浙教版七年级数学下册培优专题—第1讲 平行线性质和判定
浙教版七年级数学下册平行线讲义

基础巩固篇第一讲平行线及其判定思维导图重难点分析重点分析:1. 在同一平面内,不相交的两条直线叫做平行线,用符号“∥”表示.2. “三线八角” :两条直线被第三条直线所截,构成八个角,称为“三线八角” ,这八个角中,同位角有四对,内错角有两对,同旁内角有两对.3. 平行线的判定方法:(1)根据定义判定;(2)三个判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;(3)平行的传递性;(4)在同一平面内,垂直于同一条直线的两条直线互相平行.难点分析:1. 平行线必在同一平面内,分别在两个平面内的两条直线,即使不相交,也不一定平行.2. 过已知直线外一点,有且只有一条直线与已知直线平行,这一性质指出了过直线外一点作这条直线的平行线的“存在性”和“唯一性” ,要注意“直线外一点”这一条件.3. 平行线的判定定理是通过角的关系说明直线的位置关系,实现了几何条件之间的转化,应用定理时要注意正确判断角的位置特征.例题精析例1、在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为().A.1 个B.2 个C.3 个D.4 个思路点拨:根据直线的性质公理、相交线的定义、垂线的性质、平行公理对各小题分析判断后即可得解.解题过程:①过两点有且只有一条直线,正确;②两条不相同的直线若相交则有且只有一个公共点,若平行则没有公共点,故错误;③经过直线外一点有且只有一条直线与已知直线垂直,正确;④经过直线外一点有且只有一条直线与已知直线平行,正确;综上所述,正确的有①③④共 3 个. 故选 C.方法归纳:本题考查了平行公理、直线的性质、垂线的性质以及相交线的定义,属于基础概念题,熟记概念是解题的关键.易错误区:两条不相同的直线除了平行外,如果不在同一平面内,也可能没有公共点.例2、如图,标有角号的7 个角中共有对内错角,对同位角,对同旁内角.思路点拨:根据内错角、同位角及同旁内角的定义判断即可求得本题. 解题过程:共有 4 对内错角:分别是∠ 1和∠4,∠2 和∠5,∠6 和∠1,∠5和∠7;2 对同位角:分别是∠ 7 和∠ 1 ,∠ 5 和∠ 6 ;4对同旁内角:分别是∠ 1和∠5,∠3 和∠ 4,∠ 3和∠ 2,∠ 4和∠ 2. 方法归纳:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由这两个角在图形中的相对位置决定. 在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.易错误区:同位角的边构成“ F”形,内错角的边构成“ Z”形,同旁内角的边构成“ U”形. 图形较为复杂,要注意从复杂的图形中分解出基本图形.例3、(1)如图1,AB,CD,EF 是三条公路,且AB⊥EF,CD⊥EF.试判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的条件下,若小路OM平分∠ EOB,通往加油站N的岔道O′N平分∠ CO′ F,试判断OM与O′N 的位置关系.思路点拨:(1)根据在同一平面内,垂直于同一直线的两条直线互相平行,即可证得AB∥ CD;(2)可通过构建直线OM与O′N 的同位角来得出OM∥O′ N的结论.解题过程:(1)∵ AB⊥EF,CD⊥ EF,∴ AB∥ CD(在同一平面内,垂直于同一直线的两条直线互相平行).(2)如图,延长NO′与AB交于点P.∵OM平分∠ EOB,O′ N平分∠ CO′F,∴∠ EOM=∠FO′N=45° .∵∠ FO′ N=∠ EO′ P,∴∠ EOM=∠EO′P=45° .∴ OM∥ O′N(同位角相等,两直线平行).方法归纳:本题主要考查了平行线的判定方法. 解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.易错误区:第(2)题中虽然有∠ EOM与∠ FO′N相等,但它们不是同位角,不能直接用来判定两直线平行.例4、如图,∠ ABD和∠ BDC的平分线交E,BE的延长线交CD于点F,∠ 1+∠2=90°.于点(1)求证:AB∥ CD;(2)试探究∠ 2 与∠3 的数量关系.思路点拨:(1)根据BE,DE分别平分∠ ABD,∠BDC,且∠ 1+∠2=90°,可得∠ ABD+∠ BDC=180°,根据同旁内角互补,可得两直线平行;(2)根据∠ 1+∠ 2=90°,可得∠ BED=90°,从而可得∠3+∠FDE=90°,将等角代换,即可得出∠ 3与∠2 的数量关系解题过(1)证明:∵ BE,DE分别平分∠ ABD,∠ BDC,11 ∴∠1= ∠ ABD,∠ 2= ∠BDC.22 ∵∠ 1+∠2=90°,∴∠ ABD+∠ BDC=180° . ∴ AB∥ CD(同旁内角互补,两直线平行). (2)∵ DE平分∠ BDC,∴∠ 2=∠ FDE. ∵∠ 1+∠2=90°,∴∠ BED=∠ DEF=90°. ∴∠ 3+∠ FDE=90°. ∴∠ 2+∠3=90°. 方法归纳:本题主要考查了角平分线的性质以及平行线的判定,注意题中各角之间的数量关系要理清楚.易错误区:第(2)题中的数量关系不是等量关系,不要误认为∠2=∠3.例5、如图1,已知∠ EAC=90°,∠ 1+∠2=90°,∠ 1=∠ 3,∠ 2=∠4. 求证:(1)DE∥BC;2)若将图形改变为图2、图3,其他条件不变,1)中的结论是否成立?若成立,请选择一个图形予以证明;若不成立,思路点拨:(1)首先证明∠ 1+∠3+∠ 2+∠4=180°,进而证明∠ D+∠B=180°,即可解决问题;(2)在图 2 中,连结CE,证明∠ AEC+∠ACE+∠3+∠ 4=180°,即可解决问题. 解题过程:(1)如图1,∵∠ 1=∠ 3,∠ 2=∠4,∴∠ 1+∠ 3+∠ 2+∠ 4=2(∠ 1+∠2).∵∠ 1+∠ 2=90°,∴∠ 1+∠ 3+∠ 2+∠4=180°.∵∠ D+∠ B+∠ 1+∠3+∠2+∠4=360°,∴∠ D+∠ B=180° .∴DE∥BC(同旁内角互补,两直线平行)(2)成立. 如图,连结EC.∵∠ 1=∠ 3,∠ 2=∠4,且∠ 1+∠2=90°,∴∠ 3+∠ 4=∠ 1+∠2=90°.∵∠ EAC=90°,∴∠ AEC+∠ACE=180° -90 °=90°.∴∠ AEC+∠ACE+∠3+∠ 4=180°. ∴DE∥BC(同旁内角互补,两直线平行)∴(1)中的结论仍成立.图 3 用类似方法可得DE∥ BC.方法归纳:本题考查了平行线的判定问题,解题的关键是灵活运用三角形的内角度数关系(三角形三个内角和等于180°),结合平行线的判定定理来分析、判断、解答易错误图 2 通过连结EC将∠3 和∠ 4的关系用三角形联系起来是本题探究提升例、三条直线两两相交于三点(如图1),共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?四条直线两两相交呢(如图2)?你能发现n 条直线两两相交的规律吗?思路点拨: 解题的关键在于找到每个图形中含有几个三线八角的基本图形, 三条直线两两相交, 共有 3 个三线八角的基本图形;四条直线两两相交有 12 个三线八角的基本图形 .n 条直线中任选两条有 n (n 1) 种选法,然后在剩下的( n-2)条直线中任选一条直线作为截线共有( n-2 )2 种选法,所以 n 条直线两两相交共有 n (n 1)(n 2) 个三线八角的基本图形 .2解题过程: 三条直线两两相交于三点,共有 6 对对顶角, 12 对邻补角, 12 对同位角, 6 对内 错角, 6对同旁内角;四条直线两两相交,共有 12 对对顶角, 24对邻补角, 48 对同位角, 24 对内错角, 24 对同旁内角; n 条直线两两相交,共有 nn-1 对对顶角, 2nn-1 对邻补角, 2nn-1 ( n-2 )对同位角, nn-1 (n-2 )对内错角, nn-1 ( n-2 )对同旁内角 .