2.4 有理数的除法
2.4有理数的除法(课件)七年级数学上册(浙教版2024)

=-7+9+(-28)+12=-14
∴原式=
03
典例精析
例5、混合计算:(1) ÷(-5)÷(- )×5
(3)2÷(- )× ÷(-5 )
(2)(-64)÷ × ÷(-25)
(4)
(+5 )÷(-4 )×(- )÷(-3 )
(2)【法一】原式=(- )÷
=(- )÷ =(- )×3=
【法二】原式的倒数=( - + - )÷(- )
=( - + - )×(-42)= ×(-42)+(- )×(-42)+ ×(-42)+(- )×(-42)
教学目标
01
02
贴近生活实例感受有理数的除法,理解有理数除法法则
能灵活运用有理数乘、除法法则进行乘除混合运算
有理数的除法
01
课堂引入
为促进中小企业发展,我国针对增值税和企业所得
税出台了一系列优惠政策。根据优惠政策,某企业
预计2023年全年可减少税款20万元,平均每月减少
多少万元?若规定缴税增加为正,减少为负,则可
规律:除以一个不等于0的数,等于乘以这个数的倒数。
02
知识精讲
一般地,有理数的乘法与除法之间有以下关系:
除以一个数(不等于0),等于乘以这个数的倒数。
2.4有理数的除法(上课)

练习:
6 2 2 (1) ( ) 13 3 39
1 1 2 ( 2) ( ) 42 6 7
1.两个数的商是正数,那么这两个数是( C ) A.和为正 B.和为负 C.积为正 D.异号 2.下列说法正确的是( D ) A. B. C. D. 任何一个数都有倒数 一个数的倒数小于这个数 0除以任何一个数商都是0 两数商为0则只有被除数为0
1 3 3 3
-0.5 -2 0.5
3 10
1 5
0
1 3
1
1
1 3 3
0.5
-5 1 5 1 5
0 0
除 数
8 72÷9=____,
被 除 数
同号两数相除得正
3 (-12)÷(-4)=____,
-3 (-6) ÷2=____, -3 12÷(-4)=____, 0÷(-6)=____, 0
除号变乘号
2 3 24 ( ) 24 ( ) 36 3 2
除数变倒数
有理数除法转化为乘法:
除以一个数(不等于0),等于乘以这个 数的倒数.
例题1
(1) (8) (4) 1 2 ( ) (3) 6 3
(2) (3.2) 0.08 (4) 0 2008.5
(2)多步乘除运算先统一为乘法
3 7 练习: (1) (7) 2 5
7 3 (2)3.5 ( ) ( ) 8 2
2 1 (3) 2 [ ( )] 3 4
例题3
1 1 1 2 1 (1) ( ) ( ) (2) 6 2 3 8 6 2
8.设a,b,c为非零有理数,求下列式子的值.
a b c a b c1 4.若a, b互为倒数, 则ab=____
完整版)最新版浙教版数学七年级上册各章节重难点

完整版)最新版浙教版数学七年级上册各章节重难点第一章有理数1.1 从自然数到有理数正数是指大于零的数,负数是指小于零的数,而零既不是正数也不是负数。
正整数、零和负整数统称为整数,而负分数和正分数则统称为分数。
整数和分数合在一起就是有理数。
1.2 数轴数轴是指规定了原点、单位长度和正方向的直线。
任何一个有理数都可以用数轴上的点来表示。
如果两个数符号不同,其中一个数称为另一个数的相反数。
在数轴上,互为相反数(零除外)的两个点位于原点的两侧,并且到原点的距离相等。
1.3 绝对值绝对值是指一个数在数轴上对应的点到原点的距离。
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,而零的绝对值是它本身。
互为相反数的两个绝对值相等。
需要注意的是,任何数的绝对值都大于或等于零(非负数)。
1.4 有理数的大小比较一般地,我们可以得出以下结论:在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数大于负数。
两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
第二章有理数的运算2.1 有理数的加法同号两数相加,取与加数相同的符号,并把绝对值相加。
异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加等于零,一个数与零相加仍得这个数。
在有理数运算中,加法的交换律和结合律仍然成立。
2.2 有理数的减法减去一个数,等于加上这个数的相反数。
有理数加减混合运算的一般步骤是先利用减法法则,将减法转换为加法,再利用加法的交换律和分配律,使计算简便。
2.3 有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与零相乘,积为零。
若两个有理数的乘积为1,就称这两个有理数互为倒数。
在有理数的乘法中,乘法交换律、分配律和结合律仍然成立。
2.4 有理数的除法两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不为零的数都等于零。
代数式的值有时需要用“整体”代入的技巧来求解,特别是当无法求出字母的值时。
2.4有理数的除法ymh2014

倒 数
有理数除法与乘法的关系:
除以一个数(不等于零),等于乘以
例2
这个数的倒数.
计算:
3 7 (1) 2 ( 7) 5
7 3 (2) 3.5 8 ( 2 )
解: (1)原式=
(2)原式=
3 7 ( 7 ) = 2 5
7 3 3 1 = . 5 10 2 7
取加数 符号
绝对值 同 号
绝对值 相加
异 号
取绝对值 较大的加 数符号
异 号
较大绝对 值减去较 小绝对值
减去一个数等于加上这个数的相反数 正 正 负 负 绝对值相乘 绝对值相除
除以一个数等于乘上这个数的倒数.
1.课本作业题;
2.作业本2.4节内容; 3.每课必练。
练一练:
1.(口答)先说出商的符号,再说出商.
