必修2第二章《立体几何》单元测试题

合集下载

高中数学高一必修2空间立体几何试卷(有详细答案)

高中数学高一必修2空间立体几何试卷(有详细答案)

高中数学立体几何测试试卷学校:___姓名:___班级:___考号:__一.单选题1.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.B.C.D.2.设α为平面,m,n为直线()A.若m,n与α所成角相等,则m∥nB.若m∥α,n∥α,则m∥nC.若m,n与α所成角互余,则m⊥nD.若m∥α,n⊥α,则m⊥n3.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°4.设α是空间中的一个平面,l,m,n是三条不同的直线,①若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α;②若l∥m,m∥n,l⊥α,则n⊥α;③若l∥m,m⊥α,n⊥α,则l∥n;④若m⊂α,n⊥α,l⊥n,则l∥m;则上述命题中正确的是()A.①②B.②③C.②④D.③④5.已知一个铜质的五棱柱的底面积为16cm2,高为4cm,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是()A.2cm B.C.4cm D.8cm6、在正方体ABCD-A l B1C1D1中,P是正方体的底面A l B1C1D1(包括边界)内的一动点(不与A1重合),Q是底面ABCD内一动点,线段A1C与线段PQ相交且互相平分,则使得四边形A1QCP面积最大的点P有()A.1个B.2个C.3个D.无数个7.如图所示几个空间图形中,虚线、实线使用不正确的有()A.②③B.①③C.③④D.④二.填空题8、如图,在四棱锥S-ABCD中,SB⊥底面ABCD.底面ABCD为梯形,AB⊥AD,AB∥CD,AB=1,AD=3,CD=2.若点E是线段AD上的动点,则满足∠SEC=90°的点E的个数是______.9、一个正方体的六个面上分别标有字母A、B、C、D、E、F,如图是此正方体的两种不同放置,则与D面相对的面上的字母是______.10.设α、β为互不重合的平面,m、n为互不重合的直线,下列四个命题中所有正确命题的序号是______.①若m⊥α,n⊂α,则m⊥n;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β.③若m∥α,n∥α,则m∥n.④若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β.三.简答题11、在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F.(1)求证:四边形EFCD为直角梯形;(2)设SB的中点为M,当的值是多少时,能使△DMC为直角三角形?请给出证明.12、正三棱台的高为3,上、下底面边长分别为2和4,求这个棱台的侧棱长和斜高.13、已知三棱椎D-ABC,AB=AC=1,AD=2,∠BAD=∠CAD=∠BAC=90°,点E,F分别是BC,DE的中点,如图所示,(1)求证AF⊥BC(2)求线段AF的长.参考答案一.单选题1.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.B.C.D.答案:A解析:解:设圆锥的母线为l,所以圆锥的底面周长为:,底面半径为:=,底面面积为:.圆锥的侧面积为:,所以圆锥的表面积为:+=a,底面面积为:=.故选A.2.设α为平面,m,n为直线()A.若m,n与α所成角相等,则m∥nB.若m∥α,n∥α,则m∥nC.若m,n与α所成角互余,则m⊥nD.若m∥α,n⊥α,则m⊥n答案:D解析:解:对于选项A,若m,n与α所成角相等,m,n也可能相交、平行、异面;故A错误;对于选项B,若m∥α,n∥α,直线m,n也可能平行,也可能相交,还有可能异面;故B 错误;对于选项C,若m,n与α所成角互余,如与α所成角分别为30°和60°,直线m,n所成的角有可能为30°;故C错误;对于选项D,根据线面垂直的性质,容易得到m⊥n;故D正确;故选D.3.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°答案:C解析:解析:如图,四棱锥P-ABCD中,过P作PO⊥平面ABCD于O,连接AO则AO是AP在底面ABCD上的射影.∴∠PAO即为所求线面角,∵AO=,PA=1,∴cos∠PAO==.∴∠PAO=45°,即所求线面角为45°.故选C.4.设α是空间中的一个平面,l,m,n是三条不同的直线,①若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α;②若l∥m,m∥n,l⊥α,则n⊥α;③若l∥m,m⊥α,n⊥α,则l∥n;④若m⊂α,n⊥α,l⊥n,则l∥m;则上述命题中正确的是()A.①②B.②③C.②④D.③④答案:B解析:解:①根据线面垂直的判定,当m,n相交时,结论成立,故①不正确;②根据平行线的传递性,可得l∥n,故l⊥α时,一定有n⊥α,故②正确;③由垂直于同一平面的两直线平行得m∥n,再根据平行线的传递性,即可得l∥n,故③正确.④m⊂α,n⊥α,则n⊥m,∵l⊥n,∴可以选用正方体模型,可得l,m平行、相交、异面都有可能,如图所示,故④不正确故正确的命题是②③故选B.5.已知一个铜质的五棱柱的底面积为16cm2,高为4cm,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是()A.2cm B.C.4cm D.8cm答案:C解析:解:∵铜质的五棱柱的底面积为16cm2,高为4cm,∴铜质的五棱柱的体积V=16×4=64cm3,设熔化后铸成一个正方体的铜块的棱长为acm,则a3=64解得a=4cm故选C6、在正方体ABCD-A l B1C1D1中,P是正方体的底面A l B1C1D1(包括边界)内的一动点(不与A1重合),Q是底面ABCD内一动点,线段A1C与线段PQ相交且互相平分,则使得四边形A1QCP面积最大的点P有()A.1个B.2个C.3个D.无数个答案:C解:∵线段A1C与线段PQ相交且互相平分,∴四边形A1QCP是平行四边形,因A l C的长为定值,为了使得四边形A1QCP面积最大,只须P到A l C的距离为最大即可,由正方体的特征可知,当点P位于B1、C1、D1时,平行四边形A1QCP面积相等,且最大.则使得四边形A1QCP面积最大的点P有3个.故选C.7.如图所示几个空间图形中,虚线、实线使用不正确的有()A.②③B.①③C.③④D.④答案:D解析:解:根据棱柱的放置和“看见的棱用实线、看不见的棱用虚线”,则①②③正确,④错误,故选D.二.填空题8、如图,在四棱锥S-ABCD中,SB⊥底面ABCD.底面ABCD为梯形,AB⊥AD,AB∥CD,AB=1,AD=3,CD=2.若点E是线段AD上的动点,则满足∠SEC=90°的点E的个数是______.答案:2解:连接BE,则∵SB⊥底面ABCD,∠SEC=90°,∴BE⊥CE.故问题转化为在梯形ABCD中,点E是线段AD上的动点,求满足BE⊥CE的点E的个数.设AE=x,则DE=3-x,∵AB⊥AD,AB∥CD,AB=1,AD=3,CD=2,∴10=1+x2+4+(3-x)2,∴x2-3x+2=0,∴x=1或2,∴满足BE⊥CE的点E的个数为2,∴满足∠SEC=90°的点E的个数是2.故答案为:2.9、一个正方体的六个面上分别标有字母A、B、C、D、E、F,如图是此正方体的两种不同放置,则与D面相对的面上的字母是______.答案:B解析:解:由此正方体的两种不同放置可知:与C相对的是F,因此D与B相对.故答案为:B.10.设α、β为互不重合的平面,m、n为互不重合的直线,下列四个命题中所有正确命题的序号是______.①若m⊥α,n⊂α,则m⊥n;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β.③若m∥α,n∥α,则m∥n.④若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β.答案:①④解析:解:①若m⊥α,n⊂α,利用线面垂直的性质,可得m⊥n,正确;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;两条相交直线才行,不正确.③m∥α,n∥α,则m与n可能平行、相交、异面,不正确.④若α⊥β,α∩β=m,n⊂α,n⊥m,则由面面垂直的性质定理我们易得到n⊥β,正确.故答案为:①④.三.简答题11、在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F.(1)求证:四边形EFCD为直角梯形;(2)设SB的中点为M,当的值是多少时,能使△DMC为直角三角形?请给出证明.答案:解:(1)∵CD∥AB,AB⊂平面SAB,∴CD∥平面SAB面EFCD∩面SAB=EF,∴CD∥EF.∵∠D=90°,∴CD⊥AD,又SD⊥面ABCD,∴SD⊥CD,∴CD⊥平面SAD,∴CD⊥ED又EF<AB<CD,∴EFCD为直角梯形.(2)当=2时,能使DM⊥MC.∵AB=a,∴,∴,∴SD⊥平面ABCD,∴SD⊥BC,∴BC⊥平面SBD.在△SBD中,SD=DB,M为SB中点,∴MD⊥SB.∴MD⊥平面SBC,MC⊂平面SBC,∴MD⊥MC,∴△DMC为直角三角形.12、正三棱台的高为3,上、下底面边长分别为2和4,求这个棱台的侧棱长和斜高.答案:解:如图所示,正三棱台ABC-A1B1C1中,高OO1=3,底面边长为A1B1=2,AB=4,∴OA=×AB=,O1A1=×A1B1=,∴棱台的侧棱长为AA1==;又OE=×AB=,O1E1=×A1B1=,∴该棱台的斜高为EE1==.13、已知三棱椎D-ABC,AB=AC=1,AD=2,∠BAD=∠CAD=∠BAC=90°,点E,F分别是BC,DE的中点,如图所示,(1)求证AF⊥BC(2)求线段AF的长.答案:解:(1)分别以AB、AC和AD为x、y、z轴,建立空间直角坐标系O-xyz,如图所示:记A(0,0,0),B(1,0,0),C(0,1,0),D(0,0,2),∴E(,,0),F(,,1);∴(,,1),=(-1,1,0),∴•=×(-1)+×1+1×0=0,∴⊥,即AF⊥BC;(2)∵=(,,1),∴||===,即线段AB=.。