方法归纳: 对于规律题关键在于找出规律,但在找到规律的同时还需要明确基本图形的特征 . 易错误区: 本题通过分解图形,利用“三线八角”这一基本图形解决问题,仅利用图形找角是 不容易找全的 .专项训练拓展训练A 组3. 如图,请填写一个你认为恰当的条件: ,使 AB ∥ CD.4. 如图,有下列判断:①∠ A 与∠ 1是同位角;②∠ A 与∠ B 是同旁内角;③∠ 4 与∠ 1是内错 角;④∠ 1与∠3是同位角 .其中正确的是 (填序号) .1. 如图,列条件中,能判定 DE ∥ AC 的是( 1 题)②④ ).A. ①②2. 如图,(第 8 题)5. 如图,∠ A=70°, O 是 AB 上一点,直线 CO与 AB 所夹的∠ BOC=82°,当直线 OC 绕点 O 按逆 时针方向至少旋转 °时, OC ∥ AD. 6. 如图,已知∠ 1=∠2,∠ BAC=20°,∠ ACF=80°. ( 1)求∠ 2 的度数; (2)FC 与 AD 平行吗?为什么? (3)根据以上结论,你能确定∠B 组7.在同一平面内,有 l 1,l 2,l 3,l 4四条直线,若 l 1⊥l 2,l 2⊥l 3, l 3⊥l 4, A.l B.lC.lD.l8.如图, AB ⊥ BC ,∠ 1+∠ 2=90°,∠ 2=∠3.求证: BE ∥DF.则( ) .1⊥l 3, 1∥l 3, 1∥l 3, 1∥l 4, l 2 ⊥l 4 l 2 ⊥l 4 l 1 ⊥l 4 l 2 ⊥l 4 9. 如图, BD ⊥ AC 于点 D , EF ⊥ AC 于点 F ,∠ AMD=∠ AGF ,∠1=∠ 2=35° . ( 1)求∠ GFC 的度数;(2)求证: DM ∥ BC.ABCD ,使其拐(第 7题) 走进重高1. 【柳州】如图,与∠ 1 是同旁内角的是( ) .角∠ ABC=150°,∠ BCD=30°,则().A.AB∥BCB.BC∥CDC.AB∥DCD.AB 与CD相交3. 【淄博】如图,一个由4条线段构成的“鱼”形图案,找出图中的平行线,并说明理由.4.如图,已知点E,F在直线AB上,点G在线段CD上,∠GHD.1)求证:CE∥ GF;2)试判断∠ AED与∠ D之间的数量关系,并说明理由;(第 6题)高分夺冠1. 直线a,b,c 在同一平面内,①如果a⊥ b,b⊥c,那么a∥c;②如果a∥ b,b∥c,那么 a ∥ c;③如果a∥b,b⊥c,那么a⊥ c;④如果a与b相交,b与c相交,那么a与c相交.在上述四种说法中,正确的有个.4.将一副三角尺中的两个直角顶点C叠放在一起(如图),其中∠ A=30°,∠ B=60°,∠ D=∠E=45°.1)若∠ BCD=150°,求∠ ACE的度数;2)试猜想∠ BCD与∠ ACE之间的数量关系,并说明理由;(3)若按住三角尺ABC不动,绕顶点 C 转动三角尺DCE,试探究∠ BCD等于多少度时,CD∥ AB,并简要说明理由.(第4题)。
第1讲 平行线的性质与判定

∠AMD=∠AGF. 证明:∵BD⊥AC,EF⊥AC(已知), ∴∠BDF=∠EFC=90°(垂直的性质)
∴BD∥EF(同位角相等,两直线平行),
∴∠2=∠CBD(两直线平行,同位角相等), ∵∠2=∠1(已知), ∴∠1=∠CBD(等量代换),
∴∠D=∠AHC(_两___直__线__平__行___,__同__位__角__相___等____) ∵∠A=∠D(已知) ∴∠AHC=∠A(__等__量__代__换____________________)
∴___A__B_∥__C__D___(__内__错__角__相__等___,__两__直__线___平__行_____).
★ 例题精讲
例题5 如图,已知∠ABC+∠BCD+∠CDE=360°,求证:AB∥ED.
解:连接BD, ∴∠DBC+∠BCD+∠CDB=180°, ∵∠ABC+∠BCD+∠EDC=360° ∴∠ABD+∠EDB=180°, ∴AB∥DE.
★ 例题精讲
练习5 如图,EF∥AD,∠1=∠2,∠BAC=75°。 (1)求证:AB∥DG;(2)求∠AGD.
4. 把下列命题写成“如果……那么……”的形式,并判断其真假: (1)等角的补角相等; (2)两个锐角的和是锐角; (3)负数之和仍为负数.
(1)如果两个角相等,那么这两个角的补角相等; 真命题 (2)如果两个角是锐角,那么这两个角的和也是锐角;假命题 (3)如果几个数是负数,那么它们的和也是负数. 真命题
∴ CE∥DF(同位角相等,两直线平行)
∴ ∠BCE=∠BDF(两直线平行,同位角相等) ∠EDF=∠CED(两直线平行,内错角相等)
2023年浙教版七下数学第一章平行线章节复习(教师版)

2023年浙教版七下数学第一章平行线章节复习(教师版)一、知识梳理知识点1:平行线的定义1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a ∥b.注意:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.知识点2:同位角、内错角和同旁内角两条直线被第三条线所截,可得八个角,即“三线八角”,如图6所示。
(1)同位角:可以发现∠1与∠5都处于直线l的同一侧,直线a、b的同一方,这样位置的一对角就是同位角。
图中的同位角还有∠2与∠6,∠3与∠7,∠4与∠8。
(2)内错角:可以发现∠3与∠5都处于直线l的两旁,直线a、b的两方,这样位置的一对角就是内错角。
图中的内错角还有∠4与∠6。
(3)同旁内角:可以发现∠4与∠5都处于直线l的同一侧,直线a、b的两方,这样位置的一对角就是同旁内角。
图中的同旁内角还有∠3与∠6。
知识点3:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.记作:如果a∥b,a∥c,那么a∥c注意:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)“平行公理的推论”也叫平行线的传递性知识点4:平行线判定判定方法(1):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等,两直线平行。
几何语言:∵∠1=∠2∴ AB∥CD(同位角相等,两直线平行)判定方法(2):两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行。
浙教版七年级数学下册第一章《平行线的判定1》优课件

A 1 l1
2
B C
l2
练一练
2、如图,AB⊥CD于点B,AE与BF相交于点
G,且∠FGE=60°, ∠ABG=30°。请判断
AE与CD是否平行,并说明理由。
F
A
6 0O
G
E
3 0O
CB
D
1、某人骑自行车从A地出发,沿正东方向前进至B处 后,右转15°,沿直线向前行驶到C处(如图)。这 时他想仍按正东方向行驶,那么他应怎样调整行驶方 向?请画出他应继续行驶的路线,并说明理由。
1 l3
2
3
l2
l1
变式3
如 图 , l1l3,l2l3, 直 线 l1
l3
与 l2平 行 吗 ? 请 说 明 理 由 。 2 1
l2
l1
在同一平面内,垂直于同一条直线 的两条直线互相平行
完成书本P11 作业题4
练一练
l l 1点.如C.图若,已 知1 直5线00,1 , l 22 被4直00 线,A则B所1 截与,lA2 C平行l吗2 于?