(1)12÷4; =3
1 (3)(-36)÷(-9)= ;4 (4)1÷(-2) . 2
2.计算:
(1)84÷(-14); (2)(-1.6)÷0.4;
(2)(-57)÷3; =-19
7 3 3 (3 )0 ÷ ; (4) ( ) ( ). ( ) 83 5 25
下面计算正确吗?如果正确请说明每步理由; 若不正确,请改正:
15÷6÷2
=15÷(6÷2)
=15÷3 =5
×
1 1 15 6 2 5 4
除法没有结合律.
除法变乘法
(- 8) (4) =
1 (-8) ( ) 4
倒 数 除法变乘法
1 2 (- ) 6 3
=
1 3 (- ) 6 2
定符号 计算绝对值
例1
有理数的除法(教师版+学生版)

教师版 2.4有理数的除法【知识清单】1、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不为0的数都得0.2、有理数的除法与乘法的转换:除以一个数(不等于0),等于乘以这个数的倒数.且0不能作除数,否则无意义.3、解决含有除法的题目一般步骤:(1)先将除法转化乘法;(2)再根据乘法法则和运算律进行计算.【经典例题】例题1、等式[(-7.5) -□]÷(-221)=0中,□表示的数是 . 【考点】有理数的除法,简单方程.【分析】根据有理数的除法,可得答案.【解答】 [(-7.5)-□]÷(-221)=0,得 (-7.5) -□=0,解得□=-7.5,故答案为:-7.5.【点评】本题考查了有理数的除法,零除以任何非零的数都得零.例题2、计算:(-15)÷(-5)×51= . A .4 B .10 C .12 D .20【考点】有理数的除法.【分析】先把除法转化为乘法,再根据有理数的乘法运算法则进行计算即可得解. 【解答】(-15)÷(-5)×51 =(﹣15)×(﹣51)×51 =15×51×51 =53. 故答案为:53.【点评】本题考查了有理数的除法,有理数的乘法,是基础题,要注意按照从左到右的顺序依次进行计算,不能随意简化.【夯实基础】 1、711-的倒数与7的相反数的商为( ) A .-8个 B .8 C .81- D .81 2、下列运算中,正确的是( )A .-21÷(-3) =-7B .-6÷)65(-=5C .(-0.375)÷(-3)=81D .-5÷)51(-=1 3、若两个有理数的和除以这两个有理数的积,其商为0,则这两个数为( )A .互为倒数B .互为相反数C .都为0D .互为相反数且都不为04、在算式647□-÷中“□”的所在的位置,填入下列运算符号,计算出来的值最小的是( )A. +B. -C. ×D. ÷5、若a ,b ,c 为非零有理数,则acac b b a a++可能为 . 6、有理数a 、b 在数轴上是位置如图所示,则ba ab - 0. 7、若a +5没有倒数,则a = ;在计算24÷a 时,误将“÷”看成“+”,结果得16,而24÷a 的正确结果是________8、计算:(1)-7÷(-1121)×76×(-612)÷11; (2)-15÷)517()65()65(-÷⎥⎦⎤⎢⎣⎡-⨯-); (3)1251-÷)216132(-+ ; (4)-3÷(83-)+15÷(65-).9、有若干数,第一个数记作a 1,第二个数记作a 2, 第三个数记作a 3,…,第n 个数记作a n ,第6题图若a 1=-32,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”. (1)试计算a 2= , a 3= ;(2)求a 2019的值.【提优特训】10、下列四个算式中,误用分配律的是( )A .-24×(-81+61-41)=24×81-24×61+24×41 B .(-81+61-41)×(-48)=81×48-61×48+41×48 C .-24÷(-81+61-41)=24÷81-24÷61+24÷41 D .(-81+61-41)÷(-24)=81÷24-61÷24+41÷24 11、若a +b <0,b a <0,则a ,b 为 ( ) A .异号0 B .都小于0 C .异号,且正的绝对值大 D .异号,且负的绝对值大12、已知a 是负整数,则a ,-a ,a 1的大小关系为( ) A .-a >a 1>a B .-a >a 1≥a C .a >a 1>-a D . a1>a >-a 13、若a ,b 是互为相反数且都不等于零,则(a -3+b )×(b a +3) A .6 B .3 C .0 D .-614、已知两个数的积为-31,若其中一个因数为615-,则另一个数为 . 15、若b a 36122-++=0,则ba ab +的值为 . 16、在11.2与它的倒数之间有a 个整数,在11.2与它的相反数之间有b 个整数.求(a -b )÷(a +b )+17、若a 、b 互为相反数(a 、b 均不为0),c 、d 互为倒数,且032=+m ,求mcd ba mb a 63299-++ 的值.18、计算: (1))202011()411()311()211(1-÷⋅⋅⋅÷-÷-÷-÷;(2) (-2161+-43125+)÷(121-)19、阅读下列材料,然后解决问题: 计算:(481-)÷(3281-61+43-). 解法一:原式=(481-)÷32-(481-)÷81+(481-)÷61-(481-)÷43 =-321+6181-+361=28811; 解法二:原式=(481-)÷[(3261+)+(81-43-)]=(481-)÷(6587-)=481-×(-24)=21; 解法三:原式的倒数为(3281-61+43-)÷(481-)=(3281-61+43-)×(-48)=-32+6-8+36=2, 故原式=21. 