人教版A版必修二第二章立体几何复习题及答案

人教版A版必修二第二章立体几何复习题及答案

1一、选择题1. 如图,在体积为1的三棱锥A BCD -侧棱A BA C A D ,,上分别取点E F G ,,,使21AE EB AF FC AG GD ===∶∶∶∶,记O 为三平面BCG CDE DBF ,,的交点,则三棱锥O BCD -的体积等于( )A.19B.18C.17D.142.木星的体积约是地球体积的倍,则它的表面积是地球表面积的( ) A.60倍B.C.120倍D.3. 三棱锥P ABC -中,PA PB PC ,,互相两两垂直,且14PC PA x PB y x y ===+=,,,,则三棱锥P ABC -体积的最大值( )A.1 B.13C.23D.不存在4. 一条直线和直线外不在同一条直线上的三点所确定的过该直线的平面有( ) A.1个 B.2个 C.3个 D.至多3个5. 异面直线a b a b c ,,⊥,与a 成30角,则c 与b 成角范围是( )A.[6090],B.[3090],C.[60120],D.[30120],6. 在正方体1111ABCD A B C D -中,表面的对角线与1AD 成60的有( ) A.4条B.6条C.8条D.10条7. 如果两面角l αβ--的平面角是锐角,点P 到αβ,和棱l的距离分别为4和为( ) A.45或30B.15 或75C.30 或60D.15 或608. 下列四个命题,下确的结论个数有( )①若三条直线两两相交,则它们组成的图形为平面图形 ②一条直线和一个点确定一个平面 ③若四点不共面,则每三点一定不共线 ④三条平行线确定三个平面 A.1个 B.2个 C.3个 D.4个 9. 下列命题中正确的是( )A.两条直线可以确定一个平面 B.一组对边平行的四边形是平面图形 C.一个点与一条直线可以确定一个平面 D.两两相交的三条直线一定共面 10. 给出下列四个命题,其中正确的是( )①在空间若两条直线不相交,则它们一定平行 ②平行于同一条直线的两条直线 ③一条直线和两条平行直线的一条相交,那么它也和另一条相交④空间四条直线a ,b ,c ,d ,如果a b ∥,c d ∥,且a d ∥,那么b c ∥ A.①②③ B.②④ C.③④ D.②③ 11. 下列说法中错误..的个数是( ) ①过平面外一点有一条直线和该平面平行 ②过平面外一点只有一条直线和该平面平行 ③过平面一点外有且只有一条直线和该平面平行 A.0 B.1 C.2 D.3A EB FOCGD212. 已知直线a ∥直线b ,b ∥直线c ,c ∥平面α,则( ) A.a α∥ B.a α⊂ C.a 与α相交 D.a α∥或a α⊂ 13. 能保证直线a 与平面α平行的条件是( )A.a α⊄,b α⊂,a b ∥ B.b α⊂,a b ∥ C.b α⊂,c b ∥,a c ∥ D.b α⊂,A a ∈,B a ∈,C b ∈,D b ∈,且AC BD = 14. 下列四个命题中,不正确的命题是( )A.如果一条直线与两条平行直线中的一条垂直,那么也和另一条垂直B.已知直线a ,b ,c ,a b ∥,c 与a ,b 都不相交,若c 与a 所成的角为θ,则c 与b 所成的角也等于θ C.如果空间四个点不共面,则四个点中可能有三个点共线D.若直线a ∥平面α,点P α∈,则过点P 作a 的平行线一定在α内 15. 下列命题中,正确的是( )A.直线a ∥平面α,则a 平行于α内任何一条直线B.直线a 与平面α相交,则a 不平行于α内的任何一条直线 C.直线a 不平行于平面α,则a 不平行于α内任何一条直线D.直线a 不垂直于平面α内的某一条直线,则a 不垂直于α内任何一条直线二、填空题16. 已知m n ,是不同的直线,αβ,是不重合的平面,给出下列命题:① 若m n αβαβ⊂⊂,,∥,则m n ∥ ②若m n m n αββ⊂,,,∥∥,则αβ∥③若m n m n αβ⊥⊥,,∥,则αβ∥④m n ,是两条异面直线,若m m n n αβαβ,,,∥∥∥∥,则αβ∥ 上面命题中,真命题的序号是 (写出所有真命题的序号). 17. 若a b c a d b ∥,⊥,⊥,则c 与d 关系为 .18. 正方形ABCD 中,E F ,分别是AB CD ,中点,沿EF 将正方形折成60的二面角,则异面直线FB 与AE 所成的角的余弦值是 .19. 如图,1111ABCD A B C D -是正方体,E F , 分别是111AA A B ,的中点,则EF 与对角面11A C CA 所成角的度数是 .20. 如图,在空间四边形ABCD 中,2AD BC ==,E ,F 分别是AB ,CD的中点,若EF =AD ,BC 所成的角为.21. 有以下命题,正确命题的序号是 . ①直线与平面没有公共点,则直线与平面平行②直线与平面内的任何一条直线都不相交,则直线与平面平行; ③直线上有两点,它们到平面的距离相等,则直线与平面平行; ④直线与平面内的无数条直线不相交,则直线与平面平行.三、解答题22. 如图,在直三棱柱111ABC A B C -中,13454AC BC AB AA ====,,,,点D 是AB 的中点. (Ⅰ)求证1AC BC ⊥;(Ⅱ)求证1AC ∥平面1CDB ; (Ⅲ)求异面直线1AC 与1B C 所成角的余弦值.ABCED F 1A 1D 1C 1B F D AEB C1C 1B 1A CDAB323. 如图,在直四棱柱1111ABCD A B C D -中,2AB AD ==,DC =1AA =AD DC AC BC ⊥⊥,,垂足为E .(Ⅰ)求证11BD AC ⊥;(Ⅱ)求二面角11A BD C --的大小; (Ⅲ)求异面直线AD 与1BC 所成角的大小.24. 已知:四边形ABCD 中,AB CD AB BC DC AD ∥,,,,(或其延长线)分别与平α相交于E F G H ,,,四点.求证:E F G H ,,,四点共线.25. 在空间四边形ABCD 中,E F ,分别为AB BC ,的中点.求证:EF 和AD 为异面直线.26. 如图,在二面角l αβ--中,A B C D l α∈∈,,,,ABCD 为矩形,P β∈,PA α⊥,且PA AD =,M N ,依次是AB PC ,的中点.(1)求二面角l αβ--的大小;(2)求证:MN AB ⊥;(3)求异面直线PA 与MN 所成角的大小.DβαE CBM A QP Nl1AA 1DD1BE1C C427. 已知四边形ABCD 是空间四边形,E ,H 分别是线段AB ,AD 的中点,F ,G 分别是线段CB ,CD 上的点且23CF CG CB CD ==,求证:EF ,GH ,CA 交于一点.28. 如图所示,P 是ABC △所在平面外的一点,M ,N 分别是AB ,PC 的中点,已知PA BC m ==,PB AC =, (1)求证:MN 是AB 和PC 的公垂线;(2)当PA ,BC 成90角时,求AB 和PC 间的距离.29. 如图,正方体1111ABCD A B C D -中,AC BD O = ,11111AC B D O = .求证:1OO ⊥平面ABCD .30. 如图,在正方体1111ABCD A B C D -中,求1A B 与平面11A B CD 所成的角.CM BP NCO1O 1D 1A 1C 1B DC BA1A1D 1C1BOCBAD5一、选择题1. C.2. C.3. C4. D5. A 6. A 7. B8. A9. B10. B11. C12. D13. A14. C15. B二、填空题16. ③,④ 17. 平行、相交或异面.18.10. 19. 30 . 20. 6021. ①② 三、解答题22. (Ⅰ)∵直三棱柱111ABC A B C -底面三边长345AC BC AB ===,,,AC BC ⊥∴,且1BC 在平面ABC 内的射影为BC ,1AC BC ⊥∴.(Ⅱ)设1CB 与1C B 的交点为E ,连结DE .D ∵是AB 的中点,E 是1BC 的中点,1DE AC ∴∥. DE ⊂∵平面1CDB ,1AC ⊄平面1CDB ,1AC ∴∥平面1CDB .(Ⅲ)1DE AC ∵∥,CED ∠∴为1AC 与1B C 所成的角.在CED △中,11522ED AC ==,1522CD AB ==,112CE CB ==8cos 522CED ==∴ ∴异面直线1AC 与1B C23. (Ⅰ)在直四棱柱1111ABCD A B C D -中,1A A ⊥∵底面ABCD ,AC ∴是1AC 在平面ABCD 上的射影.BD AC ⊥∵,1BD AC ⊥∴. (Ⅱ)连结1111A E C E AC ,,.与(Ⅰ)同理可证1BD A E⊥,1BD C E ⊥, 11A EC ∠∴_为二面角11A BD C --的平面角.AD DC ⊥∵,11190A D C ADC ∠=∠= ∴.又112A D AD ==,11D C DC ==,1AA =AC BD ⊥,11413AC AE EC ===,,∴112A E C E ==,∴在11A EC △中,2221111AC A E C E =+61190A EC ∠= ∴,即二面角11A BD C --的大小为90 .(Ⅲ)过B 作BF AD ∥交AC 于F ,连结1FC ,则1C BF ∠就是AD 与1BC 所成的角.21AB AD BD AC AE ==⊥=,,∵,212BF EF FC BC DC ====,,,∴,11FC BC ==∴.在1BFC △中,1cos C BF ==1C BF ∠=∴ 即异面直线AD 与1BC所成的角的大小为 24. 证明:如图,AB CD ∥, AB CD ∴,确定一个平面β.BC AD ββ∴⊂⊂,.又E F G H ,,,分别在AB BC CD AD ,,,上,E F G H β∴∈,,,;又E F G H α∈,,,.E F G H ∴,,,必在平面αβ,的交线上E F G H ∴,,,四点共线.25. 证明:如图,假设EF 和AD 在同1平面α内, 则A D E F α∈,,,; 又A E AB AB B αα∈∴⊂∴∈,,,,同理C α∈ 故A B C D α∈,,,,这与ABCD 是空间四边形矛盾. EF ∴和AD 为异面直线.26. (1)解:连结PD ,PA α ⊥,AD l ⊥, PD l ∴⊥, PDA ∴∠是二面角l αβ--的平面角.由PA AD =,有45PAD ∠=,故二面角l αβ--的大小为45 .(2)证明:取CD 的中点为E ,连ME ,NE ,则EM AD ∥,EN PD ∥, CD ME ∴⊥,CD NE ⊥,CD ∴⊥平面MNE ,又AB CD ∥, AB ∴⊥平面MNE ,故AB MN ⊥,(3)解:取PD 中点为Q ,连QA ,QN ,则12QN CD∥,而12AM CD∥, QNMA ∴是平行四边形,AQ MN ∴∥,7PAQ ∴∠是异面直线PA 与MN 所成的角.PAD △为等腰直角三角形,AQ 为斜边上的中线, 45PAQ ∴∠= ,即PA 与MN 所成的角的大小为45 .27. 证明:如图,连结BD . EH ∵是ABD △的中位线,12EH BD ∴ ∥ 又23CF CG CB CD ==∵, 23FG BD ∴ ∥.EH FC ∴∥且EH FG <. ∴四边形EFGH 是一个梯形. 设EF 交GH 于P 点,EF ⊂∵平面ABC ,GH ⊂平面ACD , P ∴是平面ABC 与平面ACD 的公共点.∴点P 在两平面的交线AC 上,即EF ,GH ,CA 三线交于一点.28. (1)证明:连结AN 和BN ,在PAC △和CBP △中,PA BC =,AC PB =,PC PC =,PAC CBP ∴△≌△.N ∵是公共边PC 的中点,AN BN ∴=. M ∵是AB 的中点, NM AB ∴⊥.同理MN PC ⊥.故MN 是AB 和PC 的公垂线.(2)解:取PB 的中点D ,连结DM ,DN ,于是DM PA ∥,且1122DM PA m ==,同理DN BC ∥,且1122DN BC m ==,于是MDN ∠是异面直线PA ,BC 所成的角, 90MDC ∴∠=.从而MN =,即AB 和PC.29. 证明:1111ABCD A B C D -∵为正方体,1AA AB ∴⊥,1AA AD ⊥.AB AD A = ∵,1AA ∴⊥平面AC .11AA BB ∥∵,11BB CC ∥,11AA CC ∴ ∥.∴四边形11AA C C 为平行四边形. O ∵,1O 分别为AC ,11A C 的中点,11OO AA ∴∥,1OO ⊥平面AC .30. 解:连结1BC 交1B C 于O ,连结1AO ,在正方体1111ABCD A B C D -中各个面为正方形,设其棱长为a .11111111111111A B B C A B BCC B A B B B BC BCC B ⎫⎫⇒⎬⎪⎬⎭⎪⊂⎭平面平面⊥⊥⊥11111111A A B BC BC B CD BC B C ⇒⎫⇒⎬⎭平面⊥⊥ ⊥81AO ⇒为1A B 在平面11A B CD 内的射影 1B AO ⇒∠为1A B 与平面11A B CD 所成的角.111111111Rt 21sin 23030.BAO A B OB a OB BAO A B BAO BAO A B A B CD ⎫==⎪⎪⎪⎫⇒==⎪⎪⇒=⎬⎬⎪⎪∠⎭⎪⎪⇒⎪⎭在△中,, 为锐角与平面所成的角为。

高一数学(必修二)立体几何初步单元测试卷及答案

高一数学(必修二)立体几何初步单元测试卷及答案

高一数学(必修二)立体几何初步单元测试卷及答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,己知正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则其原图形的周长为( )A.8B.22C.4D.223+2.下列说法正确的是( ) A.三点确定一个平面B.圆心和圆上两个点确定一个平面C.如果两个平面相交有一个交点,则必有无数个公共点D.如果两条直线没有交点,则这两条直线平行3.正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,那么正方体中过P ,Q ,R 的截面图形是( ) A.三角形B.四边形C.五边形D.六边形4.某圆柱的高为2,其正视图如图所示,圆柱上下底面圆周及侧面上的点A ,B ,D ,F ,C 在正视图中分别对应点A ,B ,E ,F ,C ,且3AE EF =,2BF BC =,异面直线AB ,CD 所成角的正弦值为45,则该圆柱的外接球的表面积为( )A.20πB.16πC.12πD.10π5.在《九章算术·商功》中将正四面形棱台体(棱台的上、下底面均为正方形)称为方亭.在方亭1111ABCD A B C D -中,1124AB A B ==,四个侧面均为全等的等腰梯形且面积之和为122( ) 282B.283142D.1436.异面直线是指( ) A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线7.如图,在正方体1111ABCD A B C D -中,E ,F 分别是11A D ,11B C 的中点,则与直线CF 互为异面直线的是( )A.1CCB.11B CC.DED.AE8.下列说法中正确的是( ) A.三点确定一个平面 B.四边形一定是平面图形 C.梯形一定是平面图形D.两个不同平面α和β有不在同一条直线上的三个公共点二、多选题(本题共4小题,每小题5分,共20分。