A
B
1
15°
C2 E
D
如图,已知∠ABD=∠ACE,BF、CG分
别是∠ABD、∠ACE的平分线,请判断
BF与CG是否平行,并说明理由。
A
F 1
B
D
2
G
C
E
你学到了什么? 你还有什么困惑吗? 你有什么经验与收获让同学们共享呢?
(1)如图1,∠C=57°,
当∠ABE= 57 °时,就能使BE∥CD.
(2)如图2 , ∠1=120°,∠2=60°.
问a与b的关系? a∥b
A
ab
B
专题01 平行线的判定和性质(解析版)

2022-2023学年浙教版七年级数学下册精选压轴题培优卷专题01 平行线的判定和性质一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•沙坪坝区期末)如图,直线AB,CD被直线EF所截,AB∥CD,∠1=113°,则∠2的度数为( )A.23°B.67°C.77°D.113°解:∵AB∥CD,∴∠CFE=∠1=113°,∠2=180°﹣∠CFE=180°﹣113°=67°,故选:B.2.(2分)(2023春•九龙坡区校级月考)将一块三角板和一块直尺如图放置,若∠1=50°,则∠2的度数为( )A.110°B.120°C.130°D.140°解:如图,∵∠3=∠1,∴∠2=∠A+∠3=140°.故选:D.3.(2分)(2022秋•青云谱区校级期末)如图,已知长方形纸片ABCD,点E,F在AD边上,点G,H在BC边上,分别沿EG,FH折叠,使点D和点A都落在点M处,若α+β=119°,则∠EMF的度数为( )A.57°B.58°C.59°D.60°解:∵长方形ABCD,∴AD∥BC,∴∠DEG=α,∠AFH=β,∴∠DEG+∠AFH=α+β=119°,由折叠得:∠DEM=2∠DEG,∠AFM=2∠AFH,∴∠DEM+∠AFM=2×119°=238°,∴∠FEM+∠EFM=360°﹣238°=122°,在△EFM中,∠EMF=180°﹣(∠FEM+∠EFM)=180°﹣122°=58°,故选:B.4.(2分)(2022春•殷都区校级月考)如图,AB∥CD,则图中α,β,γ三者之间的关系是( )A.α+β+γ=180°B.α﹣β+γ=180°C.α+β﹣γ=180°D.α+β+γ=360°解:如图,延长AE交直线CD于F,∵AB∥CD,∴∠α+∠AFD=180°,∵∠AFD=∠β﹣∠γ,∴∠α+∠β﹣∠γ=180°,故选:C.5.(2分)(2022•绿园区校级模拟)如图,已知锐角∠AOB,按下列步骤作图:①在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;②分别以点C,D为圆心,CD长为半径作弧,交于点M.N;③连MN,OM.则下列结论错误的是( )A.∠COM=∠COD B.若OM=MN,则∠AOB=30°C.MN∥CD D.MN<3CD解:连接ON,MD,由作法得CM=CD=DN,∴∠COM=∠COD,所以A选项正确;∵OM=ON,∴当OM=MN时,△OMN为等边三角形,∴∠MON=60°,∵∠AOB=∠MOA=∠NOB=×60°=20°,所以B选项错误;∵,∴∠MDC=∠DMN,∴MN∥CD,所以C选项正确;∵CM+CD+DN>MN,∴3CD>MN,所以D选项正确.故选:B.6.(2分)(2019秋•淮阴区期末)如图,将长方形ABCD沿线段EF折叠到EB'C'F的位置,若∠EFC'=100°,则∠DFC'的度数为( )A.20°B.30°C.40°D.50°解:由翻折知,∠EFC=∠EFC'=100°,∴∠EFC+∠EFC'=200°,∴∠DFC'=∠EFC+∠EFC'﹣180°=200°﹣180°=20°,故选:A.7.(2分)(2021春•奉化区校级期末)如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH =100°,则∠BEG的度数为( )A.30°B.40°C.50°D.60°解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠FAE=80°,∠AEF=180°﹣∠FEG﹣∠HEG=180°﹣2β,在△AEF中,80°+2α+180﹣2β=180°故β﹣α=40°,而∠BEG=∠FEG﹣∠FEB=β﹣α=40°,故选:B.8.(2分)(2022•博望区校级一模)如图是一款手推车的平面示意图,其中AB∥CD,∠1=24°,∠2=76°,则∠3的度数为( )A.104°B.128°C.138°D.156°解:如图:∵AB∥CD,∠1=24°,∴∠A=∠1=24°,∵∠2=76°,∠2+∠4=180°,∴∠4=180°﹣∠2=180°﹣76°=104°,∴∠3=∠4+∠A=104°+24°=128°.故选:B.9.(2分)(2022秋•南岗区校级期中)如图,AB∥CD∥EF,则下列各式中正确的是( )A.∠1+∠2+∠3=180°B.∠1+∠2=180°+∠3C.∠1+∠3=180°+∠2D.∠2+∠3=180°+∠1解:∵AB∥CD∥EF,∴∠2+∠BDC=180°,∠3=∠CDE,又∠BDC=∠CDE﹣∠1,∴∠2+∠3﹣∠1=180°.故选:D.10.(2分)(2022春•青秀区校级期中)已知AB∥CD,点E在BD连线的右侧,∠ABE与∠CDE的角平分线相交于点F,则下列说法正确的是( )①∠ABE+∠CDE+∠E=360°;②若∠E=80°,则∠BFD=140°;③如图(2)中,若∠ABM=∠ABF,∠CDM=∠CDF,则6∠BMD+∠E=360°;④如图(2)中,若∠E=m°,∠ABM=∠CDF,则∠M=()°.A.①②④B.②③④C.①②③D.①②③④解:∵AB∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BEG+∠CDE+∠DEG=360°,即∠ABE+∠BED+∠CDE=360°,①正确,∵∠BED=80°,∠ABE+∠BED+∠CDE=360°,∴∠ABE+∠CDE=280°,∵AB∥CD,∴∠ABF=∠BFH,∠CDF=∠DFH,∴∠BFD=∠BFH+∠DFH=∠ABF+∠CDF=(∠ABE+∠CDE)=140°,②正确,与上同理,∠BMD=∠ABM+∠CDM=(∠ABF+∠CDF),∴6∠BMD=2(∠ABF+∠CDF)=∠ABE+∠CDE,∴6∠BMD+∠E=360°,③正确,由题意,④不一定正确,∴①②③正确,故选:C.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•朝阳区校级期末)如图,已知AC∥BD,∠CAE=30°,∠DBE=35°,则∠AEB等于 65° .解:过点E作EF∥AC,∵AC∥BD,∴AC∥EF∥BD,∴∠AEF=∠CAE=30°,∠BEF=∠DBE=35°,∴∠AEB=∠AEF+∠BEF=65°.故答案为:65°.12.(2分)(2022秋•宛城区校级期末)如图,把一个长方形纸片沿OG折叠后,C,D两点分别落在C',D'两点处,若∠AOD':∠D'OG=4:3,则∠BGO= 54 度.