解决问题:上述三种解法得出的结果不同,肯定有错误的,你认为哪种解法是错误的,在正确的解法中,你认为哪种解法比较简捷?然后请你解答下列问题:计算:(361-)÷(61-125+94-41+). 20、(1)判断[])9()27(36-÷-+-与)9()27()9()36(-÷-+-÷-的结果是否相等?(2)计算(-72)÷(-24-8)与(-72)÷(-24)+(-72)÷(-8),观察其结果是否相等?(3)总结(1)、(2)的规律,我们得到(a +b )÷c _____,a ÷c + b ÷c ;c ÷(a +b ) _______ c ÷a + c ÷b (填入“=”或“”),其中(2)的计算结果说明:除法的分配律_____(填入“成立”或“不成立”).21、已知a =201820182018201920192019+⨯⨯-, b =201920192019202020202020+⨯⨯-, c =202020202020202120212021+⨯⨯-, 求(a +b +c )÷abc 的值.【中考链接】22.(2018•株洲)如图,52的倒数在数轴上表示的点位于下列两个点之间( ) A. 点E 和点FB. 点F 和点GC. 点F 和点GD. 点G 和点H23、(2019•山东省聊城市•3分)计算:(2131--)÷54= . 24、(2019•浙江嘉兴•4分)数轴上有两个实数a ,b ,且a >0,b <0,a +b <0,则四个数a ,b ,-a ,-b 的大小关系为 (用“<”号连接).≠第22题图参考答案1、D2、C3、D4、C5、3或1或-16、<7、-5,-3 10、C 11、D12、B 13、D 14、6 15、-3 22、D 23、32-24、b <-a <a <-b 8、计算:(1)-7÷(-1121)×76×(-612)÷11; (2)-15÷)517()65()65(-÷⎥⎦⎤⎢⎣⎡-⨯-); (3)1251-÷)216132(-+ ; (4)-3÷(83-)+15÷(65-). 解:(1)原式=-7×1311×76×613×111=-1; (2)原式=15×3652536⨯=3; (3)原式=1217-÷)636164(-+ =1217-÷31=-441; (4)原式=3×38+15×(56-) =8-18=-10.9、有若干数,第一个数记作a 1,第二个数记作a 2, 第三个数记作a 3,…,第n 个数记作a n ,若a 1=-32,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.(1)试计算a 2=53 , a 3= 25 ; (2)求a 2019的值. 解:由题意得:a 1=-32,a 2不难发现-32,53,25,这三个数反复出现. ∵2019÷3=673,其余数为0,16、在11.2与它的倒数之间有a 个整数,在11.2与它的相反数之间有b 个整数.求(a -b )÷(a+b )+∴a =11,∵11.2的相反数为-11.2,之间的整数有-11~11共23个, ∴b =23,∴(a -b )÷(a +b=(1117、若a 、b 互为相反数(a 、b 均不为0),c 、d 互为倒数,且032=+m ,求mcd ba mb a 63299-++ 的值. 解:∵a、b 互为相反数,且a 、b 均不为0,∴a +b =0,∵c 、d 互为倒数,∴cd =1,03=+m ,∴2m+3=0,即2m=-3.mcd ba 63-+=cd m ba mb a )2(332)(9⨯-++ =0-3-3×(-3)×1=-3+9=6.18、计算: (1))202011()411()311()211(1-÷⋅⋅⋅÷-÷-÷-÷;(2) (-2161+-43125+)÷(121-) 解:(1)原式=202020194332211÷⋅⋅⋅÷÷÷÷ =202020192020342321=⨯⋅⋅⋅⨯⨯⨯⨯. (2)原式=(-2161+-43125+)⨯(-12) =(-21)⨯(-12)61+⨯(-12)-43⨯(-12)125+⨯(-12) =6-2+9-5=8.19、阅读下列材料,然后解决问题:计算:(481-)÷(3281-61+43-). 解法一:原式=(481-)÷32-(481-)÷81+(481-)÷61-(481-)÷43 =-321+6181-+361=28811; 解法二:原式=(481-)÷[(3261+)+(81-43-)]=(481-)÷(6587-)=481-×(-24)=21; 解法三:原式的倒数为(3281-61+43-)÷(481-)=(3281-61+43-)×(-48)=-32+6-8+36=2, 故原式=21. 解决问题:上述三种解法得出的结果不同,肯定有错误的,你认为哪种解法是错误的,在正确的解法中,你认为哪种解法比较简捷?然后请你解答下列问题:计算:(361-)÷(61-125+94-41+). 解:解法一是错误的.在正确的解法中,解法三比较简捷.原式的倒数为(61-125+94-41+)÷(361-) =(61-125+94-41+)×(-36) =6-15+16-9=-2. 故原式=21-. 20、(1)判断[])9()27(36-÷-+-与)9()27()9()36(-÷-+-÷-的结果是否相等?(2)计算(-72)÷(-24-8)与(-72)÷(-24)+(-72)÷(-8),观察其结果是否相等?