高中数学必修2立体几何模块测试卷(含参考答案)

高中数学必修2立体几何模块测试卷(含参考答案)

高中数学立体几何测试题(理科)一、选择题:1.下列说法不正确的是A 圆柱的侧面展开图是一个矩形B 圆锥中过轴的截面是一个等腰三角形C 直角三角形绕它的一边旋转一周形成的曲面围成的几何体是圆锥D 圆台平行于底面的截面是圆面2、下面表述正确的是A、空间任意三点确定一个平面B、分别在不同的三条直线上的三点确定一个平面C、直线上的两点和直线外的一点确定一个平面D、不共线的四点确定一个平面3、“a、b是异面直线”是指①a∩b=∅,且a和b不平行;②a⊂平面α,b⊂平面β,且α∩β=∅;③a⊂平面α,b⊂平面β,且a∩b=∅;④a⊂平面α,b ⊄平面α;⑤不存在平面α,使得a⊂平面α,且b⊂平面α都成立。

上述说法正确的是A ①④⑤B ①③④C ②④D ①⑤4、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是A、垂直B、平行C、相交不垂直D、不确定5、下列命题中正确命题的个数是①一条直线和另一条直线平行,那么它和经过另一条直线的任何平面平行;②一条直线平行于一个平面,则这条直线与这个平面内所有直线都没有公共点,因此这条直线与这个平面内的所有直线都平行;③若直线与平面不平行,则直线与平面内任一直线都不平行;④与一平面内无数条直线都平行的直线必与此平面平行。

A 、0B 、1C 、2D 、36、一条直线若同时平行于两个相交平面,则这条直线与这两个平面交线的位置关系是A 、异面B 、相交C 、平行D 、不确定 7、直线a 与b 垂直,b 又垂直于平面α,则a 与α的位置关系是A 、a α⊥B 、//a αC 、a α⊆D 、a α⊆或//a α 8、如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系一定是A 、平行B 、相交C 、平行或相交D 、无法确定 9.已知二面角α-AB -β为︒30,P 是平面α内的一点,P 到β的距离为1.则P 在β内的射影到AB 的距离为( ). A .23B .3C .43 D .2110、若,m n 表示直线,α表示平面,则下列命题中,正确命题的个数为 ①//m n n m αα⎫⇒⊥⎬⊥⎭;②//m m n n αα⊥⎫⇒⎬⊥⎭;③//m m n n αα⊥⎫⇒⊥⎬⎭;④//m n m n αα⎫⇒⊥⎬⊥⎭A 、1个B 、2个C 、3个D 、4个 二、填空题:11、三条两两相交的直线可确定12.水平放置的△ABC 的斜二测直观图如图所示,已知A′C′=3,B′C′=2。

必修2立体几何单元测试题及答案

必修2立体几何单元测试题及答案

立体几何单元测验题一、选择题:把每小题的正确答案填在第二页的答题卡中,每小题4分,共60分 1.一个圆锥的底面圆半径为3,高为4,则这个圆锥的侧面积为A .152πB .10πC .15πD .20π 2.C B A ,,表示不同的点,l a ,表示不同的直线,βα,表示不同的平面,下列推理错误的是A .ααα⊂⇒∈∈∈∈lB l B A l A ,,, B .,,,AB l l AB l αβαβαβ=⊥⊂⊥⇒⊥IC .,l A l A αα⊄∈⇒∉D .βαβα与不共线,,且⇒∈∈C B A C B A C B A ,,,,,,重合 3.直线c b a ,,相交于一点,经过这3条直线的平面有A .0个B .1个C .3个D .0个或1个 4.下列说法正确的是A .平面α和平面β只有一个公共点B .两两相交的三条直线共面C .不共面的四点中,任何三点不共线D .有三个公共点的两平面必重合5. 直线b a 与是一对异面直线,a B A 是直线,上的两点,b D C 是直线,上的两点,N M ,分别是BD AC 和的中点,则a MN 和的位置关系为A .异面直线B .平行直线C .相交直线D .平行直线或异面直线6.已知正方形ABCD ,沿对角线ABC AC ∆将折起,设AD 与平面ABC 所成的角为α,当α最大时,二面角D AC B --等于( )A .090 B .060 C .045 D .030 7.已知异面直线b a ,分别在平面βα,内,且βαI c =,直线c A .同时与b a ,相交 B .至少与b a ,中的一条相交 C .至多与b a ,中的一条相交 D .只能与b a ,中的一条相交 8.一个平面多边形的斜二侧图形的面积是S ,则这个多边形的面积是A B .2S C . D .4SMD'DCBA1A 9.直线l 在平面α外,则A .α//lB .α与l 相交C .α与l 至少有一个公共点D .α与l 至多有一个公共点10.如图,BD AB BD M AC M AB BD AC AB ,,平面,平面,⊥⊥⊂===1与平面M 成030角,则D C 、间的距离为( ) A .1 B .2 C .2 D .311.如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系一定是A .平行B .相交C .平行或相交D .垂直相交 12.已知平面α及α外一条直线l ,下列命题中 (1)若l 垂直于α内的两条平行线,则α⊥l ;(2)若l 垂直于α内的所有直线,则α⊥l ;(3)若l 垂直于α内的两条相交直线,则α⊥l ;(4)若l 垂直于α内的任意一条直线,则α⊥l ;正确的有A .0 个B .1 个C .2个D .3个 13.与空间四点等距离的平面有A .7个B .2个C .9个D .7个或无穷多个 14.如果球的内接正方体的表面积为24,那么球的体积等于 A. B.C .D .315.直三棱柱111111ABC A B C AC AB AA AC A B-==中,,异面直线与 060所成的角为,则CAB ∠等于A . 090 B . 060 C .045 D .030姓名 班级 座位号二、解答题:(本大题共三个小题,共40分,要求写出求解过程) 16.(12分)在空间四边形ABCD 中,F E 、分别为BC AB 、中点。

高一数学必修2立体几何单元测试题

高一数学必修2立体几何单元测试题

高一立体几何单元测试题2011.7(12)一、选择题:(每小题5分,每题只有一个正确选项.) 1.已知直线,l m 与平面αβγ,,满足//l l m βγαα=⊂,,和m γ⊥,则有( )。

A .αγ⊥且l m ⊥ B .αγ⊥且//m β C .//m β且l m ⊥ D .//αβ且αγ⊥ 2.一个几何体的三视图及长度数据如图,则几何体的表面积与体积分别为( )。

()3,27+A ()328,+B()2327,+C ()23,28+D3.在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1A 、 AB 上的点,若∠NMC 1=90°,则∠NMB 1 ( )A 、小于90°B 、等于90°C 、大于90°D 、不能确定4. 已知正方形ABCD ,沿对角线AC 将△ADC 折起,设AD 与平面ABC 所成的角为β,当β取最大值时,二面角D AC B --等于( )。

A.120°B.90°C.60°D.45°5.在长方体ABCD-A`B`C`D`中,∠AB`B=45°,∠CB`C`=60°,则∠AB`C 的余弦值为( ) A 、63 B 、62 C 、36 D 、46 6.如果a 和b 是异面直线,直线a ∥c ,那么直线b 与c 的位置关系是( )。

A .相交 B .异面 C .平行D .相交或异面7.Rt △ABC 中,∠B =90°,∠C =30°,D 是BC 的中点,AC =2,DE ⊥平面ABC , 且DE =1,则点E 到斜边AC 的距离是 ( )A .25B .211C .27D .4198.如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和CC 1上,AP=C 1Q ,四棱锥B —APQC 的体积为( )。

高中数学必修2立体几何考题(附答案)(可编辑修改word版)

