型知
核准:
審核:
製表:

第一章 氣體輔助成形相關知識

何谓「气体辅助射出成型」?
「气体辅助射出成型」是在射出成型过程中将氮气射 入模穴内,并以氮气进行保压工程,因而使成品掏 空减重,防止成品收缩凹陷并降低成型所需压力, 因此又称为「氮气中空射出成型」或「低压中空射 出成型」,简称气辅。但气体辅助射出成型与吹气 成型(Blow Molding)并不相同。


若要使用气体辅助射出成型技术,需有哪些设备? 要使用气体辅助射出技术需有下列设备: 1.射出成型机 2.气体辅助射出装置 3.氮气产生机或氮气瓶 4.空气压缩机 5.必要的成型周边设备 气体辅助射出成型所牵涉的技术有哪些? 气体辅助射出成型所牵涉的技术包括模具设计、成 品设计、气针位置的分析设计、气辅装置本身的技
气体辅助射出成型有哪些优点? 1. 对粗厚型成品: a.节省塑料,成品轻量化20~50%。 b.成型周期缩短(冷却时间缩短)可达20%。 c.模具费用降低。 d.减少后加工。 2. 对平板型成品: a.设计多样化。 b,外观改良,电镀效果佳。


c.消除成品厚肋骨的凹陷现象。 d.实现低压成型、锁模力降低。 e.成品残留应力小、降低成品翘曲变形。 f.增加成品结构刚性。 g.减少零件数。 应用气辅成型有无塑料的限制? 气辅成型已成功应用於各种热塑性塑胶如PP、PE、 ABS、PC/ABS、PC、PS、PVC、PPO、PBT、 TPU…等塑料,但是热固性塑胶较不适用,而高含 量之填充材塑料则会有表面品质问题。 气辅成型可使用何种气体? 需使用纯度98%以上的氮气,因为氮气容易获 得、价格便宜且不会与塑料发生反应,而高压空气 中的氧会与熔胶混合燃烧,因此较不适合

术、射出成型技术、成型不良的排除、模流分析技 术等。

气体辅助注塑工艺简介

气体辅助注塑工艺简介

气体辅助注塑工艺简介1.气体辅助注塑目前所指的气体辅助注塑:是指将氮气注射入产品内,使产品内部形成中空。

模具打开前,控制器会将塑胶工件内的氮气释放回大气中。

2.气辅注塑成形工艺的优势1)低射胶、低锁模力;2)压力分布均匀、收缩均匀、残余应力低、不易翘曲,尺寸稳定;3)消除凹陷,型面再现性高;4)省塑料,可用强度及价格更低的塑料;5)可用强度和价格更低的模具金属;6)厚薄件一体成型,减少模具及装配线数目;7)可用较厚的筋,角板等补强件,提高制品刚性,使得制件公称厚度得以变薄。

8)增强设计自由度。

3.气辅射胶控制工艺1)短射工艺,即胶料未完全充满型腔时,继之以氮气注射;2)满射工艺,塑胶熔体充满型腔之后,停止注射,继之以氮气注射。

短射工艺的特点:在气辅注塑中,塑胶注射取决于胶件形状及胶料性能,在以下条件才可进行短射。

1)胶件必须有独立完整的气体通道,即气流在穿透胶件时,无分支气道可走。

2)气体通道中多余胶料有足够的溢流空间。

3)胶料流动性优良,粘度不可太低,尽量避免使用含破坏高分子键的填充物的胶料。

4)胶料导热度较低,有可较长时间保持熔融状态的能力。

满射工艺特点:胶件射胶完成,通过气体代替啤机,防止胶件收缩。

其优点在于,啤机保压是以射胶量及压力来防止胶件收缩,气辅保压,则以气体穿透塑胶收缩后的空间,防止胶件表层埸陷。

4.气辅压力分析:现我们看以下气辅压力与啤机压力的对比:1)气辅压力a)低气压800psi=56.34kg/cm2b)中气压1500psi=105.63 kg/cm2c)高气压2500psi=176.06kg/cm22)啤机压力a)100 TON注塑最大压力188Mpa=1917 kg/cm2b)280 TON注塑最大压力150Mpa=1530 kg/cm2c)650TON注塑最大压力153Mpa=1560 kg/cm2从以上压力对比可知,氮气压力只相当于普通啤机注塑压力的十分之一,甚至更少。