解:∵∠AOD':∠D'OG=4:3,设∠AOD'=4x,则∠D'OG=3x,由翻折可知∠DOG=∠D'OG=3x∵∠AOD'+∠D'OG+∠DOG=180°,即10x=180°,解得x=18°,∵AD∥BC,∴∠BGO=∠DOG=3x=54°,故答案为:54.13.(2分)(2022秋•沙坪坝区校级期末)如图,直线GH分别与直线AB,CD相交于点G,H,且AB∥CD.点M在直线AB,CD之间,连接GM,HM,射线GH是∠AGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠BGM,∠M=∠N+∠HGN,则∠MHG的度数为 45° .解:过M作MF∥AB,过H作HE∥GN,如图:设∠BGM=2α,∠MHD=β,则∠N=∠BGM=2α,∴∠AGM=180°﹣2α,∵GH平分∠AGM,∴∠MGH=∠AGM=90°﹣α,∴∠BGH=∠BGM+∠MGH=90°+α,∵AB∥CD,∴MF∥AB∥CD,∴∠M=∠GMF+∠FMH=∠BGM+∠MHD=2α+β,∵∠M=∠N+∠HGN,∴2α+β=×2α+∠HGN,∴∠HGN=β﹣α,∵HE∥CN,∴∠GHE=∠HGN=β﹣α,∠EHM=∠N=2α,∴∠GHD=∠GHE+∠EHM+∠MHD=(β﹣α)+2α+β=2β+α,∵AB∥CD,∴∠BGH+∠GHD=180°,∴(90°+α)+(2β+α)=180°,∴α+β=45°,∴∠MHG=∠GHE+∠EHM=(β﹣α)+2α=α+β=45°,故答案为:45°.14.(2分)(2022•苏州模拟)如图,把一张长方形纸片ABCD沿EF折叠,∠1=50°,则∠FGE= 80 °.解:由折叠得∠GEF=∠DEF,∵AD∥BC∴∠DEF=∠1∴∠GEF=∠1∵∠FGE+2∠1=180°,∴∠FGE=180°﹣2×50°=80°,故答案为:80.15.(2分)(2022春•大荔县校级月考)如图,在三角形ABC中,点D、E分别在AB、BC上,连接DE,且DE∥AC,∠1=∠2,若∠B=50°,则∠BAF的度数为 130° .解:∵DE∥AC,∴∠2=∠C,∵∠1=∠2,∴∠1=∠C,∴AF∥BC,∴∠B+∠BAF=180°,∵∠B=50°,∴∠BAF=180°﹣50°=130°.故答案为:130°.16.(2分)(2022秋•新会区校级期末)如图,将长方形ABCD沿EF翻折,再沿ED翻折,若∠FEA″=105°,则∠CFE= 155 度.解:由四边形ABFE沿EF折叠得四边形A′B′FE,∴∠A′EF=∠AEF.∵∠A′EF=∠A′ED+∠DEF,∠AEF=180°﹣∠DEF.∴∠A′ED+∠DEF=180°﹣∠DEF.由四边形A′B′ME沿AD折叠得四边形A″B″ME,∴∠A′ED=∠A″ED.∵∠A″ED=∠A″EF+∠DEF=105°+∠DEF,∴∠A′ED=105°+∠DEF.∴105°+∠DEF+∠DEF=180°﹣∠DEF.∴∠DEF=25°.∵AD∥BC,∴∠DEF=∠EFB=25°.∴∠CFE=180°﹣∠EFB=180°﹣25°=155°.故答案为:155.17.(2分)(2022春•思明区校级期末)如图,将长方形纸片ABCD沿EF折叠后,点A,B分别落在A',B'的位置,再沿AD边将∠A'折叠到∠H处,已知∠1=50°,则∠FEH= 15 °.解:由折叠可知:∠BFE=∠B'FE,∠AEF=∠A'EF,∠A'EG=∠HEG,∵∠1+∠BFE+∠B'FE=180°,∠1=50°,∴∠BFE=65°,∵AD∥BC,∴∠AEF+∠BFE=180°,∴∠AEF=115°,∴∠A'EF=115°,过B'作B'M∥AD,则∠DGB'=∠GB'M,∵AD∥BC,∴∠MB'F=∠1,∴∠1+∠DGB'=∠GB'F=90°,∴∠DGB'=90°﹣50°=40°,∴∠A'GE=∠DGB'=40°,∵∠A'=90°,∴∠HEG=∠A'EG=90°﹣40°=50°,∴∠A'EH=2×50°=100°,∴∠FEH=∠A'EF﹣∠A'EH=115°﹣100°=15°.故答案为:15.18.(2分)(2021秋•南岗区校级期中)如图,直线MN与直线AB、CD分别交于点E、F,AB∥CD,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,交MN于点Q,∠HPQ:∠QFP=3:2,则∠EHG= 30° .解:∵AB∥CD,∴∠BEF+∠EFD=180°,∵∠BEF与∠EFD的角平分线交于点P,∴∠PEF=∠BEF,∠PFE=∠EFD,∴∠PEF+∠PFE=(∠BEF+∠EFD)=90°,∵∠EPF=180°﹣(∠PEF+∠PFE)=90°,∵GH⊥EG,∴∠EGH=∠EPF=90°,∴FP∥HG,∴∠FPH=∠PHK,∠QFP=∠EHG,设∠PHK=x°,则∠FPH=∠HPK=∠PHK=x°,∠FPK=∠FPH+∠HPK=2x°,∴∠EPK=∠EPF+∠FPK=90°+2x°,∵PQ平分∠EPK,∴∠QPK=∠EPK=(90°+2x°)=45°+x°,∴∠HPQ=∠QPK﹣∠HPK=45°,∵∠HPQ:∠QFP=3:2,∴∠QFP=30°,∴∠EHG=∠QFP=30°;故答案为:30°.19.(2分)(2021秋•香坊区校级期中)已知AB∥CD,∠ACD=60°,∠BAE:∠CAE=2:3,∠FCD=4∠FCE,若∠AEC=78°,则∠AFC= 88° .解:∵AB∥CD,∴∠CAB=180°﹣∠ACD=180°﹣60°=120°,∵∠BAE:∠CAE=2:3,∴∠CAE=120×=72°,∵∠AEC=78°,∴∠ACE=180°﹣∠AEC﹣∠CAE=180°﹣78°﹣72°=30°,设∠FCE=x,则∠FCD=4x,∴∠ACF=∠ACD﹣∠FCD=60°﹣4x,∴∠ACE=∠ACF+∠ECF=60°﹣3x,∴60°﹣3x=30°,∴x=10°,∴∠ACF=60°﹣40°=20°,∴∠AFC=180°﹣∠ACF﹣∠CAE=180°﹣20°﹣72°=88°,故答案是:88°.20.(2分)(2021春•东港区校级期末)把一张对边互相平行的纸条,折成如图所示,EF是折痕,若∠EFB=32°,则下列结论:①∠C'EF=32°;②∠AEC=148°;③∠BGE=64°;④∠BFD=116°.正确的有 3 个.解:∵AC′∥BD′,∴∠C′EF=∠EFB=32°,所以①正确;∵∠C′EF=∠FEC,∴∠C′EC=2×32°=64°,∴∠AEC=180°﹣64°=116°,所以②错误;∴∠BFD=∠EFD′﹣∠BFE=180°﹣2∠EFB=180°﹣64°=116°,所以④正确;∵∠BGE=∠C′EC=2×32°=64°,所以③正确.故答案为3.三.解答题(共7小题,满分60分)21.(6分)(2022秋•长安区校级期末)如图,直线CD、EF交于点O,OA,OB分别平分∠COE和∠DOE,已知∠1+∠2=90°,且∠2:∠3=2:5.(1)求∠BOF的度数;(2)试说明AB∥CD的理由.解:(1)∵OA,OB分别平分∠COE和∠DOE,∴,,∵∠COE+∠DOE=180°,∴∠2+∠AOC=90°,∵∠COE=∠3,∴,∴,∵∠2:∠3=2:5,∴,∴,∴∠2=40°,∴∠3=100°,∴∠BOF=∠2+∠3=140°;(2)∵∠1+∠2=90°,∠2+∠AOC=90°,∴∠1=∠AOC,∴AB∥CD.22.