14高中数学必修2 立体几何考题13. 如图所示,正方体 ABCD -A 1B 1C 1D 1 中,M 、N 分别是 A 1B 1,B 1C 1 的中点.问:(1) AM 和 CN 是否是异面直线?说明理由;(2) D 1B 和 CC 1 是否是异面直线?说明理由.解析:(1)由于 M 、N 分别是 A 1B 1 和 B 1C 1 的中点,可证明 MN ∥AC ,因此 AM 与 CN 不是异面直线.(2)由空间图形可感知 D 1B 和 CC 1 为异面直线的可能性较大,判断的方法可用反证法.探究拓展:解决这类开放型问题常用的方法有直接法(即由条件入手,经过推理、演算、变形等),如第(1)问,还有假设法,特例法,有时证明两直线异面用直线法较难说明问题, 这时可用反证法,即假设两直线共面,由这个假设出发,来推证错误,从而否定假设,则两直线是异面的.解:(1)不是异面直线.理由如下:∵M 、N 分别是 A 1B 1、B 1C 1 的中点,∴MN ∥A 1C 1.又∵A 1A ∥D 1D ,而 D 1D 綊 C 1C ,∴A 1A 綊 C 1C ,∴四边形 A 1ACC 1 为平行四边形.∴A 1A ∥AC ,得到 MN ∥AC ,∴A 、M 、N 、C 在同一个平面内,故 AM 和 CN 不是异面直线.(2)是异面直线.理由如下:假设 D 1B 与 CC 1 在同一个平面 CC 1D 1 内,则 B ∈平面 CC 1D 1,C ∈平面 CC 1D 1.∴BC ⊂平面 CC 1D 1,这与在正方体中 BC ⊥平面 CC 1D 1 相矛盾,∴假设不成立,故 D 1B 与 CC 1 是异面直线.14. 如下图所示,在棱长为 1 的正方体 ABCD -A 1B 1C 1D 1 中,M 为 AB 的中点,N 为 BB 1 的中点,O 为面 BCC 1B 1 的中心.(1) 过 O 作一直线与 AN 交于 P ,与 CM 交于 Q (只写作法,不必证明);(2) 求 PQ 的长(不必证明).解析:(1)由 ON ∥AD 知,AD 与 ON 确定一个平面 α.又 O 、C 、M 三点确定一个平面 β(如下图所示).∵三个平面 α,β 和 ABCD 两两相交,有三条交线 OP 、CM 、DA ,其中交线 DA 与交线 CM 不平行且共面.∴DA 与 CM 必相交,记交点为 Q .∴OQ 是 α 与 β 的交线.连结 OQ 与 AN 交于 P ,与 CM 交于 Q ,故 OPQ 即为所作的直线.(2)解三角形 APQ 可得 PQ = . 15. 如图,在直三棱柱 ABC -A 1B 1C 1 中,AB =BC =B 1B =a ,∠ABC =90°,D 、E分别为BB1、AC1的中点.(1)求异面直线BB1与AC1所成的角的正切值;(2)证明:DE 为异面直线BB1与AC1的公垂线;(3)求异面直线BB1与AC1的距离.解析:(1)由于直三棱柱ABC-A1B1C1中,AA1∥BB1,所以∠A1AC1就是异面直线BB1与AC1所成的角.又AB=BC=B1B=a,∠ABC=90°,所以A1C1=2a,tan∠A1AC1=2,即异面直线BB1与AC1所成的角的正切值为2.(2)证明:解法一:如图,在矩形ACC1A1中,过点E 作AA1的平行线MM1分别交AC、A1C1于点M、M1,连结BM,B1M1,则BB1綊MM1.又D、E 分别是BB1、MM1的中点,可得DE 綊BM.在直三棱柱ABC-A1B1C1中,由条件AB=BC 得BM⊥AC,所以BM⊥平面ACC1A1,故DE⊥平面ACC1A1,所以DE⊥AC1,DE⊥BB1,即DE 为异面直线BB1与AC1的公垂线.解法二:如图,延长C1D、CB 交于点F,连结AF,由条件易证D是C1F 的中点,B 是CF 的中点,又E 是AC1的中点,所以DE∥AF.在△ACF 中,由AB=BC=BF 知AF⊥AC.在直三棱柱ABC-A1B1C1中,AA1⊥平面ABC,所以AF⊥AA1,故AF⊥平面ACC1A1,故DE⊥平面ACC1A1,所以DE⊥AC1,DE⊥BB1,即DE 为异面直线BB1与AC1的公垂线.(3)由(2)知线段DE 的长就是异面直线BB1与AC1的距离,由于AB=BC=a,∠ABC=90°,2a.所以DE=2反思归纳:两条异面直线的公垂线是指与两条异面直线既垂直又相交的直线,两条异面直线的公垂线是惟一的,两条异面直线的公垂线夹在两条异面直线之间的线段的长度就是两条异面直线的距离.证明一直线是某两条异面直线的公垂线,可以分别证明这条直线与两条异面直线垂直.本题的思路是证明这条直线与一个平面垂直,而这一平面与两条异面直线的位置关系是一条直线在平面内,另一条直线与这个平面平行.16.如图所示,在正方体ABCD-A1B1C1D1中,O,M 分别是BD1,AA1的中点.(1)求证:MO 是异面直线AA1和BD1的公垂线;(2)求异面直线AA1与BD1所成的角的余弦值;(3)若正方体的棱长为a,求异面直线AA1与BD1的距离.解析:(1)证明:∵O 是BD1的中点,∴O 是正方体的中心,∴OA=OA 1,又M 为AA1的中点,即OM 是线段AA1的垂直平分线,故OM⊥AA1.连结MD1、BM,则可得MB=MD1.同理由点O 为BD1的中点知MO⊥BD1,即MO 是异面直线AA1和BD1的公垂线.33333 2(2)由于AA1∥BB1,所以∠B1BD1就是异面直线AA1和BD1所成的角.在Rt△BB1D1中,设BB1=1,则BD1=3,所以cos∠B1BD1=,故异面直线AA1与BD1所成的角的余弦值等于.(3)由(1)知,所求距离即为线段MO 的长,1 a由于OA=AC1=a,AM=,且OM⊥AM,所以OM=a.2 2 2 213.如图所示,正方体ABCD-A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E、F,且B1E=C1F,求证:EF∥ABCD.证明:解法一:分别过E、F 作EM⊥AB 于M,FN⊥BC 于N,连结MN.∵BB1⊥平面ABCD,∴BB1⊥AB,BB1⊥BC,∴EM∥BB1,FN∥BB1,∴EM∥FN.又B1E=C1F,∴EM=FN,故四边形MNFE 是平行四边形,∴EF∥MN,又MN 在平面ABCD 中,所以EF∥平面ABCD.解法二:过E 作EG∥AB 交BB1于G,B1E B1G连结GF,则1=1,B A B B∵B1E=C1F,B1A=C1B,C1F B1G∴1=1,∴FG∥B1C1∥BC.C B B B又EG∩FG=G,AB∩BC=B,∴平面EFG∥平面ABCD,而EF⊂平面EFG,∴EF∥平面ABCD.14.如下图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD=DC.过BD 作与PA 平行的平面,交侧棱PC 于点E,又作DF⊥PB,交PB 于点F.(1)求证:点E 是PC 的中点;(2)求证:PB⊥平面EFD.证明:(1)连结AC,交BD 于O,则O 为AC 的中点,连结EO.∵PA∥平面BDE,平面PAC∩平面BDE=OE,∴PA∥OE.∴点E 是PC 的中点;(2)∵PD⊥底面ABCD 且DC⊂底面ABCD,∴PD⊥DC,△PDC 是等腰直角三角形,而DE 是斜边PC 的中线,∴DE⊥PC,①又由PD⊥平面ABCD,得PD⊥BC.∵底面ABCD 是正方形,CD⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC.∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,22AB6 3∴DE⊥PB,又DF⊥PB 且DE∩DF=D,所以PB⊥平面EFD.15.如图,l1、l2是互相垂直的异面直线,MN 是它们的公垂线段.点A、B 在l1上,C在l2上,AM=MB=MN.(1)求证AC⊥NB;(2)若∠ACB=60°,求NB 与平面ABC 所成角的余弦值.证明:(1)如图由已知l2⊥MN,l2⊥l1,MN∩l1=M,可得l2⊥平面ABN.由已知MN⊥l1,AM=MB=MN,可知AN=NB 且AN⊥NB.又AN 为AC 在平面ABN 内的射影,∴AC⊥NB.(2)∵Rt△CNA≌Rt△CNB,∴AC=BC,又已知∠ACB=60°,因此△ABC 为正三角形.∵Rt△ANB≌Rt△CNB,∴NC=NA=NB,因此N 在平面ABC 内的射影H 是正三角形ABC 的中心.连结BH,∠NBH 为NB 与平面ABC 所成的角.在Rt△NHB 中,3HB 3ABcos∠NBH=NB==.16.如图,在四面体ABCD 中,CB=CD,AD⊥BD,点E、F 分别是AB、BD 的中点.求证:(1)直线EF∥平面ACD;(2)平面EFC⊥平面BCD.命题意图:本小题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力、推理论证能力.证明:(1)在△ABD 中,∵E、F 分别是AB、BD 的中点,所以EF∥AD.又AD⊂平面ACD,EF✪平面ACD,∴直线EF∥平面ACD. (2)在△ABD 中,∵AD⊥BD,EF∥AD,∴EF⊥BD.在△BCD 中,∵CD=CB,F 为BD 的中点,∴CF⊥BD.∵EF⊂平面EFC,CF⊂平面EFC,EF 与CF 交于点F,∴BD⊥平面EFC.又∵BD⊂平面BCD,∴平面EFC⊥平面BCD.13.如图,在四棱锥P-ABCD 中,底面ABCD 是边长为a 的正方形,PA⊥平面ABCD,且PA=2AB.(1)求证:平面PAC⊥平面PBD;(2)求二面角B-PC-D 的余弦值.5 6 解析:(1)证明:∵PA ⊥平面 ABCD ,∴PA ⊥BD .∵ABCD 为正方形,∴AC ⊥BD .∴BD ⊥平面 PAC ,又 BD 在平面 BPD 内,∴平面 PAC ⊥平面 BPD . (2)在平面 BCP 内作 BN ⊥PC ,垂足为 N ,连结 DN ,∵Rt △PBC ≌Rt △PDC ,由 BN ⊥PC 得 DN ⊥PC ;∴∠BND 为二面角 B -PC -D 的平面角,在△BND 中,BN =DN = a ,BD = 2a , 5 5 a 2+ a 2-2a 2 6 6 ∴cos ∠BND = 5 a 2 31 =- . 5 14. 如图,已知 ABCD -A 1B 1C 1D 1 是棱长为 3 的正方体,点 E 在 AA 1 上,点 F 在 CC 1 上,G 在 BB 1 上,且 AE =FC 1=B 1G =1,H 是 B 1C 1 的中点.(1) 求证:E 、B 、F 、D 1 四点共面;(2)求证:平面 A 1GH ∥平面 BED 1F .证明:(1)连结 FG .∵AE =B 1G =1,∴BG =A 1E =2,∴BG 綊 A 1E ,∴A 1G 綊 BE .∵C 1F 綊 B 1G ,∴四边形 C 1FGB 1 是平行四边形.∴FG 綊 C 1B 1 綊 D 1A 1,∴四边形 A 1GFD 1 是平行四边形.∴A 1G 綊 D 1F ,∴D 1F 綊 EB ,故 E 、B 、F 、D 1 四点共面. 3 (2) ∵H 是 B 1C 1 的中点,∴B 1H = . 2 又 B 1G =1,∴ B 1G 3 = . B 1H 2 FC 2 又 = ,且∠FCB =∠GB 1H =90°, BC 3∴△B 1HG ∽△CBF ,∴∠B 1GH =∠CFB =∠FBG ,∴HG ∥FB .又由(1)知 A 1G ∥BE ,且 HG ∩A 1G =G ,FB ∩BE =B ,∴平面 A 1GH ∥平面 BED 1F .15. 在三棱锥 P -ABC 中,PA ⊥面 ABC ,△ABC 为正三角形,D 、E 分别为 BC 、AC 的中点,设 AB =PA =2.(1) 求证:平面 PBE ⊥平面 PAC ;(2) 如何在 BC 上找一点 F ,使 AD ∥平面 PEF ,请说明理由;(3) 对于(2)中的点 F ,求三棱锥 B -PEF 的体积.解析:(1)证明:∵PA ⊥面 ABC ,BE ⊂面 ABC ,∴PA ⊥BE .∵△ABC 是正三角形,E 为 AC 的中点,∴BE ⊥AC ,又 PA 与 AC 相交,∴BE ⊥平面 PAC ,∴平面 PBE ⊥平面 PAC .(2) 解:取 DC 的中点 F ,则点 F 即为所求., 3 3 6 2 2 3 3 3∵E ,F 分别是 AC ,DC 的中点,∴EF ∥AD ,又 AD ✪平面 PEF ,EF ⊂平面 PEF ,∴AD ∥平面 PEF . 1 1 1 3 (3) 解 :V B -PEF =V P -BEF = S △BEF ·PA = × × × ×2= . 3 3 2 2 2 416.(2009·天津,19)如图所示,在五面体 ABCDEF 中,FA ⊥平面 ABCD ,AD ∥BC ∥FE , 1 AB ⊥AD ,M 为 CE 的中点,AF =AB =BC =FE = AD . 2(1) 求异面直线 BF 与 DE 所成的角的大小;(2) 求证:平面 AMD ⊥平面 CDE ;(3) 求二面角 A -CD -E 的余弦值.解答:(1)解:由题设知,BF ∥CE ,所以∠CED (或其补角)为异面直线 BF与 DE 所成的角.设 P 为 AD 的中点,连结 EP ,PC .因为 FE 綊 AP ,所以 FA綊 EP .同理,A B 綊 PC .又 FA ⊥平面 ABCD ,所以 EP ⊥平面 ABCD .而 PC ,AD都在平面ABCD 内,故EP ⊥PC ,E P ⊥AD .由AB ⊥AD ,可得PC ⊥AD .设FA =a则 EP =PC =PD =a ,CD =DE =EC = 故∠CED =60°.2a .所以异面直线 BF 与 DE 所成的角的大小为 60°.(2) 证明:因为 DC =DE 且 M 为 CE 的中点,所以 DM ⊥CE .连结 MP ,则 MP ⊥CE .又MP ∩DM =M ,故 CE ⊥平面 AMD .而 CE ⊂平面 CDE ,所以平面 AMD ⊥平面 CDE .(3) 设 Q 为 CD 的中点,连结 PQ ,EQ .因为 CE =DE ,所以 EQ ⊥CD .因为 PC =PD ,所以 PQ ⊥CD ,故∠EQP 为二面角 A -CD -E 的平面角.由(1)可得,EP ⊥PQ ,EQ = a ,PQ = a . PQ 于是在 Rt △EPQ 中,cos ∠EQP = = .EQ 3 所以二面角 A -CD -E 的余弦值为 . 13.(2009·重庆)如图所示,四棱锥 P -ABCD 中,AB ⊥AD ,AD ⊥DC ,PA ⊥底面 ABCD ,PA 1 1 =AD =DC = AB =1,M 为 PC 的中点,N 点在 AB 上且 AN = NB .2 3(1) 求证:MN ∥平面 PAD ;(2) 求直线 MN 与平面 PCB 所成的角.解析:(1)证明:过点 M 作 ME ∥CD 交 PD 于 E 点,连结 AE . 1 ∵AN = NB , 3 1 1 ∴AN = AB = DC =EM .4 2又 EM ∥DC ∥AB ,∴EM 綊 AN ,∴AEMN 为平行四边形,∴MN ∥AE ,∴MN ∥平面 PAD .(2)解:过 N 点作 NQ ∥AP 交 BP 于点 Q ,NF ⊥CB 于点 F .