讲义:液体粘滞系数的测定

合集下载

液体粘滞系数的测定5页

液体粘滞系数的测定5页

液体粘滞系数的测定5页第一节实验目的1. 了解粘度的概念及粘度测定的原理、方法;2. 掌握用粘度计测定液体的粘滞系数,及其测定过程;3. 熟悉不同粘度计的适用范围及精度,并掌握选取合适粘度计测定不同液体粘度的技巧。

1. 液体粘度的概念液体粘度是流体力学中的一个物理量,它表示了液体内部阻力的大小,是一种材料的特性。

2. 粘度测定原理在粘度测定中,液体在成动态流动和流体力学稳定约束流动两种情况下的粘滞系数都需要被测量。

其中,动态粘度是指流动的液体对比例于速度梯度的切应力的抵抗力,它是在动态流动条件下测量的。

粘度计的基本原理是利用切应力与切应变的比例关系(牛顿定律),通过对于液体在不同的剪切速度下的流动状态进行测定,来计算出液体的动态粘滞系数。

液体粘度的测定可以采用比较直接测量的方法,以此来获得准确的液体粘度数据。

这些方法可以被划分为动态粘度法和静态粘度法。

动态粘度法适用于液体在动态流动条件下测量其粘度,包括旋转粘度计、滑动平板粘度计等等;而静态粘度法适用于在静态条件下测量液体粘度,例如绕线粘度计、排空式粘度计等等。

4. 粘度计的选择选择适当的粘度计可以是保证准确测试结果的关键。

不同类型的液体适用于不同类型的粘度计,比如粘度极高的半固体液体,大多数情况下需要采用旋转粘度计进行测定。

此外,不同粘度计的精度和敏感度也不同,要根据实验需要选择合适的粘度计,以保证实验的精度和可靠性。

1. 实验设备准备a. 旋转粘度计;b. 滑动平板粘度计。

2. 备选液体材料准备选取不同类型的液体进行测试,例如:水、甘油、汽油、酒精等多种液体。

这些液体应涵盖不同的粘度范围,以便测试不同类型的粘度计并探究其适用范围。

(1)旋转粘度计的测定a. 用清洁的粘度计内胆,取约5ml的试样液体,精确称量并注入粘度计内胆;b. 用辅助设备将粘度计安装在粘度计底座上,注意调整好瞄准线,保证水平仪指针正中间;c. 安装好粘度计后,打开装置电源,启动电机,液体将开始旋转,粘度计刻度开始计算。

液体粘滞系数的测定

液体粘滞系数的测定

实验项目介绍实验资料:实验名称:落球法液体粘滞系数测定指导教师:kunter可预约计划:0 执行教室:1实605实验类型:综合实验仪器:FD-VM-Ⅱ落球法粘滞系数测定仪仪器套数:6准备天数:3实验介绍:用落球法测定液体的粘滞系数一、实验目的和意义液体都具有粘滞性,液体的粘滞系数(又称内摩擦系数或粘度)是液体粘滞性大小的量度,也是粘滞流体的主要动力学参数。

研究和测定流体的粘滞系数,不仅在物性研究方面,而且在医学、化学、机械工业、水利工程、材料科学及国防建设中都有很重要的实际意义。

例如,现代医学发现,许多心血管疾病都与血液粘度的变化有关,血液粘度的增大会使流入人体器官和组织的血流量减少,血液流速减缓,使人体处于供血和供氧不足状态,可能引发多种心脑血管疾病和其他许多身体不适症状,因此,测量血液粘度的大小是检查人体血液健康的重要标志之一。

又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关,因而在设计管道前,必须测量被输石油的粘度。

液体的粘度受温度的影响较大,通常随着温度的升高而迅速减小。

测定粘滞系数的方法有多种,如转筒法、毛细管法、落球法等。

转筒法,利用外力矩与内摩擦力矩平衡,建立稳定的速度梯度来测定粘度,常用于粘度为0.1~100的流体;毛细管法,通过一定时间内流过毛细管的液体体积来测定粘度,多用于粘度较小的液体如水、乙醇、四氯化碳等;落球法,通过小球在液体中的匀速下落,利用斯托克斯公式测定粘度,常用于粘度较大的透明液体如蓖麻油、变压器油、机油、甘油等。

本实验学习用落球法测定蓖麻油的粘滞系数,如果一小球在粘滞液体中铅直下落,由于附着于球面的液层与周围其他液层之间存在着相对运动,因此小球爱到粘滞阻力,它的大小与小球下落的速度有关。