(6分)(2022秋•市北区校级期末)如图,已知∠1+∠2=180°,∠B=∠E.(1)试猜想AB与CE之间有怎样的位置关系?并说明理由.(2)若CA平分∠BCE,∠B=50°,求∠A的度数.解:(1)AB∥CE,∵∠1+∠2=180°(已知),∴DE∥BC(同旁内角互补,两直线平行),∴∠ADF=∠B(两直线平行,同位角相等),∵∠B=∠E(已知),∴∠ADF=∠E(等量代换),∴AB∥CE(内错角相等,两直线平行).(2)∵AB∥CE,∴∠B+∠BCE=180°,∵∠B=50°,∴∠BCE=130°,∵CA平分∠BCE,∴∠ACE==65°,∵AB∥CE,∴∠A=∠ACE=65°.23.(6分)(2022秋•荆门期末)如图,在△ABC中,AD⊥BC于D,G是BA延长线上一点,AH平分∠GAC.且AH∥BC,E是AC上一点,连接BE并延长交AH于点F.(1)求证:AB=AC;(2)猜想并证明,当E在AC何处时,AF=2BD.(1)证明:∵AH平分∠GAC,∴∠GAF=∠FAC,∵AH∥BC,∴∠GAF=∠ABC,∠FAC=∠C,∴∠ABC=∠C,∴AB=AC.(2)解:当AE=EC时,AF=2BD.理由:∵AB=AC,AD⊥BC,∴BD=DC,∵AF∥BC,∴∠FAE=∠C,∵∠AEF=∠CEB,AE=EC,∴△AEF≌△CEB(ASA),∴AF=BC=2BD.24.(10分)(2022秋•南关区校级期末)已知AM∥CN,点B在直线AM、CN之间,∠ABC=88°.(1)如图1,请直接写出∠A和∠C之间的数量关系: ∠A+∠C=88° .(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为 46° .解:(1))过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C=∠CBE.∵∠ABC=88°.∴∠A+∠C=∠ABE+∠CBE=∠ABC=88°.故答案为:∠A+∠C=88°;(2)∠A和∠C满足:∠C﹣∠A=92°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C+∠CBE=180°.∴∠CBE=180°﹣∠C.∵∠ABC=88°.∴∠ABE+∠CBE=88°.∴∠A+180°﹣∠C=88°.∴∠C﹣∠A=92°.(3)设CH与AB交于点F,如图,∵AE平分∠MAB,∴∠GAF=∠MAB.∵CH平分∠NCB,∴∠BCF=∠BCN.∵∠B=88°,∴∠BFC=88°﹣∠BCF.∵∠AFG=∠BFC,∴∠AFG=88°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,∴∠AGH=(∠BCN﹣∠MAB).由(2)知:∠BCN﹣∠MAB=92°,∴∠AGH=×92°=46°.故答案为:46°.25.(10分)(2022春•铜梁区校级月考)课题学习:平行线的“等角转化”功能.(1)阅读理解:如图1,已知点A是BC外一点,连接AB、AC,求∠B+∠BAC+∠C的度数.阅读并补充下面推理过程.解:过点A作ED∥BC,∴∠B= ∠EAB ,∠C= ∠DAC ,∵∠EAB+∠BAC+∠DAC=180°,∴∠B+∠BAC+∠C=180°.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC、∠B、∠C“凑”在一起,得出角之间的关系,使问题得以解决.(2)方法运用:如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数;(3)深化拓展:已知AB∥CD,点C在点D的右侧,∠ADC=50°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在直线AB与CD之间.①如图3,点B在点A的左侧,若∠ABC=36°,求∠BED的度数.②如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,求∠BED度数.(用含n的代数式表示)解:(1)∵ED∥BC,∴∠B=∠EAB,∠C=∠DAC(两直线平行,内错角相等);故答案为:∠EAB;∠DAC;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D+∠FCD=180°,∵CF∥AB,∴∠B+∠FCB=180°,∴∠B+∠FCB+∠FCD+∠D=360°,∴∠B+∠BCD+∠D=360°;(3)①过E作EG∥AB,∵AB∥DC,∴EG∥CD,∴∠GED=∠EDC,∵DE平分∠ADC,∴,∴∠GED=25°,∵BE平分∠ABC,∴,∵GE∥AB,∴∠BEG=∠ABE=18°,∴∠BED=∠GED+∠BEG=25°+18°=43°;②过E作PE∥AB,∵AB∥CD,∴PE∥CD,∴∠PED=∠EDC=25°,∵BE平分∠ABC,∠ABC=n°,∴,∵AB∥PE,∴∠ABE+∠PEB=180°,∴,∴.26.(10分)(2022春•铁东区校级月考)如图1为北斗七星的位置图,如图2将北斗七星分别标为A,B,C,D,E,F,G,将A,B,C,D,E,F顺次首尾连接,若AF恰好经过点G,且B,G,C在一条直线上,若AF∥DE,∠B=∠C+9°,∠D=∠E=105°.(1)求∠F的度数.(2)计算∠B﹣∠CGF的度数是 115° .(3)连接AD,当∠ADE与∠CGF满足怎样数量关系时,BC∥AD.并说明理由,解:(1)∵AF∥DE,∴∠F+∠E=180°,∴∠F=180°﹣105°=75°;(2)延长DC交AF于K,可得:∠B﹣∠CGF=∠C+10°﹣∠CGF=∠GKC+10°=∠D+9°=114°,故答案为:114°;(3)当∠ADE+∠CGF=180°时,BC∥AD,∵AF∥DE,∴∠GAD+∠ADE=180°,∠ADE+∠CGF=180°,∴∠GAD=∠CGF,∴BC∥AD.27.(12分)(2022春•江汉区校级月考)如图1,直线l分别交直线AB、CD于点EF(点在点F的右侧).若∠1+∠2=180°.(1)求证:AB∥CD;(2)如图2,点H在直线AB、CD之间,过点H作HG⊥AB于点G,若FH平分∠EFD,∠2=120°,求∠FHG的度数.(3)如图3,直线MN与直线AB、CD分别交于点M、N,若∠EMN=120°,点P为线段EF上一动点,Q 为直线CD上一动点,请直接写出∠PMN与∠MPQ,∠PQF之间的数量关系.