连结 QF ,过 N 点作 NH ⊥QF 于 H ,连结 MH ,易知 QN ⊥面 ABCD ,∴QN ⊥BC ,而 NF ⊥BC ,∴BC ⊥面 QNF ,∵BC ⊥NH ,而 NH ⊥QF ,∴NH ⊥平面 PBC ,∴∠NMH 为直线 MN 与平面 PCB 所成的角.2 2 6 2 2 10 10 5 2 10 53 3 通过计算可得 MN =AE = ,QN = ,NF = 2,4 4 QN ·NF ON ·NF ∴NH = = = ,QF QN 2+NF 2 4 NH 3 ∴sin ∠NMH = = ,∴∠NMH =60°,MN 2∴直线 MN 与平面 PCB 所成的角为 60°.14.(2009·广西柳州三模)如图所示,已知直平行六面体 ABCD -A 1B 1C 1D 1 中,AD ⊥BD , AD =BD =a ,E 是 CC 1 的中点,A 1D ⊥BE .(1) 求证:A 1D ⊥平面 BDE ;(2) 求二面角 B -DE -C 的大小.解析:(1)证明:在直平行六面体 ABCD -A 1B 1C 1D 1 中,∵AA 1⊥平面 ABCD ,∴AA 1⊥BD .又∵BD ⊥AD ,∴BD ⊥平面 ADD 1A 1,即 BD ⊥A 1D .又∵A 1D ⊥BE 且 BE ∩BD =B ,∴A 1D ⊥平面 BDE .(2)解:如图,连 B 1C ,则 B 1C ⊥BE ,易证 Rt △BCE ∽Rt △B 1BC ,CE BC ∴ = 1 ,又∵E 为 CC 1 中点, BC ∴BC 2 B B 1BB 21.BB 1= = 22BC = 2a .取 CD 中点 M ,连结 BM ,则 BM ⊥平面 CC 1D 1C ,作 MN ⊥DE 于 N ,连 NB ,由三垂线定理知:BN ⊥DE ,则∠BNM 是二面角 B -DE -C 的平面角. BD ·BC 在 Rt △BDC 中,BM = DC = a , Rt △CED 中,易求得 MN = a , BM Rt △BMN 中,tan ∠BNM = = 5, MN则二面角 B -DE -C 的大小为 arctan 5.15.如图,已知正方体 ABCD -A 1B 1C 1D 1 中,E 为 AB 的中点.(1) 求直线 B 1C 与 DE 所成的角的余弦值;(2) 求证:平面 EB 1D ⊥平面 B 1CD ;(3) 求二面角 E -B 1C -D 的余弦值.解析:(1)连结 A 1D ,则由 A 1D ∥B 1C 知,B 1C 与 DE 所成的角即为 A 1D 与 DE 所成的角. 连结 A 1E ,由正方体 ABCD -A 1B 1C 1D 1,可设其棱长为 a ,则 A 1D = ∴cos ∠A 1DEA 1D 2+DE 2-A 1E 2 2a ,A 1E =DE = a , = 2·A 1D ·DE = . 10∴直线 B 1C 与 DE 所成角的余弦值是 5. (2)证明取 B 1C 的中点 F ,B 1D 的中点 G ,连结 BF ,EG ,GF .∵CD ⊥平面 BCC 1B 1,3 3 33 = 且 BF ⊂平面 BCC 1B 1,∴DC ⊥BF .又∵BF ⊥B 1C ,CD ∩B 1C =C ,∴BF ⊥平面 B 1CD . 1 1 又 ∵GF 綊 CD ,BE 綊 CD ,2 2∴GF 綊 BE ,∴四边形 BFGE 是平行四边形,∴BF ∥GE ,∴GE ⊥平面 B 1CD .∵GE ⊂平面 EB 1D ,∴平面 EB 1D ⊥平面 B 1CD .(3)连结 EF .∵CD ⊥B 1C ,GF ∥CD ,∴GF ⊥B 1C .又∵GE ⊥平面 B 1CD ,∴EF ⊥B 1C ,∴∠EFG 是二面角 E -B 1C -D 的平面角. 设正方体的棱长为 a ,则在△EFG 中,1 GF = a ,EF = a ,2 2 FG ∴cos ∠EFG =EF = , 3∴二面角 E -B 1C -D 的余弦值为 3 . 16.(2009·全国Ⅱ,18)如图所示,直三棱柱 ABC -A 1B 1C 1 中,AB ⊥AC ,D 、E 分别为 AA 1、 B 1C 的中点,DE ⊥平面 BCC 1.(1) 求证:AB =AC ;(2) 设二面角 A -BD -C 为 60°,求 B 1C 与平面 BCD 所成的角的大小.解析:(1)证明:取 BC 中点 F ,连结 EF , 1则 EF 綊 2B 1B ,从而 EF 綊 DA . 连结 AF ,则 ADEF 为平行四边形,从而 AF ∥DE .又 DE ⊥平面 BCC 1,故 AF ⊥平面 BCC 1,从而 AF ⊥BC ,即 AF 为 BC 的垂直平分线, 所以 AB =AC .(2)解:作 AG ⊥BD ,垂足为 G ,连结 CG .由三垂线定理知 CG ⊥BD ,故∠AGC 为二面 2 角 A -BD -C 的平面角.由题设知,∠AGC =60°.设 AC =2,则 AG = .又 AB =2,BC =2 2,故 AF = 2. 由AB ·AD =AG ·BD 得 2AD 2 · 3AD 2+22, 解得 AD = 2,故 AD =AF .又 AD ⊥AF ,所以四边形 ADEF 为正方形.因为 BC ⊥AF ,BC ⊥AD ,AF ∩AD =A ,故 BC ⊥平面 DEF ,因此平面 BCD ⊥平面 DEF . 连结 AE 、DF ,设 AE ∩DF =H ,则 EH ⊥DF ,EH ⊥平面 BCD .连结 CH ,则∠ECH 为 B 1C 与平面 BCD 所成的角.4 17 17 16 17 17 6 因 ADEF 为正方形,AD = 2,故 EH =1,又 EC 1 B C =2, = 1 2所以∠ECH =30°,即 B 1C 与平面 BCD 所成的角为 30°.13. 在正四棱柱 ABCD -A 1B 1C 1D 1 中,底面边长为2的中点.(1) 求证:平面 B 1EF ⊥平面 BDD 1B 1;(2) 求点 D 1 到平面 B 1EF 的距离 d .2,侧棱长为 4,E 、F 分别为棱 AB 、BC分析:(1)可先证 EF ⊥平面 BDD 1B 1.(2)用几何法或等积法求距离时,可由 B 1D 1∥BD , 将点进行转移:D 1 点到平面 B 1EF 的距离是 B 点到它的距离的 4 倍,先求 B点到平面 B 1EF 的距离即可.解答:(1)证明:E rr o r !⇒EF ⊥平面 BDD 1B 1⇒平面 B 1EF ⊥平面 BDD 1B 1. (2)解:解法一:连结 EF 交 BD 于 G 点.∵B 1D 1=4BG ,且 B 1D 1∥BG ,∴D 1 点到平面 B 1EF 的距离是 B 点到它的距离的 4倍. 利用等积法可求.由题意可知,EF 1 AC =2,B G = 17. S △B EF = 2 1 1 EF ·B G 1 2× 17= 17,1 =2 1 S BE ·BF 1 = × 2 1 △BEF = = × 2 2∵VB -B 1EF =VB 1-BEF , 设 B 到面 B EF 的距离为 h 1 17×h 1 1×4,1 ∴h 1= . 1,则 × 3 1= × 3 ∴点 D 1 到平面 B 1EF 的距离为 h =4h 1= . 1 解法二:如图,在正方形 BDD 1B 1 的边 BD 上取一点 G ,使 BG = BD , 4连结 B 1G ,过点 D 1 作 D 1H ⊥B 1G 于 H ,则 D 1H 即为所求距离. 16 17可求得 D 1H = 17(直接法). 14. 如图直三棱柱ABC -A 1B 1C 1中,侧棱CC 1=2,∠BAC =90°,AB =AC= 2,M 是棱 BC 的中点,N 是 CC 1 中点.求:(1) 二面角 B 1-AN -M 的大小;(2) C 1 到平面 AMN 的距离.解析:(1)∵∠BAC =90°,AB =AC = ∴AM ⊥BC ,BC =2,AM =1.∴AM ⊥平面 BCC 1B 1.∴平面 AMN ⊥平面 BCC 1B 1.2,M 是棱 BC 的中点,作 B 1H ⊥MN 于 H ,HR ⊥AN 于 R ,连结 B 1R ,∴B 1H ⊥平面 AMN .又由三垂线定理知,B 1R ⊥AN .∴∠B 1是二面角 B 1-AN -M 的平面角.由已知得 AN = 3 23,MN = 2,B 1M = 5=B 1N , 则 B 1H = 2 , RH HN 又 Rt △AMN ∽Rt △HRN , = ,∴RH = .AM AN 6 2× 2=1.7 10 5 ∴B 1R =14 RH 3 ,∴cos ∠B 1RH = 1 = . B R 14 7∴二面角 B 1-AN -M 的大小为 arccos 14. (2)∵N 是 CC 1 中点,∴C 1 到平面 AMN 的距离等于 C 到平面 AMN 的距离. 设 C 到平面 AMN 的距离为 h ,由 V C -AMN =V N -AMC 1 1 1 1 得 × ·MN ·h = × AM ·MC . 3 2 3 2 2∴h = 2. 15.(2009·北京海淀一模)如图所示,四棱锥 P -ABCD 中,PA ⊥平面 ABCD ,底面 ABCD 为直角梯形,且 AB ∥CD ,∠BAD =90°,PA =AD =DC =2,AB =4. (1) 求证:BC ⊥PC ;(2) 求 PB 与平面 PAC 所成的角的正弦值;(3) 求点 A 到平面 PBC 的距离.解析:(1)证明:如图,在直角梯形 ABCD 中,∵AB ∥CD ,∠BAD =90°,AD =DC =2,∴∠ADC =90°,且 AC =2 2.取 AB 的中点 E ,连结 CE ,由题意可知,四边形 ABCD 为正方形,∴AE =CE =2. 1 1 又∵BE = AB =2.∴CE = AB ,2 2∴△ABC 为等腰直角三角形,∴AC ⊥BC .又∵PA ⊥平面 ABCD ,且 AC 为 PC 在平面 ABCD 内的射影,BC ⊂平面 ABCD ,由三垂线定理得,BC ⊥PC .(2) 由(1)可知,BC ⊥PC ,BC ⊥AC ,PC ∩AC =C ,∴BC ⊥平面 PAC .PC 是 PB 在平面 PAC 内的射影,∴∠CPB 是 PB 与平面 PAC 所成的角.又 CB =2 2,PB 2=PA 2+AB 2=20,PB =2 5, BC 10 ∴sin ∠CPB =PB = 5,即 PB 与平面 PAC 所成角的正弦值为 . (3) 由(2)可知,BC ⊥平面 PAC ,BC ⊂平面 PBC ,∴平面 PBC ⊥平面 PAC .过 A 点在平面 PAC 内作 AF ⊥PC 于 F ,∴AF ⊥平面 PBC ,∴AF 的长即为点 A 到平面 PBC 的距离.在直角三角形 PAC 中, PA =2,AC =2 2,2 63 2 6 36 PC =2 3,∴AF = . 即点 A 到平面 PBC 的距离为 . 16.(2009·吉林长春一模)如图所示,四棱锥 P -ABCD 的底面是正方形,PA ⊥底面 ABCD , PA =2,∠PDA =45°,点 E 、F 分别为棱 AB 、PD 的中点.(1) 求证:AF ∥平面 PCE ;(2) 求二面角 E -PD -C 的大小;(3) 求点 A 到平面 PCE 的距离. 解析:(1)证明:如图取 PC 的中点 G ,连结 FG 、EG ,∴FG 为△PCD 的中位线, 1 ∴FG = CD 且 FG ∥CD . 2又∵底面四边形 ABCD 是正方形,E 为棱 AB 的中点, 1 ∴AE = CD 且 AE ∥CD , 2∴AE =FG 且 AE ∥FG .∴四边形 AEGF 是平行四边形,∴AF ∥EG .又 EG ⊂平面 PCE ,AF ✪平面 PCE ,∴AF ∥平面 PCE .(2)解:∵PA ⊥底面 ABCD ,∴PA ⊥AD ,PA ⊥CD .又 AD ⊥CD ,PA ∩AD =A ,∴CD ⊥平面 PAD .又∵AF ⊂平面 PAD ,∴CD ⊥AF .又 PA =2,∠PDA =45°,∴PA =AD =2.∵F 是 PD 的中点,∴AF ⊥PD .又∵CD ∩PD =D ,∴AF ⊥平面 PCD .∵AF ∥EG ,∴EG ⊥平面 PCD .又 GF ⊥PD ,连结 EF ,则∠GFE 是二面角 E -PD -C 的平面角.在 Rt △EGF 中 ,EG =AF = 2,GF =1,GE ∴tan ∠GFE 2.= = GF∴二面角 E -PD -C 的大小为 arctan 2.(3)设 A 到平面 PCE 的距离为 h , 1 1 1 1 由 V A -PCE =V P -ACE ,即 × PC ·EG ·h = PA · AE ·CB ,得 h = , 3 2 3 2 3 6∴点 A 到平面 PCE 的距离为 3. 13.(2009·陕西,18)如图所示,在直三棱柱 ABC -A 1B 1C 1 中,AB =1,AC =AA 1= 3, ∠ABC =60°.,6 2 6 3 6 3 3 4 3 2 3 M(1) 求证:AB ⊥A 1C ;(2) 求二面角 A -A 1C -B 的大小.解析:(1)证明:∵三棱柱 ABC -A 1B 1C 1 为直三棱柱,∴AB ⊥AA 1,在△ABC 中,AB =1,AC = ∴∠BAC =90°,即 AB ⊥AC .3,∠ABC =60°,由正弦定理得∠ACB =30°,∴AB ⊥平面 ACC 1A 1,又 A 1C ⊂平面 ACC 1A 1,∴AB ⊥A 1C .(2)解:如图,作 AD ⊥A 1C 交 A 1C 于 D 点,连结 BD ,由三垂线定理知BD ⊥A 1C ,∴∠ADB 为二面角 A -A 1C -B 的平面角. AA 1·AC 3 × 3 在 Rt △AA 1C 中,AD = = = , A 1C 6 AB 6 在 Rt △BAD 中,tan ∠ADB = = ,AD 3 ∴∠ADB =arctan ,即二面角 A -A 1C -B 的大小为 arctan . 14.如图,三棱柱 ABC -A 1B 1C 1 的底面是边长为 a 的正三角形,侧面 ABB 1A 1 是菱形且垂直于底面,∠A 1AB =60°,M 是 A 1B 1 的中点.(1) 求证:BM ⊥AC ;(2) 求二面角 B -B 1C 1-A 1 的正切值;(3) 求三棱锥 M -A 1CB 的体积.解析:(1)证明:∵ABB 1A 1 是菱形,∠A 1AB =60°⇒△A 1B 1B 是正三角形 E rr o r !⇒BM ⊥平面 A 1B 1C 1. E rr o r !⇒BM ⊥AC . E rr o r !⇒BE ⊥B 1C 1,∴∠BEM 为所求二面角的平面角, △A 1B 1C 1 中,ME =MB 1·sin60°= a ,Rt △BMB 1 中,MB =MB 1·tan60°= a , MB ∴tan ∠BEM = =2, E ∴所求二面角的正切值是 2. 1 1 1 1 1 3 1 (3)VM -A 1CB = VB 1-A 1CB = VA -A 1CB = VA 1-ABC = × × a 2· a = a 3. 2 2 2 2 3 4 2 1615.(2009·广东汕头一模)如图所示,已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥ AE AF 平面 BCD ,∠ADB =60°,E 、F 分别是 AC 、AD 上的动点,且 = =λ(0<λ<1).AC AD(1) 求证:不论 λ 为何值,总有 EF ⊥平面 ABC ; 1 (2) 若 λ= ,求三棱锥 A -BEF 的体积. 2解析:(1)证明:∵AB ⊥平面 BCD ,∴AB ⊥CD .又∵在△BCD 中,∠BCD =90°,∴BC ⊥CD .