当小球作匀速运动时,测出小球下落的速度,就可以计算出液体的粘度。

二、参考资料1、黄秉鍊·大学物理实验·长春:吉林科学技术出版社,2003,P65-68;2、沈元华等·基础物理实验·北京:高等教育出版社,2003,P119-122;3、阎旭东等·大学物理实验·北京:科学出版社,2003,P63-65;4、李天应·物理实验·武汉:华中理工大学出版社,1995,P100-102;5、王惠棣等·物理实验·天津:天津大学出版社,1997,P137-144;6、吴锋等·大学物理实验教程·北京:化学工业出版社,2003,P84-86。

实验三 液体粘滞系数的测定

实验三  液体粘滞系数的测定

实验三 液体粘滞系数的测定方法一: 用乌式粘度计测定酒精的粘滞系数[实验目的]1. 1. 进一步巩固和理解粘滞系数的概念。

2. 2. 学会一种测定粘滞系数的方法。

[实验器材]粘度计、铁架台、秒表、温度计、打气球、玻璃缸、蒸馏水、酒精、量杯。

[仪器描述]如图3-1所示,粘度计是由三根彼此 相通的玻璃管A 、B 、C 构成。

A 管经一胶 皮管与一打气球相连,A 管底部有一大玻 璃泡,称为贮液泡;B 管称为测量管,B 管 中部有一根毛细管,毛细管上有一大和一 小两个玻璃泡,在大泡的上下端分别有刻 线N 、N ′;C 管称为移液管,C 管上端有 一乳胶管,为的是在C 管处设置夹子。

整个实验是在装满水的玻璃缸中进行。

[实验原理]图3-1乌式粘度计一切实际液体都具有一定的“粘滞性”,当液体流动时,由于粘滞性的存在,不同的液层有不同的流速v (如图3-2),流速大的一层对流速小的一层施以拉力,流速小的一层对流速大的一层施以阻力,因而各层之间就有内磨擦力的产生,实验表明,内磨擦力的大小与 相邻两层的接触面积S 及速度梯度d v /d y 成正比,即η=F ·y vd d ·S式中的比例系数η叫做粘滞系数,又叫内磨擦系数。

不同的液 体具有不同的粘滞系数。

一般情况下,液体的η值随温度的升高而减少。

在国际单位制中,η的单位为帕·秒(Pa ·s )。

图3-2速度梯度当粘滞液体在细管中作稳恒流动时,若管的半径为R ,管长为L ,细管两端的压强差为ΔP 1 ,液体的粘滞系数为1η,则在时间t 1内液体流经细管的体积V 可依泊肃叶公式求出:11148t ⋅∆⋅⋅⋅=P L R V ηπ(3-1)同理,对于同一细管,若换用另一种粘滞系数为2η的液体,并假设这时细管两端的压强差为ΔP 2,体积仍为V 的液体流经细管所需时间为t 2,则有:22248t ⋅∆⋅⋅⋅=P L R V ηπ(3-2)由(3-1)式和(3-2)式得111222ηη⋅⋅∆⋅∆=t t P P(3-3)如果实验时把细管铅垂方向放置,则压强差是由重力引起的,于是121212ρρρρ=⋅⋅⋅⋅=∆∆h g h g PP (3-4)此处1ρ及2ρ是两种不同液体的密度,将(3-4)式代入(3-3)式,得111222ηρρη⋅⋅⋅=t t(3-5)可见,如果一种液体的粘滞系数1η为已知,且两种液体的密度1ρ及2ρ可查表得到,则只要测出两种液体流经同一细管的时间t 1和t 2,即可根据(3-5)式算出被测液体的粘滞系数2η. 本实验是已知水的1η值,求待测酒精的2η值。

液体粘滞系数的测定(1).ppt

液体粘滞系数的测定(1).ppt

作按用斯,托即克重斯力定律f重、:浮当力液f面浮和无粘限滞宽性广阻,力且f小阻。

球的运动速度不大,没有旋涡产生时,粘 滞阻力等于:


f阻=6r

式中为液体的内摩擦系数(亦称粘滞系数); r是小球的半径;是小球的速度。粘滞系
数与液体的种类及温度有关。
当小球在液体内下落时,因为和r是一定
的,故阻力将随下落速度的增大而增大。
分别测量)。每个小球下落3次,测3个t取
平均,然后再做另一个球,直到把5个球
做完。
3. 用游标卡尺测量圆筒的内径D共3次,取平 均值。
实 验
4. 用钢直尺测出两根蓝线间距离l,求出平均
值。用比重计测出蓖麻油的密度1。小钢 球的密度由实验室给定。各量测完后再