(3)总结(1)、(2)的规律,我们得到(a +b )÷c _____,a ÷c + b ÷c ;c ÷(a +b ) _______ c ÷a + c ÷b (填入“=”或“”),其中(2)的计算结果说明:除法的分配律_____(填入“成立”或“不成立”).(1)相等,其结果均为7.(2)不相等. (-72)÷(-24-8)=49;(-72)÷(-24)+(-72)÷(-8)=12. 49≠12. (3)=;;不成立.21、已知a =201820182018201920192019+⨯⨯-, b =201920192019202020202020+⨯⨯-, c =202020202020202120212021+⨯⨯-, 求(a +b +c )÷abc 的值.解:a =201820182018201920192019+⨯⨯-=12019201820182019-=⨯⨯-, b =201920192019202020202020+⨯⨯-=12020201920192020-=⨯⨯-, c =202020202020202120212021+⨯⨯-=12021202020202021-=⨯⨯-. ∴ (a +b +c )÷abc =(-1-1-1)÷(-1)⨯(-1)⨯(-1)=-3÷(-1)=3.≠≠学生版 2.4有理数的除法【知识清单】1、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不为0的数都得0.2、有理数的除法与乘法的转换:除以一个数(不等于0),等于乘以这个数的倒数.且0不能作除数,否则无意义.3、解决含有除法的题目一般步骤:(1)先将除法转化乘法;(2)再根据乘法法则和运算律进行计算.【经典例题】例题1、等式[(-7.5) -□]÷(-221)=0中,□表示的数是 .例题2、计算:(-15)÷(-5)×51= . A .4 B .10 C .12 D .20【夯实基础】1、711-的倒数与7的相反数的商为( )A .-8个B .8C .81-2、下列运算中,正确的是( )A .-21÷(-3) =-7B .-6C .(-0.375)÷(-53、若两个有理数的和除以这两个有理数的积,其商为0,则这两个数为( )A .互为倒数B .互为相反数C .都为0D .互为相反数且都不为0的是( )A. +B. -C. ×D. ÷5、若a ,b ,c 为非零有理数,则ac ac b b a a ++可能为 .6、有理数a 、b 在数轴上是位置如图所示,则b a ab - 0.7、若a +5没有倒数,则a = ;在计算24÷a 时,误将“÷”看成“+”,结果得16,而24÷a 的正确结果是________8、计算:(1)-7÷(-1121)×76×(-612)÷11; (2)-15÷)517()65()65(-÷⎥⎦⎤⎢⎣⎡-⨯-);(3)1251-÷)216132(-+ ; (4)-3÷(83-)+15÷(65-).9、有若干数,第一个数记作a 1,第二个数记作a 2, 第三个数记作a 3,…,第n 个数记作a n ,若a 1=-32,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”. (1)试计算a 2= , a 3= ;(2)求a 2019的值.【提优特训】10、下列四个算式中,误用分配律的是( )A .-24×(-81+61-41)=24×81-24×61+24×41 B .(-81+61-41)×(-48)=81×48-61×48+41×48 第6题图C .-24÷(-81+61-41)=24÷81-24÷61+24÷41 D .(-81+61-41)÷(-24)=81÷24-61÷24+41÷24 11、若a +b <0,b a <0,则a ,b 为 ( ) A .异号0 B .都小于0 C .异号,且正的绝对值大 D .异号,且负的绝对值大12、已知a 是负整数,则a ,-a ,a 1的大小关系为( ) A .-a >a 1>a B .-a >a 1≥a C .a >a 1>-a D . a1>a >-a 13、若a ,b 是互为相反数且都不等于零,则(a -3+b )×(ba +3) A .6 B .3 C .0 D .-614、已知两个数的积为-31,若其中一个因数为615-,则另一个数为 . 15、若b a 36122-++=0,则ba ab +的值为 . 16、在11.2与它的倒数之间有a 个整数,在11.2与它的相反数之间有b 个整数.求(a -b )÷(a +b )+17、若a 、b 互为相反数(a 、b 均不为0),c 、d 互为倒数,且032=+m ,求mcd ba mb a 63299-++ 的值.18、计算: (1))202011()411()311()211(1-÷⋅⋅⋅÷-÷-÷-÷;(2) (-2161+-43125+)÷(121-)19、阅读下列材料,然后解决问题: 计算:(481-)÷(3281-61+43-). 解法一:原式=(481-)÷32-(481-)÷81+(481-)÷61-(481-)÷43 =-321+6181-+361=28811; 解法二:原式=(481-)÷[(3261+)+(81-43-)]=(481-)÷(6587-)=481-×(-24)=21; 解法三:原式的倒数为(3281-61+43-)÷(481-)=(3281-61+43-)×(-48)=-32+6-8+36=2, 故原式=21. 解决问题:上述三种解法得出的结果不同,肯定有错误的,你认为哪种解法是错误的,在正确的解法中,你认为哪种解法比较简捷?