∵又 AB ∩BC =B ,6 15 = 3,S 15 ∴CD ⊥平面 ABC .AE AF 又∵在△ACD 中,E 、F 分别是 AC 、AD 上的动点,且 = =λ(0<λ<1), AC AD ∴不论 λ 为何值,都有 EF ∥CD , ∴EF ⊥平面 ABC . (2)在△BCD 中,∠BCD =90°,BC =CD =1, ∴BD = 2. 又∵AB ⊥平面 BCD , ∴AB ⊥BC ,AB ⊥BD . 又∵在 Rt △ABD 中,∠ADB =60°, ∴AB =BD ·tan60°= 6, 由(1)知 EF ⊥平面 ABC , ∴V A -BEF =V F -ABE 1 = S △ABE ·EF 3 1 1 = × S △ABC ·EF 3 2 1 1 1 = × ×1× 6× = . 6 2 2 24 6 故三棱锥 A -BEF 的体积是 24 . 16.在四棱锥 P -ABCD 中,侧面 PDC 是边长为2 的正三角形,且与底面垂直,底面 ABCD 是面积为 2 3的菱形,∠ADC 为菱形的锐角. (1) 求证:PA ⊥CD ; (2) 求二面角 P -AB -D 的大小; (3) 求棱锥 P -ABCD 的侧面积; 解析:(1)证明:如图所示,取 CD 的中点 E ,由 PE ⊥CD ,得 PE ⊥平面 ABCD ,连结 AC 、AE . ∵AD ·CD ·sin ∠ADC =2 3, AD =CD =2, 3 ∴sin ∠ADC = 2 , 即∠ADC =60°,∴△ADC 为正三角形,∴CD ⊥AE . ∴CD ⊥PA (三垂线定理). (2) 解:∵AB ∥CD ,∴AB ⊥PA ,AB ⊥AE , ∴∠PAE 为二面角 P -AB -D 的平面角. 在 Rt △PEA 中,PE =AE ,∴∠PAE =45°. 即二面角 P -AB -D 的大小为 45°. (3) 分别计算各侧面的面积: ∵PD =DA =2,PA = 6, 1 ∴cos ∠PDA = ,sin ∠PDA = . 4 1 1 S AB ·PA = 2· 3= 6, △PCD △PAB = 2 ·2· 2 1 S △PAD =S △PBC = PD ·DA ·sin ∠PDA = . 2∴S P -ABCD 侧 = 3+ 6+ 15.13. 把地球当作半径为 R 的球,地球上 A 、B 两地都在北纬 45°,A 、B 两点的球面距离 π是 3R ,A 点在东经 20°,求 B 点的位置. 解析:如图,求 B 点的位置即求 B 点的经度,设 B 点在东经 α,7 2 7 21 = , π∵A 、B 两点的球面距离是 3R . π ∴∠AOB = ,因此三角形 AOB 是等边三角形,∴AB =R , 3又∵∠AO 1B =α-20°(经度差) 2问题转化为在△AO 1B 中借助 AO 1=BO 1=AO cos45°= 2 R , 求出∠AO 1B =90°,则 α=110°,同理:B 点也可在西经 70°,即 B 点在北纬 45°东经 110° 或西经 70°.14. 在球心同侧有相距 9cm 的两个平行截面,它们的面积分别为 49πcm 2 和 400πcm 2, 求球的表面积和体积.解析:如图,两平行截面被球大圆所在平面截得的交线分别为 AO 1、BO 2,则 AO 1∥BO 2. 若 O 1、O 2 分别为两截面圆的圆心,则由等腰三角形性质易知 OO 1⊥AO 1,OO 2⊥BO 2, 设球半径为 R ,∵πO 2B 2=49π,∴O 2B =7cm ,同理 O 1A =20cm.设 OO 1=x cm ,则 OO 2=(x +9)cm.在 Rt △OO 1A 中,R 2=x 2+202,在 Rt △OO 2B 中,R 2=(x +9)2+72,∴x 2+202=72+(x +9)2,解得 x =15cm.∴R =25cm ,∴S 球=2500πcm 2, 4 62500 V 球= πR 3= πcm 3. 3 3 π15. 设 A 、B 、C 是半径为 1 的球面上的三点,B 、C 两点间的球面距离为3,点 A 与 B 、C π两点间的球面距离均为2,O 为球心,求: (1) ∠AOB 、∠BOC 的大小; (2)球心 O 到截面 ABC 的距离. π 解析:(1)如图,因为球 O 的半径为 1,B 、C 两点间的球面距离为3, π π点 A 与 B 、C 两点间的球面距离均为2,所以∠BOC =3,∠AOB =∠AOC = π , 2 3 (2) 因为 BC =1,AC =AB = 2,所以由余弦定理得 cos ∠BAC sin ∠BAC = ,设 4 4 截面圆的圆心为 O 1,连结 AO 1,则截面圆的半径 r =AO 1,由正弦定理得 r = BC = ,所以 OO 1= OA 2-r 2= .2sin ∠BAC 7 716. 如图四棱锥 A -BCDE 中,AD ⊥底面 BCDE ,AC ⊥BC ,AE ⊥BE .(1) 求证:A 、B 、C 、D 、E 五点共球;(2) 若∠CBE =90°,CE = 3,AD =1,求 B 、D 两点的球面距离.解析:(1)证明:取 AB 的中点 P ,连结 PE ,PC ,PD ,由题设条件知△AEB 、△ADB 、△ABC 都是直角三角形. 1 故 PE =PD =PC = AB =PA =PB . 2所以 A 、B 、C 、D 、E 五点在同一球面上.(2)解:由题意知四边形 BCDE 为矩形,所 以 BD =CE = 3,在 Rt △ADB 中,AB =2,AD =1, 2 ∴∠DPB =120°,D 、B 的球面距离为 π. 32 2 15 5 63 5 17.(本小题满分 10 分)如图,四棱锥 S —ABCD 的底面是正方形,SA ⊥底面 ABCD ,E 是 SC 上一点.(1) 求证:平面 EBD ⊥平面 SAC ;(2) 假设 SA =4,AB =2,求点 A 到平面 SBD 的距离;解析:(1)∵正方形 ABCD ,∴BD ⊥AC ,又∵SA ⊥平面 ABCD ,∴SA ⊥BD ,则 BD ⊥平面 SAC ,又 BD ⊂平面 BED ,∴平面 BED ⊥平面 SAC .(2)设AC ∩BD =O ,由三垂线定理得BD ⊥SO .AO 1 1 AC 2AB 1 · 2·2= 2,SA =4, = = = 2 2 2 则 SO = SA 2+AO 2= 16+2=3 2,S 1 BD ·SO 1 ·2 2·3 2=6.设 A 到面 BSD 的距 △BSD = = 2 2 1 1 4 离为 h ,则 V S -ABD =V A -BSD ,即 3S △ABD ·SA = S △BSD ·h ,解得 h = ,即点 A 到平面 SBD 的距 3 3 4 离为 . 318.(本小题满分 12 分)如图,正四棱柱 ABCD -A 1B 1C 1D 1 中,AA 1=2AB =4,点 E 在 C 1C 上且 C 1E =3EC . (1)证明 A 1C ⊥平面 BED ;(2)求二面角 A 1-DE -B 的大小.解析:依题设知 AB =2,CE =1,(1) 证明:连结 AC 交 BD 于点 F ,则 BD ⊥AC .由三垂线定理知,BD ⊥A 1C .在平面 A 1CA 内,连结 EF 交 A 1C 于点 G , AA 1 AC由于FC =CE=2 , 故 Rt △A 1AC ∽Rt △FCE ,∠AA 1C =∠CFE ,∠CFE 与∠FCA 1 互余. 于是 A 1C ⊥EF .A 1C 与平面 BED 内两条相交直线 BD 、EF 都垂直. 所以 A 1C ⊥平面 BED .(2) 作 GH ⊥DE ,垂足为 H ,连结 A 1H .由三垂线定理知 A 1H ⊥DE ,故∠A 1HG 是二面角 A 1-DE -B 的平面角.EF = CF 2+CE 2= 3, CE × CF2 CG = EF =3 . 3EG = CE 2-CG 2= 3 . EG 1 1 EF × FD = ,GH = × = .EF 3 3 DE 又 A 1C = AA 21+AC 2=2 A 1G6,A 1G =A 1C -CG = , tan ∠A 1HG = HG=5 . 所以二面角 A 1-DE -B 的大小为 arctan5 5.19.(本小题满分12 分)如图,四棱锥S -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°, AB =BC =SB =SC =2CD =2,侧面 SBC ⊥底面 ABCD .3 3 3 2 3 2= (1) 由 SA 的中点 E 作底面的垂线 EH ,试确定垂足 H 的位置;(2) 求二面角 E -BC -A 的大小.解析:(1)作 SO ⊥BC 于 O ,则 SO ⊂平面 SBC , 又面 SBC ⊥底面 ABCD , 面 SBC ∩面 ABCD =BC , ∴SO ⊥底面 ABCD ① 又 SO ⊂平面 SAO ,∴面 SAO ⊥底面 ABCD , 作 EH ⊥AO ,∴EH ⊥底面 ABCD ② 即 H 为垂足,由①②知,EH ∥SO , 又 E 为 SA 的中点,∴H 是 AO 的中点. (2)过 H 作 HF ⊥BC 于 F ,连结 EF , 由(1)知 EH ⊥平面 ABCD ,∴EH ⊥BC , 又 EH ∩HF =H ,∴BC ⊥平面 EFH ,∴BC ⊥EF , ∴∠HFE 为面 EBC 和底面 ABCD 所成二面角的平面角. 在等边三角形 SBC 中,∵SO ⊥BC , ∴O 为 BC 中点,又 BC =2. ∴SO = 22-12= 3,EH 1SO = , 1 又 HF = AB =1, 2 2 2 3EH 2 ∴在 Rt △EHF 中,tan ∠HFE = = = ,HF 1 2 ∴∠HFE =arctan . 即二面角 E -BC -A 的大小为 arctan. 20.(本小题满分 12 分)(2010·唐山市高三摸底考试)如图,在正四棱柱 ABCD -A 1B 1C 1D 1 中,AB =1,AA 1=2,N 是 A 1D 的中点,M ∈BB 1,异面直线 MN 与 A 1A 所成的角为 90°. (1) 求证:点 M 是 BB 1 的中点;(2) 求直线 MN 与平面 ADD 1A 1 所成角的大小;(3) 求二面角 A -MN -A 1 的大小.解析:(1)取 AA 1 的中点 P ,连结 PM ,PN .∵N 是 A 1D 的中点,∴AA 1⊥PN ,又∵AA 1⊥MN ,MN ∩PN =N ,∴AA 1⊥面 PMN .∵PM ⊂面 PMN ,∴AA 1⊥PM ,∴PM ∥AB ,∴点 M 是 BB 1 的中点.305 2 2 2 2(2) 由(1)知∠PNM 即为 MN 与平面 ADD 1A 1 所成的角.1 在 Rt △PMN 中,易知 PM =1,PN = ,2 PM∴tan ∠PNM =PN =2,∠PNM =arctan2. 故 MN 与平面 ADD 1A 1 所成的角为 arctan2.(3) ∵N 是 A 1D 的中点,M 是 BB 1 的中点,∴A 1N =AN ,A 1M =AM ,又 MN 为公共边,∴△A 1MN ≌△AMN .在△AMN 中,作 AG ⊥MN 交 MN 于 G ,连结 A 1G ,则∠A 1GA 即为二面角 A -MN -A 1 的平面角.在△A 1GA 中,AA 1=2,A 1G =GA = , A 1G 2+GA 2-AA 12 2 2 ∴cos ∠A 1GA = 2A 1G ·GA =- ,∴∠A 1GA =arccos(- ), 3 3 2 故二面角 A -MN -A 1 的大小为 arccos(- ). 321.(2009·安徽,18)(本小题满分 12 分)如图所示,四棱锥 F -ABCD 的底面 ABCD 是菱 形,其对角线 AC =2,BD = 2.AE 、CF 都与平面 ABCD 垂直,AE =1,CF =2. (1) 求二面角 B -AF -D 的大小;(2) 求四棱锥 E -ABCD 与四棱锥 F -ABCD 公共部分的体积.命题意图:本题考查空间位置关系,二面角平面角的作法以及空间几何体的体积计算等知识.考查利用综合法或向量法解决立体几何问题的能力.解答:(1)解:连接 AC 、BD 交于菱形的中心 O ,过 O 作 OG ⊥AF ,G 为垂足,连接 BG 、DG . 由 BD ⊥AC ,BD ⊥CF 得 BD ⊥平面 ACF ,故 BD ⊥AF .于是 AF ⊥平面 BGD ,所以 BG ⊥AF ,DG ⊥AF ,∠BGD 为二面角 B -AF -D 的平面角.π 由 FC ⊥AC ,FC =AC =2,得∠FAC = ,OG = . 4 2 π 由 OB ⊥OG ,OB =OD = ,得∠BGD =2∠BGO = . (2)解:连接 EB 、EC 、ED ,设直线 AF 与直线 CE 相交于点 H ,则四棱锥 E -ABCD 与四棱锥 F -ABCD 的公共部分为四棱锥 H -ABCD .3 2 3 2 过 H 作 HP ⊥平面 ABCD ,P 为垂足.因为 EA ⊥平面 ABCD ,FC ⊥平面 ABCD ,所以平面 ACEF ⊥平面 ABCD ,从而 P ∈AC ,HP ⊥AC . HP HP AP PC 2 由 + = + =1,得 HP = . CF AE AC AC 3 又因为 S 1 菱形ABCD = AC ·BD = 2, 2 1 2 2 故四棱锥 H -ABCD 的体积 V = S 菱形ABCD ·HP = .3 922.(2009·深圳调考一)(本小题满分 12 分)如图所示,AB 为圆 O 的直径,点 E 、F 在圆 O 上,AB ∥EF ,矩形 ABCD 所在平面和圆 O 所在的平面互相垂直.已知 AB =2,EF =1.(1) 求证:平面 DAF ⊥平面 CBF ;(2) 求直线 AB 与平面 CBF 所成角的大小;(3) 当 AD 的长为何值时,二面角 D -FE -B 的大小为 60°?解析:(1)证明:∵平面 ABCD ⊥平面 ABEF ,CB ⊥AB ,平面 ABCD ∩平面 ABEF =AB ,∴CB ⊥平面 ABEF .∵AF ⊂平面 ABEF ,∴AF ⊥CB ,又∵AB 为圆 O 的直径,∴AF ⊥BF ,∴AF ⊥平面 CBF .∵AF ⊂平面 DAF ,∴平面 DAF ⊥平面 CBF .(2)解:根据(1)的证明,有 AF ⊥平面 CBF ,∴FB 为 AB 在平面 CBF 上的射影,因此,∠ABF 为直线 AB 与平面 CBF 所成的角.∵AB ∥EF ,∴四边形 ABEF 为等腰梯形,过点 F 作 FH ⊥AB ,交 AB 于 H .AB =2,EF =1,则 AH = AB -EF 1 = . 2 2在 Rt △AFB 中,根据射影定理 AF 2=AH ·AB ,得 AF =1, AF 1 sin ∠ABF = = ,∴∠ABF =30°, AB 2∴直线 AB 与平面 CBF 所成角的大小为 30°.(3)解:过点 A 作 AM ⊥EF ,交 EF 的延长线于点 M ,连结 DM .根据(1)的证明,DA ⊥平面 ABEF ,则 DM ⊥EF ,∴∠DMA 为二面角 D -FE -B 的平面角,∠DMA =60°. 1 在 Rt △AFH 中,∵AH = ,AF =1, 2 ∴FH = .又∵四边形 AMFH 为矩形,∴MA =FH = . 3 ∵AD =MA ·tan ∠DMA = 2 · 3=3 2 .3因此,当AD 的长为时,二面角D-FE-B 的大小为60°.2。