用温度计测蓖麻油的温度。

数 据 表 格
最后必将达到重力、浮力、阻力三者的合
力即为零。此后小球就以速度0作匀速运动,
实 验 原 理
D
f重f浮f阻=0
N1
4 3
r 3g
4 3
r
3 1 g
6 0 r
0
h0 l
2 1 gr 2 9 0
N2
图 1 实验装置图
但因液体总要放在一定的容器内,液面不 可能是无限广的。当考虑到容器壁的存在 时,应修正为:
小球 d4 下落时间 t4(s)
小球 d5 下落时间 t5(s) 本地重力加速度 g (m/s2)
小钢球密度 (kg/m3)
蓖麻油密度 蓖麻油温度
1 (kg/m3) T (oC)
9.788 7.81103
注:的国际单位为帕斯卡·秒(Pa·s)。即当各量的单位取为国际单位(g为 m/s2,d、D为m,1为kg/m3,0 为m/s) 时,的单位为帕斯卡·秒(Pa·s)。

实验液体粘滞系数的测定

实验液体粘滞系数的测定

实验液体粘滞系数的测定一、实验介绍气体和液体统称为流体。

若流体各层之间作相互运动时,相邻两层间有内摩擦力存在,则将具有此性质的流体称为粘性流体。

现实中,酒精、甘油、糖浆之类的流体都是粘性流体。

而粘性液体的粘滞性在液体(例如石油)管道输送以及医药等方面都有重要的应用。

现代医学发现,许多心脑血管疾病与血液粘滞系数有关,血液粘滞会使流入人体器官和组织的血流量减少、血流流速减缓,使人体处于供血和供氧不足的状态中,可能引发多种心脑血管疾病。

所以,血液粘滞系数的大小成了人体血液健康的重要标志之一,对于粘滞系数的测定和分析就具有非常重要的现实意义。

通常测定液体粘滞系数的方法有很多,如落球法、落针法、比较法等等。

本实验采用奥氏粘度计测量酒精的粘滞系数。

奥氏粘度计是利用比较法制成的,适用于测定液体的比较粘滞系数,即两种不同液体都采用此仪器测量,如果其中一种液体的粘滞系数已知,则通过就可获得另一种液体的粘滞系数。

此仪器是测量液体粘滞系数的常用仪器。

二、实验目的1.掌握用奥氏粘度计测定粘性流体的粘滞系数.2.了解泊肃叶公式的应用。

3.了解比较法的好处.三、实验器材奥氏粘度计、温度计、秒表、洗耳球、量筒、量杯、刻度移液管(滴定管)、蒸馏水、酒精等。

四、实验原理气体和液体统称为流体。

若流体各层之间作相互运动时,相邻两层间有内摩擦力存在,则将具有此性质的流体称为粘性流体。

现实中,酒精、甘油、糖浆之类的流体都是粘性流体。

粘性流体的运动状态有层流(laminar flow)、湍流(turbulent flow)。

所谓层流,即流体的分层流动状态。

当流体流动的速度超过一定数值时,流体不再保持分层流动状态,而有可能向各个方向运动,即在垂直于流层的方向有分速度,因而各流体层将混淆起来,并有可能形成湍流,湍流显得杂乱而不稳定,这样的流动状态称为湍流。

对于粘性流体在流动时相邻流层之间的内摩擦力又称为粘性力。

并且根据牛顿粘滞定律,粘性力f的大小与两流层的接触面积S以及接触处流层间的速度梯度dsdx成正比,具体有如下关系式:ds f S dxη= (1) 式中,比例系数η称为流体的粘度。

落球法测定液体不同温度的粘滞系数讲诉

落球法测定液体不同温度的粘滞系数讲诉

实验三 落球法测定液体不同温度的粘滞系数当液体内各部分之间有相对运动时,接触面之间存在内摩擦力,阻碍液体的相对运动,这种性质称为液体的粘滞性,液体的内摩擦力称为粘滞力。

粘滞力的大小与接触面面积以及接触面处的速度梯度成正比,比例系数η称为粘滞系数(或粘度)。

对液体粘滞性的研究在流体力学,化学化工,医疗,水利等领域都有广泛的应用,例如在用管道输送液体时要根据输送液体的流量,压力差,输送距离及液体粘滞系数,设计输送管道的口径。

测量液体粘滞系数可用落球法,毛细管法,转筒法等方法,其中落球法适用于测量粘滞系数较大的液体。

粘滞系数的大小取决于液体的性质与温度。

温度升高,粘滞系数将迅速减小。

例如对于蓖麻油,在室温附近温度改变1˚C ,粘滞系数改变约10%。

因此,测定液体在不同温度的粘滞系数有很大的实际意义,欲准确测量液体的粘滞系数,必须精确控制液体温度。

实验目的1、用落球法测量不同温度下蓖麻油的粘滞系数2、了解PID 温度控制的原理实验原理1、落球法测定液体的粘滞系数在稳定流动的液体中,存在液体之间存在相互作用的粘滞力。