(题中的角均指大于0°且小于180°的角)(1)证明:∵∠1+∠2=180°,∠2+∠DFE=180°,∴∠1=∠DFE(同角的补角相等),∴AB∥CD(同位角相等,两直线平行);(2)解:如图所示,过点H作HP∥AB,则HP∥AB∥CD,∵GH∥AB,即∠EGH=90°,∴∠PHG=180°﹣∠EGH=90°,∵∠2=120°,∴∠EFD=180°﹣∠2=60°,∵FH平分∠EFD,∴∠HFD=30°,∵PH∥CD,∴∠PHF=∠HFD=30°,∴∠FHG=∠PHF+∠PHG=120°;(3)解:如图3﹣1,当点Q在线段FN上时,过点P作PH∥AB,则PH∥AB∥CD,∴∠EMP=∠MPH,∠PQF=∠HPQ,∴∠MPQ+∠PMN﹣∠PQF=∠MPQ﹣∠HPQ+∠PMN=∠MPH+∠PMN=∠EMP+∠PMN=∠EMN=120°;如图3﹣2,当点Q在FN的延长线上时,过点P作PH∥AB,则PH∥AB∥CD,∴∠EMP=∠MPH,∠PQF=∠HPQ,∴∠MPQ+∠PMN﹣∠PQF=∠MPQ+∠PMN﹣∠HPQ=∠MPH+∠PMN=∠EMP+∠PMN=∠EMN=120°;如图3﹣3(1),当点Q在NF的延长线上且点Q在直线MP的右侧时,过点P作PH∥AB,则PH∥AB∥CD,∴∠EMP=∠MPH,∠PQF+∠HPQ=180°,∴∠MPQ+∠PMN+∠PQF=∠MPQ+180°﹣∠HPQ+∠PMN=∠MPH+∠PMN+180°=∠EMP+∠PMN+180°=∠EMN+180°=300°;如图3﹣3(2),当点Q在NF的延长线上且点Q在直线MP的右侧时,过点P作PH∥AB,则PH∥AB∥CD,∴∠EMP+∠MPH=180°,∠PQF=∠HPQ,∴∠MPQ﹣∠PMN﹣∠PQF=∠MPQ﹣∠PMN﹣∠HPQ=∠MPH﹣∠PMN=180°﹣∠EMP﹣∠PMN=180°﹣∠EMN=60°;综上,∠PMN与∠MPQ,∠PQF之间的数量关系为:∠MPQ+∠PMN﹣∠PQF=120°或∠MPQ+∠PMN+∠PQF=300°或∠MPQ+∠PMN﹣∠PQF=60°。
七年级数学下册 1.4 平行线的性质(第1课时)教案 (新版)浙教版

重点
平行线的性质公理及平行线性质定理的推理.
教学难点
平行线性质与判定的区别及推理过程.
教学过程
ห้องสมุดไป่ตู้设计意图
温故知新,引入新课
通过合作学习,自主学习发现新知
联系判定定理进行区别
例1,2作为课堂练习巩固新知,特别是要求学生要有完整的集合语言书写
还要强调作几何数学题的分析问题的方式
从已知条件出来考虑
从结论出来考虑
平行线的性质(第1课时)
教
学
目
标
知识目标:平行线的性质与平行线的判定是相反问题,平行线的性质,会用平行线的性质进行推理和计算.
能力目标:1.通过画平行线、度量角培养学生实际操作能力(即画图测量的能力).2.通过平行线性质定理的推导,培养学生的观察分析和进行简单的逻辑推理能力.
情感目标:通过学习平行线的性质与判定的联系与区别,培养学生事物是普遍联系又是相互区别的辩证唯物主义思想.
巩固知识
辨析真伪
作业布置:
常规三项
浙教版初中数学七年级下册平行线及其判定(提高)知识讲解

平行线及其判定(提高)知识讲解【学习目标】1.熟练掌握平行线定义及画法;2.掌握平行公理及其推论;3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行.【要点梳理】要点一、平行线及平行公理1.平行线的定义在同一平面内,不相交的两条直线叫做平行线. 两直线平行,用符号“∥”表示. 如下图,两条直线互相平行,记作AB∥CD或a∥b.要点诠释:(1)同一平面内,两条直线的位置关系:相交和平行.(2)互相重合的直线通常看作一条直线,两条线段或射线平行是指它们所在的直线平行.2.平行线的画法用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.3.平行公理及推论平行公理:经过已知直线外一点,有且只有一条直线与已知直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.4. 两条平行线间的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线间的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即两条平行线之间的距离处处相等.要点二、平行线的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:(1)平行线的判定是由角相等或互补,得出平行,即由数推形.(2)今后我们用符号“∵”表示“因为”,用“∴”表示“所以”.【典型例题】类型一、平行公理及推论1.在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行. 其中正确的个数为:( ) .A.1个B.2个C.3个D.4个【答案】B【解析】正确的是:(1)(3).【总结升华】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意区分不同表述之间的联系和区别.举一反三:【变式】下列说法正确的个数是() .(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.(2)两条直线被第三条直线所截,同旁内角的平分线互相垂直.(3)两条直线被第三条直线所截,同位角相等.(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行.A.1个 B .2个C.3个D.4个【答案】B2.下面两条平行线之间的三个图形,图的面积最大,图的面积最小.【思路点拨】两个完全一样的三角形可以拼成一个平行四边形,每个三角形的面积是拼成的平行四边形面积的一半;两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是拼成的平行四边形面积的一半.因为高相同,所以可以通过比较平行四边形的底的长短,得出平行四边形面积的大小.【答案】图3,图2【解析】解:因为它们的高相等,三角形的底是8,8÷2=4,梯形的上、下底之和除以2,(2+7)÷2=4.5;5>4.5>4;所以,图3平行四边形的面积最大,图2三角形的面积最小.【总结升华】根据平行线的性质,得出梯形、三角形、平行四边形的高相等,求出三角形底的一半,梯形上、下底之和的一半,与平行四边形的底进行比较,由此得出正确答案.举一反三:【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是厘米.【答案】35类型二、平行线的判定3. 如图,给出下列四个条件:(1)AC=BD;(2)∠DAC=∠BCA;(3)∠ABD=∠CDB;(4)∠ADB=∠CBD,其中能使AD∥BC的条件有().A.(1)(2)B.(3)(4)C.(2)(4)D.(1)(3)(4)【思路点拨】欲证AD∥BC,在图中发现AD、BC被一直线所截,故可按同位角相等、内错角相等、同旁内角互补,两直线平行补充条件.【答案】C【解析】从分解图形入手,即寻找AD、BC的截线.【总结升华】从题目的结论出发分析所要说明的结论能成立,必须具备的是哪些条件,再看这些条件成立又需具备什么条件,直到追溯到已知条件为止.举一反三:【变式】一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°【答案】A提示:“方向相同”有两层含义,即路线平行且方向相同,在此基础上准确画出示意图.图B显然不同向,因为路线不平行.图C中,∠1=180°-130°=50°,路线平行但不同向.图D中,∠1=180°-130°=50°,路线平行但不同向.只有图A路线平行且同向,故应选A.4.如图所示,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB∥EF的理由.【思路点拨】利用辅助线把AB、EF联系起来.