新人教版高一数学必修2试题立体几何

高一数学(必修2)立体几何试题参考公式一、选择题(本大题共10小题,每小题4分,共40分,将答案直接填在下表中)(1)下列命题为真命题的是()(A)平行于同一平面的两条直线平行(B)垂直于同一平面的两条直线平行(C)与某一平面成等角的两条直线平行(D)垂直于同一直线的两条直线平行(2)若一个角的两边分别和另一个角的两边平行,那么这两个角()(A)相等(B)互补(C)相等或互补(D)无法确定(3)正三棱锥的底面边长为2,侧面均为直角三角形,则此棱锥的体积为()(A(B(C(D(4)已知PD⊥矩形ABCD所在的平面,图中相互垂直的平面有()(A)2对(B)3对(C)4对(D)5对(5)如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()(A)2(B)12+(C)22+(D)1(C)(1,3,5)(D)(-1,-3,5)二、填空题(本大题共6小题,每小题4分,共24分)(11)底面直径和高都是4cm的圆柱的侧面积为cm2.(12)若两个球的表面积之比是4∶9,则它们的体积之比是.(13)图①中的三视图表示的实物为_____________;PA B CD图②为长方体积木块堆成的几何体的三视图,此几何体共由_______块木块堆成.三、解答题(本大题共4小题,共36分.解答应写出文字说明、演算步骤或推证过程) (17)(本小题满分9分)如图,O 是正方形ABCD 的中心, PO ⊥底面ABCD ,E 是PC 的中点.求证:(Ⅰ)P A ∥平面BDE ;(Ⅱ)平面P AC ⊥平面BDE .(18)(本小题满分9分)已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和. (Ⅰ)求该圆台的母线长; (Ⅱ)求该圆台的体积.高一数学(必修2)训练题参考答案一、选择题二、填空题(11)π16 (12)8∶27 (13)圆锥;4 (14)60° (15)(0,3) (16)8 三、解答题 (17) 证明:(Ⅰ)连结EO ,在△P AC 中,∵O 是AC 的中点,E 是PC ∴OE ∥AP . 又∵OE ⊂平面BDE , P A ⊄平面BDE , ∴P A ∥平面BDE .(Ⅱ)∵PO ⊥底面ABCD ,∴PO ⊥BD .图①正视图 左视图俯视图 正视图 左视图又∵AC ⊥BD ,且AC PO =O , ∴BD ⊥平面P AC . 而BD ⊂平面BDE , ∴平面P AC ⊥平面BDE .(18)解:(Ⅰ)设圆台的母线长为l ,则圆台的上底面面积为224S ππ=⋅=上, 圆台的下底面面积为2636S ππ=⋅=下, 所以圆台的底面面积为40S S S π=+=下上 又圆台的侧面积(26)8S l l ππ=+=侧,于是840l ππ=,即5l =为所求.(Ⅱ)由(Ⅰ)可求得,圆台的高为3h ==.∴ (13V S S h =++圆台下上=(143633ππ+⋅=52π.。

高中数学必修2立体几何部分试卷及答案

高中数学必修2立体几何部分试卷试卷满分100分。

时间70分钟考号 班级 姓名第Ⅰ卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、垂直于同一条直线的两条直线一定 ( )A 、平行B 、相交C 、异面D 、以上都有可能 2、过直线l 外两点作与直线l 平行的平面,可以作( )A .1个B .1个或无数个C .0个或无数个D .0个、1个或无数个 3、正三棱锥底面三角形的边长为3,侧棱长为2,则其体积为 ( )A .41 B .21 C .43 D .49 4、右图是一个实物图形,则它的左视图大致为 ( )5、已知正四棱台的上、下底面边长分别为3和6,其侧面积等于两底面积之和,则该正四棱台的高是 ( )A .2B .25C .3D .27 6、已知α、β是平面,m 、n 是直线,则下列命题不正确...的是 ( ) A .若//,m n m α⊥,则n α⊥ B .若,m m αβ⊥⊥,则//αβ C .若,//,m m n n αβ⊥⊂,则αβ⊥ D .若//,m n ααβ=I,则//m n7、正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的侧面是正方形,若底面的边长为a ,则该正六棱柱的外接球的表面积是 ( )A .4πa 2 B.5 πa 2 C. 8πa 2 D.10πa 28、如右下图,在ABC ∆中,2AB =,BC=1.5,120ABC ∠=o,如图所示。

若将ABC ∆绕BC 旋转一周,则所形成的旋转体的体积是( ) (A )92π (B )72π (C )52π (D )32π(第8题图)9、如左上图是由单位立方体构成的积木垛的三视图,据此三视图可知,构成这堆积木垛的单 位正方体共有 ( ) A .6块 B .7块 C .8块 D .9块10、给出下列命题①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .0个 B .1个C .2个D .3个第Ⅱ卷(非选择题 共60分)二、填空题(每小题4分,共16分)11、已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:①一条直线;②一个平面;③一个点;④空集。

立体几何(必修2第一、二章)水平测试(A)