实验证明:若以液层垂直的方向作为x 轴方向,则相邻两个流层之间的内磨擦力f 与所取流层的面积S 及流层间速度的空间变化率d v /d x 的乘积成正比:S d d f xvη= (3-1) 其中η称为液体的滞粘系数,它决定液体的性质和温度。

粘滞性随着温度升高而减小。

如果液体是无限广延的,液体的粘滞性较大,小球的半径很小,且在运动不产生旋涡。

根据斯托克斯定律,小球受到的粘滞力f 为:v r f ⋅⋅⋅=ηπ6 (3-2)式中η称为液体的滞粘系数,r 为小球半径,ν为小球运动的速度。

若小球在无限广延的液体中下落,受到的粘滞力为f ,重力为ρVg ,这里V 为小球的体积,ρ与ρ0分别为小球和液体的密度,g 为重力加速度。

小球开始下降时速度较小,相应的粘滞力也较小小球作加速运动。

随着速度的增加,粘滞力也增加,最后球的重力、浮力及粘滞力三力达到平衡,小球作匀速运动,此时的速度ν0称为收尾速度。

液体粘滞系数的测量

液体粘滞系数的测量


为粘滞系数
小球在黏滞液体中下落,受力分析
F浮
G mg Vg
F浮 液Vg
其中,V
4 πr 3 3
G
f
f 6rv
最终受力平衡,小球匀速下落
Vg 液 Vg 6rvt
( 液 )gd / 18vt
2
收尾速度
如何满足液体无限深广条件? 修正公式
D 游标卡尺 测量 A
1200ml
钢板尺测量
h、t
秒表测量 B
400ml
实验步骤
游标卡尺测量量筒内径。 钢板尺测量刻线A、B间的距离。 用镊子夹起小钢球,细心地放入液体粘滞系数仪中液体液面 的中心处,用停表记录小球通过刻线A、B间的时间。 另取小球重复上面的实验5次。 观察室内温度计,记下室温。 计算粘滞系数η。
其中, 代入
v h/t
d vt (1 2.4 )v D
g 9.8m / s 2
( 液 )gd 2t / 18h

(0 mm
d 18 (1 2.4 )h D
7.9 10 kg / m
3
3
液 1.1 103 kg / m 3
液体黏滞系数的测定
黏滞系数
又叫做内摩擦系数 黏滞系数是液体的一个重要参数(细胞学、 生物化学、生物学等) 测定方法:毛细管法、落球法、转筒法等
实验目的
1.了解用斯托克斯公式测定液体黏滞系数的 原理,掌握其适用条件; 2.学习用黏滞系数仪测定液体的黏滞系数;
3.熟练运用基本仪器测量时间、长度和温度;
实验器材
液体粘滞系数仪; 游标卡尺; 钢板尺; 钢球(d=2.00mm); 镊子; 秒表; 温度计。 待测液体(密度1.1×103kg/m3)

实验二、液体粘滞系数的测定

实验二、液体粘滞系数的测定
筒内油须长时间的静止放置,以排除气泡, 使液体处于静止状态。实验过程中不可捞取 小球,不可搅动。 将小钢球在液体中浸一下,然后用镊子把小 钢球沿量筒中心轴线近液面处自由落下。
液体粘滞系数随温度的变化而变化,因此测 量中不要用手摸量筒。
在观察小钢球通过量筒标志线时,要使视线 水平,以减小误差。
②计算小球直径的相对误差。
③根据管高求管子高度的相对误差。
④测定小钢球下落时间。 ⑤计算间接测量η的值、平均绝对误差 (要求计算过程)写出结果的表达式。
和相对误差Eη,

⑥记录液体温度,根据温度用内插法判断η的理论值。
理论值
1 (T T1 )(1 2 )
思考题:P26 1
注意事项
数据处理
实验值
( 0 ) gd t 0 / 18h
2
( 0 ) gt0 d d 1. 18 h d h 2. E ( 2 ) 100% d h
E

理论值
1 (T T1 )(1 2 )
f 粘滞
f 浮力
mg 6 r v0 g V
mg
mg 6 v0 r Vg
4 3 对于小球又有: 0V r 0 m 3
(m V ) g 6 v0 r ( 0 ) gd 2 18v0
其中ρ0和ρ分别是小球和液体的密度,d 为 小球的直径,g是当地的重力加速度。
测定粘滞系数有多种方法:本次实验采用 多管落球法来测量
实验目的
1、掌握用ND-2型液体粘滞系数仪测液 体的粘滞系数; 2、熟悉JCD3读数显微镜的使用方法;
3、观察液体的内摩擦现象,了解液体粘 度的含义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验N 液体粘滞系数的测定
各种流体(液体、气体)都具有不同程度的粘性。