【答案与解析】解法1:如图所示,在∠BCD的内部作∠BCM=25°,在∠CDE的内部作∠EDN=10°.∵∠B=25°,∠E=10°(已知),∴∠B=∠BCM,∠E=∠EDN(等量代换).∴AB∥CM,EF∥DN(内错角相等,两直线平行).又∵∠BCD=45°,∠CDE=30°(已知),∴∠DCM=20°,∠CDN=20°(等式性质).∴∠DCM=∠CDN(等量代换).∴CM∥DN(内错角相等,两直线平行).∵AB∥CM,EF∥DN(已证),∴AB∥EF(平行线的传递性).解法2:如图所示,分别向两方延长线段CD交EF于M点、交AB于N点.∵∠BCD=45°,∴∠NCB=135°.∵∠B=25°,∴∠CNB=180°-∠NCB-∠B=20°(三角形的内角和等于180°).又∵∠CDE=30°,∴∠EDM=150°.又∵∠E=10°,∴∠EMD=180°-∠EDM-∠E=20°(三角形的内角和等于180°).∴∠CNB=∠EMD(等量代换).所以AB∥EF(内错角相等,两直线平行).【总结升华】判定两条直线平行的方法有四种,选择哪种方法要根据问题提供的条件来灵活选取.举一反三:【:平行线及判定403102经典例题2】【变式】已知,如图,BE平分∠ABD,DE平分∠CDB,且∠1与∠2互余,试判断直线AB、CD的位置关系,请说明理由.【答案】解:AB∥CD,理由如下:∵BE平分∠ABD,DE平分∠CDB,∴∠ABD=2∠1,∠CDB=2∠2.又∵∠1+∠2=90°,∴∠ABD+∠CDB=180°.∴AB∥CD(同旁内角互补,两直线平行).。
【最新】浙教版七年级数学下册第一章《平行线的性质(1)》精品课件.ppt

。2021年1月12日星期二2021/1/122021/1/122021/1/12
❖ 15、会当凌绝顶,一览众山小。2021年1月2021/1/122021/1/122021/1/121/12/2021
❖ 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/122021/1/12January 12, 2021
❖
THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/1/122021/1/122021/1/122021/1/12
谢谢观看
布置作业
1、作业本 2、课后练习
❖ 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/122021/1/12Tuesday, January 12, 2021
❖ 10、人的志向通常和他们的能力成正比例。2021/1/122021/1/122021/1/121/12/2021 9:36:38 AM ❖ 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/122021/1/122021/1/12Jan-2112-Jan-21 ❖ 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/122021/1/122021/1/12Tuesday, January 12, 2021 ❖ 13、志不立,天下无可成之事。2021/1/122021/1/122021/1/122021/1/121/12/2021
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4321CDBA第1讲 平行线性质和判定模块一 平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行.这就需要更简单易行的判定方法来判定两条直线平行. 判定方法1: 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简称:内错角相等,两直线平行. 判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 简称:同旁内角互补,两直线平行.如上图:若已知∠1=∠2,则AB ∥CD (同位角相等,两直线平行); 若已知∠1=∠3,则AB ∥CD (内错角相等,两直线平行); 若已知∠1+∠4=180°,则AB ∥CD (同旁内角互补,两直线平行).例题1、(1)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( ).A .两直线平行,同位角相等;B .内错角相等,两直线平行;4321ABC D EF HGNMC .同旁内角互补,两直线平行;D .同位角相等,两直线平行.答案:B(2)如图,点E 在AC 的延长线上,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A =∠DCE ;④∠D =∠DCE ;⑤∠A +∠ABD =180°;⑥∠A +∠ACD =180°⑦AB =CD .能说明AC ∥BD 的条件有__________________.答案:②④⑤例题2、如图,已知∠1=∠2,∠3+∠4=180°,说明:AB ∥EF .解:∵∠1=∠2,( )∴AB ∥______.(_______________,__________________) ∵∠3+∠4=180°,()∴CD ∥_______,(_______________,__________________) ∵AB ∥_______,CD ∥_______,()∴AB ______EF .(_______________ __________________)答案:已知,CD ,内错角相等,两直线平行。
已知,EF ,同旁内角互补,两直线平行,CD ,EF ,已证,∥,等量代换例题3、(1)如图,∠1=∠2,∠CNF =∠BME ,说明:AB ∥CD ,MP ∥NQ .21FCGDEABACDFEB解:∵∠CNF=∠BME ,且∠BME=∠AMN , ∴∠AMN=∠CNF , ∴AB ∥CD , ∴∠BMN=∠DNF , 又∠1=∠2, ∴∠PMN=∠QNF , ∴MP ∥NQ .(2)如图,∠1=∠A ,∠2与∠B 互余,AC ⊥BC .说明:AC ∥DE ,AB ∥CD . 解:∵∠1=∠A E ∴AC ∥ED , ∵AC ⊥BC ,∴∠2与∠BCD 互余, ∵∠2与∠B 互余, ∴∠B =∠BCD ∴A B ∥GQ .(3)如图,∠B =102°,∠DEF =70°,说明:AB ∥CD . 解:∵CD 与BF 相交于点E ∴∠DEF=∠BEC ∵ ∠DEF =70°∴∠BEC =70°∵∠B =102° ∴∠B+∠BEC=180° ∴AB ∥CD321ABCFE M GDN(4)如图,∠A +∠B =180°,∠EFC =∠DCG ,说明:AD ∥EF .解:∵∠A+∠B=180°, ∴AD ∥BC , ∵∠EFC=∠DCG , ∴EF ∥BC , ∴AD ∥EF模块二 平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如图已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的关系.这就是平行线的性质. 