然后请你解答下列问题:计算:(361-)÷(61-125+94-41+).20、(1)判断[])9()27(36-÷-+-与)9()27()9()36(-÷-+-÷-的结果是否相等?(2)计算(-72)÷(-24-8)与(-72)÷(-24)+(-72)÷(-8),观察其结果是否相等?(3)总结(1)、(2)的规律,我们得到(a +b )÷c _____,a ÷c + b ÷c ;c ÷(a +b ) _______ c ÷a + c ÷b (填入“=”或“”),其中(2)的计算结果说明:除法的分配律_____(填入“成立”或“不成立”). ≠21、已知a =201820182018201920192019+⨯⨯-, b =201920192019202020202020+⨯⨯-, c =202020202020202120212021+⨯⨯-, 求(a +b +c )÷abc 的值.【中考链接】22.如图,52的倒数在数轴上表示的点位于下列两个点之间( ) A. 点E 和点F B. 点F 和点GC. 点F 和点GD. 点G 和点H 23、计算:(2131--)÷54= . 24、数轴上有两个实数a ,b ,且a >0,b <0,a +b <0,则四个数a ,b ,-a ,-b 的大小关系为 (用“<”号连接).第22题图。
有理数的乘除

有理数的乘除有理数是数学中的一类数,包括整数、分数和整数倍的乘法和除法运算。
在数学中,有理数的乘除运算是非常重要的基础知识。
本文将介绍有理数的乘法和除法,并且探讨一些与有理数乘除相关的性质。
一、有理数的乘法有理数的乘法是指两个有理数相乘的运算。
两个有理数相乘的结果仍然是一个有理数。
1.1 有理数的乘法规则有理数的乘法遵循以下规则:- 两个正数相乘,结果为正数;- 两个负数相乘,结果为正数;- 一个正数和一个负数相乘,结果为负数。
例如,2乘以3等于6,负3乘以负2等于6,负4乘以5等于负20。
1.2 有理数的乘法性质有理数的乘法具有以下性质:- 乘法交换律:a乘以b等于b乘以a,即ab=ba。
- 乘法结合律:a乘以(b乘以c)等于(a乘以b)乘以c,即a(bc)=(ab)c。
- 乘法分配律:a乘以(b加上c)等于ab加上ac,即a(b+c)=ab+ac。
这些性质使得有理数的乘法运算更加简单和灵活。
二、有理数的除法有理数的除法是指一个有理数除以另一个有理数的运算。
两个有理数的除法结果也是一个有理数,除非除数为0,此时除法运算无意义。
2.1 有理数的除法规则有理数的除法遵循以下规则:- 两个正数相除,结果为正数;- 两个负数相除,结果为正数;- 一个正数除以一个负数,结果为负数。
例如,8除以4等于2,负12除以负3等于4,6除以负2等于负3。
2.2 有理数的除法性质有理数的除法具有以下性质:- 除法结合律:a除以(b除以c)等于(a乘以c)除以b,即a/(b/c)=(a*c)/b。
- 除法分配律:a除以(b加上c)等于a除以b加上a除以c,即a/(b+c)=a/b+a/c。
这些性质使得有理数的除法运算更加简便和灵活。
三、有理数乘除的习题为了更好地理解有理数的乘除运算,接下来我们解决一些习题。
3.1 习题一计算下列乘法:- 2乘以(-3)等于多少?- 4乘以(-2/3)等于多少?- (-5/6)乘以(-2/3)等于多少?3.2 习题二计算下列除法:- 8除以(-4)等于多少?- (-15)除以(-3)等于多少?- (-9/10)除以(3/5)等于多少?解答这些习题有助于加深理解有理数的乘除运算规则和性质。
浙教版七年级上册数学2.4有理数的除法
12.有理数 a 在数轴上对应点的位置如图所示, 请比较 a,1a,-a,-1a的大小,并用“<”连接.
解:1a<a<-a<-1a.
13.【中考·杭州】计算 6÷-12+13,方方同学的计算过程如下: 原式=6÷-12+6÷13=-12+18=6.请你判断方方的计算 过程是否正确,若不正确,请你写出正确的计算过程.
答案显示
方方的计算过程不正确. 正确的计算过程如下: 13 原式=6÷-36+26=6÷-16 =-36.
14 B种债券收益率大一些.
习题链接
提示:点击 进入习题
答案显示
15 1
17
(1)最大值为15 16
(2)最小值为-5
原式的倒数为16-134+23-27÷-412 =16-134+23-27×(-42) =-7+9-28+12=-14. 故原式=-114.(方法不唯一)
(3)根据程序可知,当输入的数为-2 时,运算为(-2)÷(- 4)×(-80)=-40,而-40=40<100,故继续按程序计算, 代入的数为-40,得(-40)÷(-4)×(-80)=-800,-800= 800>100,则输出的数为-800.
【答案】 -800
10.计算: (1)16-18+112÷-214; 解:原式=16-18+112×(-24)=234×(-24)=-3. (2)18÷12-78×-13;
解:方方的计算过程不正确.正确的计算过程如下: 原式=6÷-36+26=6÷-16=-36.
【点拨】本题主要考查有理数及其运算.有理数的除法是没 有分配律的,因此方方的计算过程不正确.正确的算法是先 进行括号里的加法运算,再进行除法运算. 【答案】 36
14.某债券市场发行两种债券,A种债券面值为100元,买入价 也为100元,一年到期本利和为113元;B种债券面值也是 100元,但买入价为88元,一年到期本利和为100元.如果 收益率=(到期本利和-买入价)÷买入价×100%,试分析, 哪种债券收益率大一些?