当物体在液体中运动时,会受到附着在物体表面并随物体一起运动的液层与邻层液体间的摩擦阻力,这种阻力称为粘滞力(粘滞力不是物体与液体间的摩擦力)。

流体的粘滞程度用粘滞系数表征,它取决于流体的种类、速度梯度,且与温度有关。

液体粘滞系数的测量非常重要。

例如,人体血液粘度增加会使供血和供氧不足,引起心脑血管疾病;石油在封闭管道长距离输送时,其输运特性与粘滞性密切相关,在设计管道前必须测量被输石油的粘度。

液体粘滞系数的测量方法有毛细管法、圆筒旋转法和落球法等。

本实验采用落球法测定液体的粘滞系数。

【实验目的】
1.了解用斯托克斯公式测定液体粘滞系数的原理,掌握其适用条件;
2.掌握用落球法测定液体的粘滞系数。

1.调节液体粘滞系数测定仪
(1)调测定仪底盘水平:在测定仪横梁的中部(电
磁铁位置)悬挂一重锤,调节测定仪底盘的高度旋纽,使重锤对准底盘的中心圆点。

(2)在实验架上分别安装两个激光光电门,接通激光电源,可以看见红色激光束。

调节上、下两个激光发射器,使两束红色激光平行地对准铅锤线。

(3)收回重锤,将盛有蓖麻油的圆筒放置到实验架底盘中央,
图2 FN10-II 型液体粘滞系
仪器部件说明
1.底座;
2.带刻度尺立
杆;
3.光电门激光
发射器;
在实验过程中保持圆筒的位置不变。

调节上、下两个激光接收器,使它们的窗口分别接收上、下两束激光。

(4)在实验架上装上电磁铁,将其电源插头接至“计时仪”后面板对应的电源插座上,接通“计时仪”电源,让电磁铁磁化。

(5)将1个小钢球投入圆筒,用钢球吸拾器在圆筒外壁将小球吸住,并沿管壁将球引导到电磁铁下端并被电磁铁吸住。

(6)让小钢球静止10秒以后,按一次计时仪的“计时键”,计时仪显示“C0.0000”,“C”表示计时仪处于计时状态,计时仪的使用方法见附录1。

轻按电磁铁上方的按钮开关,看小球下落过程中计时仪是否能正常计时;若不能,则仔细调整激光光电门的位置,直到小球下落过程中能使光电门正常工作。

2.确定小球达到收尾速度时光电门的位置
(1)调节激光光电门的位置,使光电门1的激光在圆筒中轴线处距油面下方1cm处(对应图1的L1),光电门2的激光在圆筒中轴线处距底上方约5cm左右处(对应图1的L2),记录小球通过L1、L2
了测量准确,在小球投放前后各测一次油温,取平均值作为油温值T。

(4)轻按电磁铁上方的按钮开关,小球沿油筒中心轴线自由落下。

小球通过第一个光电门时计时仪开始计时,小球通过第二个光电门时计时仪停止计时,计时仪显示的时间即为小球下落距离L所用时间t。

(5)同一个球重复测量6次,将时间t记录到数据表中,求出t 的平均值。

并记录小球投放后的油温T2(℃),记于表1中。

(6)换另一个半径的小钢球,重复以上实验测量6次。

4.测量油高度和小钢球直径
(1)用直尺测出油的高度H(油面至油筒底部斜面的中点),记于表1中。

(2)用钢球吸拾器将球从油中取出,洗净油污、擦拭干净。

(3)用螺旋测微器测量小球直径d,记于表2中。

每个小球沿不同方向测6次,取平均值。

1ms;9.9999s,分辨率0.1ms。

2.按一次“计时键”,计时仪显示“C0.0000”,“C”表示计时仪处于计时状态。

测量结束后,计时仪自动将结果存储到存储器中。

测量完再按一下“计时键”,将开始下一次计时。

3.按一次“复位键”,计时仪显示清零,显示“00.0000”,但仍保留开电源后存储的测量数据。

若按“复位键”5秒以上,则存储数据全部被清零。

4.最多可存储20组测量数据。

若测量超过20组,则后面储存的数据将依次覆盖前面储存的数据。

5.按一次“查询键”,计时仪显示一组存储数据,即显示测量次数与对应的测量时间。

相关文档
最新文档