立体几何(必修2第一、二章)水平测试题时间:120分钟 满分:150分一、选择题(每小题5分,共50分)1.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为( )2.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④3.如图(1)所示,一只装了水的密封瓶子,其内部可以看成是由半径为1 cm 和半径为3 cm 的两个圆柱组成的简单几何体.当这个几何体如图(2)水平放置时,液面高度为20 cm ,当这个几何体如图(3)水平放置时,液面高度为28 cm ,则这个简单几何体的总高度为( )A .29 cmB .30 cmC .32 cmD .48 cm4.如果底面直径和高相等的圆柱的侧面积是S ,那么圆柱的体积等于( ) A.S 2S B.S 2S π C.S 4S D.S 4S π5.对两条不相交的空间直线a 与b ,必存在平面α使得( ) A .a ⊂α,b ⊂α B .a ⊂α,b ∥α C .a ⊥α,b ⊥α D .a ⊂α,b ⊥α6.正方体ABCD -A 1B 1C 1D 1中,P ,Q ,R 分别是AB ,AD ,B 1C 1的中点,那么,正方体边的过P ,Q ,R 的截面图形是( )A .三角形B .四边形C .五边形D .六边形7.在空间中,下列命题正确的是( )A .若两直线垂直于同一条直线,则两直线平行B .若两直线平行于同一个平面,则两直线平行C .若两平面垂直于同一个平面,则两平面平行D .若两平面平行于同一个平面,则两平面平行8.若a 不平行于平面α,且a ⊄α,则下列结论成立的是( ) A .α内的所有直线与a 异面 B .α内与a 平行的直线不存在 C .α内存在唯一的直线与a 平行 D .α内的直线与a 都相交9.如图所示,ABCD-A1B1C1D1为正方体,下面结论错误的是()A.BD∥平面CBD1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD与CB1所成的角为60°10.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△ABC所在平面,那么()A.PA=PB>PC B.PA=PB<PCC.PA=PB=PC D.PA≠PB≠PC二、填空题(每小题4分,共28分)11.三个平面可以把空间分成________部分.12.一个几何体的三视图如图,该几何体的表面积是______.13.正方体ABCD-A1B1C1D1中,E,F分别是BC,AD的中点,则异面直线BF与D1E所成角的正弦值为________.14.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)),则球的半径是________ cm.15.在四面体ABCD中,M,N分别是面△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.16.若一个二面角的两个半平面分别平行于另一个二面角的两个半平面,则这两个二面角的关系为________.17.已知A(x,5-x,2x-1),B(1,x+2,2-x),当|AB|取最小值时x的值为________.三、解答题(72分)18.(14分)已知四棱锥P-ABCD水平放置如图,且底面ABCD是边长为2 cm的正方形,侧棱PA⊥底面ABCD,PA=AB.试画出该几何体的三视图.19.(14分)已知如图所示图形是一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm 、高为20 cm 的一个圆锥体铅锤,当铅锤从水中取出后,杯里的水将下降多少厘米?20.(14分)已知△ABC 在平面α外,AB ∩α=P ,AC ∩α=R ,BC ∩α=Q ,如图.求证:P ,Q ,R 三点共线.21.(14分)如图,已知四边形ABCD 是平行四边形,点P 是平面ABCD 外的一点,则在四棱锥P -ABCD 中,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH.求证:AP ∥GH.22.(14分)如图,在五面体ABCDEF 中,点O 是矩形ABCD的对角线的交点,平面CDE 是等边三角形,棱EF 12BC.(1)证明:FO ∥平面CDE ;(2)设BC =3CD ,证明:EO ⊥平面CDF.答案解析1、解析:正视图中小长方形在左上方,对应俯视图应该在左侧,排除B、D两项,侧视图中小长方形在右上方,对应俯视图应该在下方,排除A项,故选C项.答案:C2、解析:正方体的正视、侧视、俯视图都为正方形;圆锥的正视、侧视、俯视图依次为:三角形、三角形、圆;三棱台的正视、侧视、俯视图依次为梯形、梯形、三角形;正四棱锥的正视、侧视、俯视图依次为:三角形、三角形、正方形.故选D项.答案:D3、解析:可利用逆向思维,考虑空余部分体积相等.设瓶子高为h,则:π×12×(h-20)=π×32×(h-28),解得:h=29 cm.答案:A4、解析:设底面圆的半径为R,S侧=2πR×2R,∴4πR2=S,∴R=S2π,∴V=πR2×2R=2π×S4π×S2π=S4Sπ,故选D项.答案:D5、解析:不相交的直线a,b的位置关系有两种:平行或异面.当a,b异面时,不存在平面α满足A、C两项;又只有当a⊥b时D项才成立.答案:B6、解析:如下图,截面图形为边长是正方体棱长的22倍的正六边形.答案:D7、解析:对于A项,因为垂直于同一条直线的两条直线可能平行,还可能是异面直线,还可能相交,所以A项错;对于B项,平行于同一平面的两条直线也不一定平行,所以B项错;对于C项,因为垂直于同一平面的两个平面可能平行还可能相交,所以C项错;而D项显然成立.故选D项.答案:D8、解析:由题设知,a和α相交,设a∩α=P,如图,在α内过点P的直线与a共面,A项错;在α内不过点P的直线与a异面,D项错;(反证)假设α内直线b∥a,则∵a⊄α,∴a∥α,与已知矛盾,C项错.故选B项.答案:B9、解析:因AD∥BC,所以∠B1CB就是异面直线AD与B1C所成的角.又因在正方体ABCD—A1B1C1D1中,△B1BC是等腰直角三角形,所以∠B1CB=45°.即异面直线AD与CB1所成的角为45°,D项中结论错误,故选D项.答案:D10、解析:∵M为AB的中点,△ACB为直角三角形,∴BM=AM=CM,又PM⊥平面ABC,∴Rt△PMB≌Rt△PMA≌Rt△PMC,故PA=PB=PC.选C项.答案:C11、解析:结合三个平面的位置关系联想可得. 答案:4或6或7或812、解析:由该几何体的三视图可得该几何体的表面积为:2×(6×8+2×8)+2×(2×8+10×2)+2×(10×8)=128+72+160=360. 答案:36013、解析:连结DE ,则DE ∥BF ,∴∠DED1就是异面直线BF 与D 1E 所成的角. 设AB =2,则DE =5,D 1E =3,∴sin ∠DED 1=DD 1D 1E =23.答案:2314、解析:设球的半径为r cm ,依等体积法知: 43πr 3·3+πr 2·8=πr 2·6r , ∴2r =8,r =4 cm. 答案:415、解析:连结AM 并延长交CD 于点E ;连结BN 并延长交CD 于点F ,由重心的性质知:E ,F 重合为一点,且该点为CD 的中点E ,由EM MA =EN NB =12得MN ∥AB ,因此MN ∥面ABC ,MN ∥面ABD.答案:面ABC 和面ABD16、解析:画出草图,结合二面角的定义可知. 答案:相等或互补 17、解析:∵|AB|=(x -1)2+(5-x -x -2)2+(2x -1-2+x )2 =14x 2-32x +19 =14(x -87)2+57.∴当且仅当x =87时,|AB|取得最小值.答案:8718、解:几何体的三视图如下:19、解:设水面下降的高度为x cm ,则小圆柱的体积为V 小圆柱=π×(202)2·x =100πx (cm 3).而圆锥形铅锤的体积为V 铅锤=13π×(62)2×20=60π (cm 3).所以由方程60π=100πx ,解得x =0.6 cm.故铅锤从水中取出后,杯里的水将下降0.6 cm.20、证明:方法一:∵AB ∩α=P , ∴P ∈AB ,P ∈平面α. 又AB ⊂平面ABC , ∴P ∈平面ABC.∴点P 在平面ABC 与平面α的交线上,同理可证Q 、R 也在平面ABC 与平面α的交线上.∴由公理3知P ,Q ,R 三点共线. 方法二:∵AP ∩AR =A ,∴直线AP 与直线AR 确定平面APR. 又∵AB ∩α=P ,AC ∩α=R , ∴平面APR ∩平面α=PR.∵B ∈平面APR ,C ∈平面APR , ∴BC ⊂平面APR.又∵Q ∈BC ,∴Q ∈平面APR ,又Q ∈α,∴Q ∈PR , ∴P ,Q ,R 三点共线.21、证明:连结AC ,交BD 于O ,连结MO. 因为四边形ABCD 是平行四边形, 所以O 是AC 的中点,又因为M 是PC 的中点, 所以MO ∥PA.又因为MO ⊂平面BDM , PA ⊄平面BDM.所以PA ∥平面BDM.又因为经过PA 与点G 的平面交平面BDM 于GH ,所以AP ∥GH.22、证明:(1)取CD 中点M ,连结OM.在矩形ABCD 中,OM 12BC ,又EF 12BC ,则EF OM ,连结EM ,于是四边形EFOM 为平行四边形, ∴FO ∥EM ,又∵FO ⊄平面CDE , 且EM ⊂平面CDE , ∴FO ∥平面CDE.(2)连结FM ,由(1)和已知条件, 在等边△CDE 中,CM =DM ,EM ⊥CD 且EM =32CD =12BC =EF ,因此平行四边形EFOM 为菱形, 从而EO ⊥FM ,∵CD ⊥OM ,CD ⊥EM ,OM ∩EM =M , ∴CD ⊥平面EOM ,从而CD ⊥EO. 而FM ∩CD =M ,所以EO ⊥平面CDF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修2第二章 单元测试题
学号 姓名 成绩
一、选择题(本大题共10小题,每小题5分,共50分)
1、线段AB 在平面α内,则直线AB 与平面α的位置关系是
A 、A
B α⊂ B 、AB α⊄
C 、由线段AB 的长短而定
D 、以上都不对 2、下列说法正确的是
A 、三点确定一个平面
B 、四边形一定是平面图形
C 、梯形一定是平面图形
D 、平面α和平面β有不同在一条直线上的三个交点 3、垂直于同一条直线的两条直线一定
A 、平行
B 、相交
C 、异面
D 、以上都有可能 4、在正方体1111ABCD A B C D -中,下列几种说法正确的是
A 、11AC AD ⊥
B 、11D
C AB ⊥ C 、1AC 与DC 成45角
D 、11AC 与1B C 成60角 5、若直线l //平面α,直线a α⊂,则l 与a 的位置关系是
A 、l //α
B 、l 与a 异面
C 、l 与a 相交
D 、l 与a 没有公共点 6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有 A 、1 B 、2 C 、3 D 、4
7、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、能相交于点P ,那么 A 、点必P 在直线AC 上 B 、点P 必在直线BD 上
C 、点P 必在平面ABC 内
D 、点P 必在平面ABC 外 8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M , a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有
A 、0个
B 、1个
C 、2个
D 、3个 9、已知二面角AB αβ--的平面角是锐角θ,α内一点C 到β的距离为3,点C 到棱AB 的距离为4,那么tan θ的值等于 A 、
34
B 、
35
C

7
D

7
10、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和
CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为
A 、
2V B 、3V C 、4V D 、5
V
Q
P
C'
B'
A'C B
A
B 1
C 1
A 1
D 1
B
A
C
D
二、填空题(本大题共4小题,每小题5分,共20分);
11、设b a ,是两条直线,βα,是两个平面,则下列命题成立的是 ;
(1),,//;(2)//,;(3),//;(4),,a b a b b a a a a a b a b αααααββαββααβαβ
⊥⊥⊄⊥⊥⊥⊥⊥⊥⊥⊥则则则则
12、正方体1111ABCD A B C D -中,平面11AB D 和平面1BC D 的位置关系为 ; 13、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,平行则四边形ABCD 一定是 ;
14、如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条
件_________时,有A 1 B ⊥B 1 D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)
三、解答题(本大题共3小题,每小题10分,共30分)
15、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG. 求证:EH ∥BD . (12分)
16、已知正方体ABCD —A 1B 1C 1D 1,O 是底ABCD 对角线的交点.
求证:(1)C 1O//面AB 1D 1; (2 )1A C ⊥面AB 1D 1.
D 1
O
D
B
A
C 1B 1
A 1
C H
G F E D
B
A
C
17、已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,
∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且(01).AE AF
AC AD
λλ==<< (Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ; (Ⅱ)当λ为何值时,平面BEF ⊥平面ACD ? (14分)
F
E
D
B
A
C
参考答案:
一、
ACDDD B(AC)BDB 二、
11. 1 4
12. 平行
13. 菱形
14. AC垂直BD
三、
15. 略
16. 略
6
17. (II)
7。

相关文档
最新文档