2.4有理数的除法教案
初中数学七年级上册2.4有理数的除法(吕国定)一、教学目标1.经历根据除法是乘法的逆运算,归纳出有理数的除法法则的过程2.掌握有理数除法法则,理解零不能做除数。
3.理解除法转化为乘法,体验矛盾着的对立双方在一定的条件下互相转化的辨证唯物主义思想4.会运用除法法则求两个有理数的商,会进行简单的混合运算二、教学重点:除法法则和除法运算。
教学难点:根据除法是乘法的逆运算,归纳出除法法则。
三、教学过程(一)温故提新:1.小学里学过有关倒数的概念是什么?怎么求一个数的倒数?(用1除以这个数) 4和+2/3的倒数是多少?0有倒数吗?为什么没有?2.小学里学过的除法与乘法有何关系?例如10÷0.5=10×2;0÷5=0×(1/5),你能总结出一句话吗?(除以一个数等于乘以这个数的倒数)3.5÷0=?,0÷0=?呢?(这些式子无意义)也就是说0是没有倒数的。
4.我们已知的求倒数的法则在有理数范围中同样适用吗?你能说说以下各数的倒数是多少吗?4,2.5,-9,-37,-1,a, a-1, 3a, abc, -xy(各字母式不为0)说明:一个数的倒数与其是正数或负数无关。
(二)新课讲解1.讲述:我们知道除法是乘法的逆运算,这套法则运用到有理数的范围内同样适用。
例如,8÷4=8×(1/4)=2;8÷(-4)=8×(-1/4)。
那么,你知道(-8)÷(-4)=?,(-7)÷(-3.5)呢?如果用字母表示,怎么表示?a÷b=a×(1/b) (b不为0).2.由(-4)×(-1/4)=1,4×(1/4)=1等等式子,可知:互为倒数的两个数的积为1。
用字母表示为:a×(1/a)=1(a≠0)3.做一做:填空:(书本43页)4.通过上面的练习两个有理数相除,商的符号有什么规律?商的绝对值呢?通过练习我们可得出什么结论?即有:两数相除,同号得正,异号得负,并把绝对值相除。
2.4有理数的除法——黄有宇
练习3:
1 0 a 1. a的倒数是_____(a≠___) 1 2. a÷b=a×_____ b
a > 3. 若a, b同号, 则 _____ 0; b a < 若a, b异号, 则 _____ 0; b a 若a 0, b 0, 则 ____ 0. = b
| a | -1 4、 a 0时, 当 ____ a
除以一个数, 等于乘以这个数的倒数
练一练:
1.下列说法正确的是( D ) A.任何一个数都有倒数 B.一个数的倒数小于这个数 C.0除以任何一个数商都是0 D.两数商为0则只有被除数为0
2. a,b,c表示三个不为0 的有理数,有下列 等式: ①(a+b)+c=a+(b+c) ②(a ×b) ×c=a ×(b ×c) ③(a ÷b) ÷c=a ÷(b ÷c) ④(a+b) ÷c=a ÷c+b ÷c ⑤a ÷(b ÷c)=a ÷b ×c 其中正确的有( B ) A.5个 B.4个 C.3个 D.2个
练习2:
9 4 (1) 4.5 ( ) 8 5
(2) (12) [(3) (15)] (5)
3 1 1 (3) ( ) (1 ) (2 ) 4 2 4 11 (4) 6 (0.25) 12
练习2:
b c 2. 当a 3, b 2, c 5时, 求 的值. a
(-6) ÷ 3= -2
或者,(-6) ÷ (-2)= 3
有理数除法类型
(-18) ÷ (-2)=9 (-18) ÷ (-9)=2 (-18) ÷ 9= -2 (-18) ÷ 2= -9 18 ÷ (-2)=-9 18 ÷ (-9)=-2 同号两数相除得正 , 并把绝对值相除 异号两数相除得负
初中数学各个版本教材目录
人教版初中数学目录:七年级上册第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)3.3 解一元一次方程(二)3.4 实际问题与一元一次方程第四章图形认识初步4.1 多姿多彩的图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状.七年级下册第五章相交线与平行线5.1 相交线5.2 平行及其判定5.3 平行线的性质5.4 平移第六章平面直角坐标系6.1 平面直角坐标系6.2 坐标方法的简单应用第七章三角形7.1 与三角形有关的线段7.2 与三角形有关的角7.3 多边形及其内角和7.4 课题学习镶嵌第八章二元一次方程组8.1 二元一次方程组8.2 消元——二元一次方程组的解.8.3 实际问题与二元一次方程组8.4 三元一次方程组的解法举例第九章实际问题与一元一次不等式9.1 不等式9.2 实际问题与一元一次不等式9.3 一元一次不等式组第十章数据的收集、整理与描述10.1 统计调查10.2 直方图10.3 课题学习从数据谈节水八年级上册第11章全等三角形11.1 全等三角形11.2 三角形全等的判定11.3 角的平分线的性质第12章轴对称12.1 轴对称12.2 作轴对称图形12.3 等腰三角形第13章实数13.1 平方根13.2 立六根13.3 实数第14章一次函数14.1 变量与函数14.2 一次函数14.3 用函数观点看方程(组)与不等.14.4 课题学习选择方案第15章整式的乘除与因式分解15.1 整式的乘法15.2 乘法公式15.3 整式的除法15.4 因式分解八年级下册第16章分式16.1 分式16.2 分式的运算16.3 分式方程第17章反比例函数17.1 反比例函数17.2 实际问题与反比例函数第18章勾股定理18.1 勾股定理18.2 