性质1: 两条直线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2: 两条直线被第三条直线所截,内错角相等简称:两直线平行,内错角相等性质3: 两条直线被第三条直线所截,同旁内角互补 简称:两直线平行,同旁内角互补例题4、(1)如图,已知AB ∥CD ,∠1=70°,∠2=40°,求∠3的度数. 解:∵AB ∥CD∴∠2=∠BEN321DCBA∵∠2=40° ∴∠BEN =40°∵∠1+∠3+∠BEN=180°,∠1=70° ∴∠3=70°(2)如图,已知AB ∥CD ,∠1=50°,GM 平分∠HGB 交直线CD 于点M ,求∠3的度数. ∵∠1=50°,∴∠BGF=180°-∠1=130°, ∵GM 平分∠BGF , ∴∠BGM=12∠BGF=65°, ∵∠1=∠2=50°, ∴AB ∥CD , ∴∠3=∠BGM=65°(3)如图,已知BC ∥AD ,CA 平分∠BCD ,∠1=35°,求∠D 的度数.解:∵BC ∥AD , ∴∠1=∠2=35°, 又∵∠2=∠3, ∴∠2=∠3=35°, 则∠BCD=70°,∴∠D=180°-∠BCD=110°.模块三平行线的判定与性质综合一般,题目会综合考查平行线的判定和性质,例如,可以先由题目中某些角相等或互补的条件,得到两条线相互平行(判定);再由此平行线推出其它的同位角、内错角相等或同旁内角互补(性质),从而得到新的角度关系.熟练掌握、灵活运用平行线的判定和性质,是解平行线导角以及证明类题型的关键.例题5、(1)如图,AD⊥BC,EF⊥BC,垂足分别为D、F,∠1+∠FEA=180°.说明:∠CDG=∠B.解:∵AD⊥BC,EF⊥BC,∴AD∥EF,∴∠2=∠3,∵∠1+∠FEA=180°,∠2+∠FEA=180°,∴∠1=∠2.(同角的补角相等),∴∠1=∠3,∴DG∥AB,∴∠CDG=∠B(两直线平行,同位角相等)(2)如图,点E在直线BC上,直线AE交CD于F,AB∥CD,∠1=∠2,∠3=∠4.说明:AD∥BE.BCAEF D解:∵AB ∥CD , ∴∠1=∠ACD , ∵∠1=∠2, ∴∠2=∠ACD ,∴∠2+∠CAE=∠ACD+∠CAE , ∴∠DAC=∠4, ∵∠3=∠4, ∴∠DAC=∠3, ∴AD ∥BE(3)如图,AB ∥DE ,BF 、DF 分别平分∠ABC 、∠CDE . ①若∠ABC =40°,∠CDE =30°,求∠BFD ; ②求∠C 和∠F 的关系.解:①根据模型可知,∠ABC +∠CDE =∠BFD∴∠BFD=70°②∠C =2∠F课后作业模块一 平行线的判定1、(1)如图,下列说法正确的有__________________. ① 由∠1=∠2,得AB ∥CD ; ② 由∠5=∠6,∠3=∠4,得AB ∥CD ;③ 由∠1+∠3=∠2+∠4,得AE ∥CH ;④ 由∠SAF =∠SCG ,得AF ∥CG .图1-1 图1-2(2)如图,下列条件中,不能判断直线l 1∥l 2的是( ). A .∠2=∠3 B .∠1=∠3C .∠4=∠5D .∠2+∠4=180°答案:1(1)① ③④ (2)A2、如图,已知AC ⊥AB ,BD ⊥AB ,∠CAE =∠DBF ,说明:AE ∥BF . 解:∵AC ⊥AB ,BD ⊥AB ,( )∴∠CAB =90°,∠______=90°,( ) ∴∠CAB =∠______,( ) ∵∠CAE =∠DBF ,( ) ∴∠BAE =∠______,()∴_____∥_____.(_______________,__________________)742136FEBGHDACSFAGBEH C D21FCGDEAB答案:解:∵AC ⊥AB ,BD ⊥AB (已知), ∴∠CAB=90°,∠DBA=90°(垂直定义), ∴∠CAB=∠ABD , ∵∠CAE=∠DBF (已知) ∴∠BAE=∠ABF , ∴AE ∥BF .3、(1)如图,FE ⊥CD 于点E ,∠FEH =64°,∠HGB =26°,说明:AB ∥CD . 解:∵FE ⊥CD ∴∠FED=90° ∵∠FEH =64° ∴∠DEH=26°∵∠HGB =26° ∴AB ∥CD(2)如图,∠1=∠A ,∠2与∠B 互余,DE ⊥BC 于点F ,说明AB ∥CD .解:∵∠1=∠A ∴AC ∥ED ∵DE ⊥BC ∴AC ⊥BC ∴∠ABC=90°∴∠2+∠BCD=90° ∵∠2与∠B 互余 ∴∠B=∠BCD ∴AB ∥CD模块二平行线的性质4、(1)如右图,已知AB∥CD,AD∥BC,∠B=60°,∠EDA=50°,求∠CDO的度数.解:∵AB∥CD,∠B=60°,∴∠DCO=∠B=60°,∵AD∥BC,∠EDA=50°,∴∠DOC=∠EDA=50°,∴∠CDO=180°-∠DCO-∠DOC=180°-60°-50°=70°(2)如图,已知AB∥CD,CM平分∠BCD,∠B=74°,CM⊥CN,求∠NCE的度数.解:∵AB∥CD,∴∠BCD=180°-∠B=180°-74°=106°,∠BCE=∠B=74°;∵CM平分∠BCD,∴∠BCM=106°÷2=53°,∵MC⊥CN,∴∠BCN=90°-∠BCM=37°,∴∠NCE=∠BCE-∠BCN=74°-37°=37°.(3)如图,已知AB∥CD,AD⊥AC,∠ADC=32°,求∠CAB的度数.解:∵AD⊥AC,21E C B A G D F H ∴∠CAD=90°,∵AB ∥CD ,∴∠BAD=∠ADC=32°,∴∠BAC=90°+32°=122°.模块三 平行线的综合运用5、(1)如图,已知∠1=∠2,∠B =∠C ,试说明AB ∥CD .解:∵∠1=∠CGD ,∠1=∠2,∴∠2=∠CGD ,∴CE ∥BF ,∴∠C=∠DFH ,∵∠B=∠C ,∴∠DFH=∠B ,∴AB ∥CD .(2)如图,已知∠1与∠2互补,∠3=∠B ,说明∠AFE =∠ACB .∵∠1+∠FDE=180°,∠1+∠2=180°,∴∠FDE=∠2,∴DF ∥AB ,∴∠3=∠AEF ,∵∠3=∠B ,∴∠AEF=∠B ,∴EF ∥CB ,∴∠AFE=∠ACB (两直线平行,同位角相等),(3)如图,AB∥DE,BF、DF分别平分∠ABC、∠CDE,若∠ABC=140°,∠CD3=130°,分别求出∠C和∠F的度数.解:有模型可知∠ABC+∠CDE+∠C=360°,∴∠C=360°-(∠ABC+∠CDE)=90°∵BF、DF分别平分∠ABC,∠CDE,∴∠AFB+∠EDF=12(∠ABC+∠CDE)=135°由模型可知∠BFD=∠ABF+∠EDF=135°(4)如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H,∠GFH+∠BHC=180°,说明∠1=∠2.解:∵∠BHC=∠FHD,∠GFH+∠BHC=180°,∴∠GFH+∠FHD=180°,∴FG∥BD,∴∠1=∠ABD,∵BD平分∠ABC,∴∠2=∠ABD,∴∠1=∠2挑战试着说明三角形ABC三个内角的和等于180 .解延长BA,过A作AE∥BC,∵AE∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即三角形的内角和等于180°.。