气辅产品成型工艺培训教材

气辅产品成型工艺培训教材

气辅产品成型工艺培训教材气辅成型应用在最近一、二年来有越来越多的趋势,它具有多种优点,但因为经验不足和气体不易控制,增加了气辅成型、调试的困难。

本文说明了气辅成型的物性,希望在气辅产品调试时有所参考.一、成型原理气辅成型(GIM)是指在塑胶充填到型腔适当的时候(90%~99%)注入高压惰性气体,气体推动融熔塑胶继续充填满型腔,用气体保压来代替塑胶保压过程的一种新兴的注塑成型技术(如图1所示)。

气体的功能有两种:1、驱动塑胶流动以继续填满模腔;2、成中空管道,减少塑料用量,减轻成品重量,缩短冷却时间及更有效传递保压压力。

由于成型压力可降低而保压却更为有效,更能防止成品收缩不均及变形。

气体易取最短路径从高压往低压(最后充填处)穿透,这是气道布置要符合的原则。

在浇口处压力较高,在充填最末端压力较低。

二、气辅成型优点1、减少残余应力、降低翘曲问题:传统注塑成型,需要足够的高压以推动塑料由主流道至最外围区域;此高压会造成高流动剪应力,残存应力则会造成产品变形。

GIM中形成中空气体流通管理(Gas Channel)则能有效传递压力,降低内应力,以便减少成品发生翘曲的问题。

2、消除凹陷痕迹:传统注塑产品会在厚部区域如筋部(Rib&Boss)背后,形成凹陷痕迹(Sink Mark),这是由于物料产生收缩不均的结果,但GIM则可借由中空气体管道施压,促使产品收缩时由内部向外进行,则固化后在外观上便不会有此痕迹.3、降低锁模力:传统注塑时高保压压力需要高锁模力,以防止塑料溢出,但GIM所需之保压压力不高,通常可降低锁模力需求达25~60%左右.4、减少流道长度:气体流通管道之较大厚度设计,可引导帮助塑料流通,不需要特别的外在流产设计,进而减低模具加工成本,及控制熔接线位置等.5、节省材料:由气体辅助注塑所生产的产品比传统注塑节省材料可达35%,节省多少视产品的形状而定.除内部中空节省料外,产品的浇口(水口)材料和数量亦大量减少,例如38寸电视前框的浇口(水口)数目就只有四点,既节省材料的同时亦减少了熔接线(夹水纹).6、缩短生产周期时间:传统注塑由于产品筋位厚、柱位多,很多时都需要一定的注射、保压来保证产品定形,气辅成形的产品,产品外表看似很厚胶位,但由于内部中空,因此冷却时间比传统实心产品短,总的周期时间因保压及冷却时间减少而缩短。

氮气辅助成型技术讲义PPT课件

氮气辅助成型技术讲义PPT课件

GCU-1 7/100~350/5000
1
GCU-2 7/100~350/5000
2
GCU-3 7/100~350/5000
3
GCU-4 7/100~350/5000
4
14
進氣位置 (一) 由射嘴進氣
資料來源: 〝Gas-assisted Injection Molding Design and Processing Guide for GEPLASTICS Resins〞---GE PLASTICS
12
氣輔成型控制器比較一覽表
機械製造商 軟體系統環境 成型控制類別 氣體迴路控制閥
控制迴路 易受高壓氮氣源壓力變動的影響
控制邏輯
緩增壓或緩降壓 提供與射出機電阻尺連線 快拆式迴路模組的設計
迴路模組擴充的功能 清除氣針功能 人機介面操作性 成品良率 穩定性
即時成型壓力/時間曲線顯示
Battenfeld (德國) 英文介面 壓力控制
快速電磁閥 半閉型 是 無
無 無 有 有 無 困難 差 差 無
Gas Injecition (英國) 英文介面 壓力控制 快速電磁閥 半閉型 是 無
無 有 無 無 無 困難 差 差 無
Bauer (德國) 英文介面 壓力控制 比例閥 全閉型 不一定 固定型PID
有 無 無 無 有 普通 普通 普通 有
• 須用特製的切斷式 (shut-off)噴嘴
• 所有氣道須和料頭 連 接,氣道設計易 受限制
• 不適用於熱澆道 • 模具修改較容易
15
進氣位置 (二) 由流(澆)道系統進氣
• 可減少水口料 • 氣道須和流道/澆口
連接 • 不適用於熱澆道 • 仍須切斷式噴嘴,防 止氣體逆流
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档