勾股定理的逆定理第19章四边形19.1 平行四边形19.2 特殊的平行四边形19.3 梯形19.4 课题学习重心第20章数据的分析20.1 数据的代表20.2 数据的波动20.3 课题学习体质健康测试中的数据分析九年级上册第21章二次根式21.1 二次根式21.2 二次根式的乘除21.3 二次根式的加减第22章一元二次方程22.1 一元二次方程22.2 降次—— 一元二次方程的解.22.3 再探实际问题与一元二次方程第23章旋转23.1 图形的旋转23.2 中心对称23.3 课题学习图案设计第24章圆24.1 圆24.2 点、直线、圆和圆的位置关系24.3 正多边形和圆24.4 弧长和扇形面积第25章概率初步25.1 随机事件与概率25.2 用列举法求概率25.3 用频率估计概率25.4 课题学习键盘上字母的排列规律九年级下册第26章二次函数26.1 二次函数及其图像26.2 用函数观点看一元二次方程实际问题与二次函数第27章相似27.1 图形的相似27.2 相似三角形27.3 位似第28章锐角三角函数28.1 锐角三角函数28.2 解直角三角形第29章投影与视图29.1 投影29.2 三视图29.3 课题学习制作立体模型北京课改版初中数学目录:七年级上册第一章走进数学世界1.1 生活中的图形1.2 我们周围的“数”1.3 计算工具的发展1.4 科学计算器的使用第一章复习第二章对数的认识的发展2.1 负数的引入2.2 用数轴上的点表示有理数2.3 相反数和绝对值2.4 有理数的加法2.5 有理数的减法2.6 有理数加减法的混合运算2.7 有理数的乘法2.8 有理数的除法2.9 有理数的乘方2.10 有理数的混合运算2.11 有效数字和科学记数法2.12 用计算器做有理数的混合运算第二章复习第三章一元一次方程3.1 字母表示数3.2 同类项与合并同类项3.3 等式与方程3.4 等式的基本性质3.5 一元一次方程3.6 列方程解应用问题第三章复习第四章简单的几何图形4.1 平面图形与立体图形4.2 某些立体图形的展开图4.3 从不同方向观察立体图形4.4 点、线、面、体4.5 直线4.6 射线4.7 线段4.8 角及其表示4.9 角的分类4.10 角的度量4.11 用科学计算器进行角的换算4.12 角平分线4.13 两条直线的位置关系4.14 相交线与平行线4.15 用电脑绘图第四章复习七年级下册第五章一元一次不等式和一元一次不不等式不等式的基本性质不等式的解集一元一次不等式及其解法一元一次不等式组及其解法单元综合第六章二元一次方程组二元一次方程和它的解二元一次方程组和它的解用代入消元法解二元一次方程组用加减消元法解二元一次方程组二元一次方程组的应用单元综合第七章整式的运算整式的加减法幂的运算整式的乘法乘法公式整式的除法单元综合第八章观察、猜想与证明观察实验归纳类比猜想证明几种简单几何图形及其推理单元综合第九章因式分解因式分解提取公因式法运用公式法单元综合八年级上册第十章数据的收集与表示总体与样本数据的收集与整理数据的表示用电脑绘制统计图平均数用科学计算器求平均数众数中位数单元综合第十一章分式11.1 分式11.2 分式的基本性质11.3 分式的乘除法11.4 分式的加减法11.5 可化为一元一次方程的分式方.第十二章实数和二次根式12.1 平方根12.2 立方根12.3 用科学计算器开方12.4 无理数与实数12.5 二次根式及其性质12.6 二次根式的乘除法12.7 二次根式的加减法第十二章复习第十三章三角形13.1 三角形13.2 三角形的性质13.3 三角形中的主要线段13.4 全等三角形13.5 全等三角形的判定13.6 等腰三角形13.7 直角三角形13.8 基本作图13.9 逆命题、逆定理13.10 轴对称和轴对称图形13.11 勾股定理13.12 勾股定理的逆定理第十三章复习第十四章事件与可能性14.1 确定事件与不确定事件14.2 事件发生的可能性14.3 求简单事件发生的可能性第十四章复习八年级下册第十五章一次函数,函数函数的表示法函数图象的画法一次函数和它的解析式15.5 一次函数的图象一次函数的性质一次函数的应用本章综合第十六章四边形,多边形平行四边形和特殊的平行四边.平行四边形的性质与判定特殊的平行四边形的性质与判.三角形中位线定理中心对称图形梯形等腰梯形与直角梯形本章综合第十七章一元二次方程,一元二次方程一元二次方程的解法列方程解应用问题本章综合第十八章方差与频数分布,极差、方差与标准差用计算器计算标准差和方差频数分布表与频数分布图本章综合九年级上册第十九章相似形,比例线段黄金分割平行线分三角形两边成比例相似多边形相似三角形的判定相似三角形的性质应用举例本章综合第二十章二次函数和反比例函数,二次函数二次函数的图象二次函数解析式确实定二次函数的性质二次函数的一些应用反比例函数反比例函数的图象、性质和应.本章综合第二十一章解直角三角形,锐角三角函数锐角的三角函数值用计算器求锐角三角函数值解直角三角形应用举例本章综合第二十二章圆〔上〕,圆的有关概念过三点的圆圆的对称性圆周角本章综合第二十三章概率的求法与应用,求概率的方法概率的简单应用本章综合九年级下册第二十四章圆〔下〕,直线和圆的位置关系圆的切线圆和圆的位置关系正多边形的有关计算本章综合第二十五章图形的变换,平移变换旋转变换轴对称变换位似变换本章综合第二十六章投影、视图与展开图,中心投影与平行投影简单几何体的三视图简单几何体的平面展开图本章综合第二十七章探索数学问题的一些方法.探索数学问题的一些方法探索数学问题举例本章综合第二十八章数学应用的一般思路,数学应用的一般思路数学应用举例本章综合北师大版初中数学目录:七年级上册第一章丰富的图形世界1.生活中的立体图形2.展开与折叠3.截一个几何体4.从不同方向看5.生活中的平面图形第二章有理数及其运算1.数怎么不够用了2.数轴3.绝对值4.有理数的加法5.有理数的减法6.有理数的加减混合运算7.水位的变化8.有理数的乘法9.有理数的除法10.有理数的乘方11.有理数的混合运算12.计算器的使用第三章字母表示数1.字母能表示什么2.代数式3.代数式求值4.合并同类项5.去括号6.探索规律第四章平面图形及其位置关系1.线段、射线、直线2.比较线段的长短3.角的度量与表示4.角的比较5.平行6.垂直7.有趣的七巧板8.图案设计第五章一元一次方程1.你今年几岁了2.解方程3.日历中的方程4.我变胖了5.打折销售6.“希望工程”义演7.能追上小明吗8.教育储蓄第六章生活中的数据1.认识100万2.科学记数法3.扇形统计图4.月球上有水吗5.统计图的选择第七章可能性1.一定摸到红球吗2.转盘游戏3.谁转出的四位数大七年级下册第一章整式的运算1.整式2.整式的加减3.同底数幂的乘法4.幂的乘方与积的乘方5.同底数幂的除法6.整式的乘法7.平方差公式8.完全平方公式9.整式的除法第二章平行线与相交线1.台球桌面上的角2.探索直线平行的条件3.平行线的特征4.用尺规作线段和角第三章生活中的数据1.认识百万分之一2.近似数和有效数字3.世界新生儿图第四章概率1.游戏公平吗2.摸到红球的概率3.停留在黑砖上的概率第五章三角形1.认识三角形2.图形的全等3.图案设计4.全等三角形5.探索三角形全等的条件6.作三角形7.利用三角形全等测距离8.探索直角三角形全等的条件第六章变量之间的关系1.小车下滑的时间2.变化中的三角形3.温度的变化4.速度的变化第七章生活中的轴对称1.轴对称现象2.简单的轴对称图形3.探索轴对称的性质4.利用轴对称设计图案5.镜子改变了什么6.镶边与剪纸八年级上册第一章勾股定理1.探索勾股定理2.能得到直角三角形吗3.蚂蚁怎样走最近第二章实数1.数怎么又不够用了2.平方根3.立方根4.公园有多宽5.用计算器开方6.实数第三章图形的平移与旋转1.生活中的平移2.简单的平移作图3.生活中的旋转4.简单的旋转作图5.它们是怎样变过来的6.简单的图案设计第四章四边形性质探索1.平行四边形的性质2.平行四边形的判别3.菱形4.矩形、正方形5.梯形6.探索多边形的内角和与外角和7.平面图形的密铺8.中心对称图形第五章位置确实定1.确定位置2.平面直角坐标系3.变化的鱼第六章一次函数1.函数2.一次函数3.一次函数的图象4.确定一次函数表达式5.一次函数图象的应用第七章二元一次方程组1.谁的包裹多2.解二元一次方程组3.鸡兔同笼4.增收节支5.里程碑上的数6.二元一次方程与一次函数第八章数据的代表1.平均数2.中位数与众数3.利用计算器求平均数八年级下册第一章一元一次不等式和一元一次不等式组1.不等关系2.不等式的基本性质3.不等式的解集4.一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组第二章分解因式1.分解因式2.提公因式法3.运用公式法第三章分式1.分式2.分式的乘除法3.分式的加减法4.分式方程第四章相似图形1.线段的比2.黄金分割3.形状相同的图形4.相似多边形5.相似三角形6.探索三角形相似的条件7.测量旗杆的高度8.相似多边形的性质9.图形的放大与缩小第五章数据的收集与处理1.每周干家务活的时间2.数据的收集3.频数与频率4.数据的波动第六章证明(一)1.你能肯定吗2.定义与命题3.为什么它们平行4.如果两条直线平行5.三角形内角和定理的证明6.关注三角形的外角九年级上册第一章证明(二)1.你能证明它们吗2.直角三角形3.线段的垂直平分线4.角平分线第二章一元二次方程1.花边有多宽2.配方法3.公式法4.分解因式法5.为什么是第三章证明(三)1.平行四边形2.特殊平行四边形第四章视图与投影1.视图2.太阳光与影子3.灯光与影子第五章反比例函数1.反比例函数2.反比例函数的图象与性质3.反比例函数的应用第六章频率与概率1.频率与概率2.投针实验3.生日相同的概率4.池塘里有多少条鱼九年级下册第一章直角三角形的边角关系1.从梯子的倾斜程度谈起2.30º,45º,60º角的三角函数值3.三角函数的有关计算4.船有触礁的危险吗第二章二次函数1.二次函数所描述的关系2.结识抛物线3.刹车距离与二次函数4.二次函数y=ax +bx+c 的图象5.用三种方式表示二次函数6.何时获得最大利润7.最大面积是多少8.二次函数与一元二次方程第三章圆1.车轮为什么做成圆形2.圆的对称性3.圆周角和圆心角的关系4.确定圆的条件5.直线和圆的位置关系6.圆和圆的位置关系7.弧长及扇形的面积8.圆锥的侧面积第四章统计与概率年的变化2.哪种方式更合算3.游戏公平吗浙教版初中数学目录:七年级上册第1章从自然数到有理数1.1 从自然数到分数1.2 有理数1.3 数轴1.4 绝对值1.5 有理数大小比较第2章有理数的运算2.1 有理数的加法2.2 有理数的减法2.3 有理数的乘法2.4 有理数的除法2.5 有理数的乘方2.6 有理数的混合运算2.7 准确数和近似数2.8 计算器的使用第3章实数3.1 平方根3.2 实数3.3 立方根3.4 用计算器进行数的开方3.5 实数的运算第4章代数式4.1 用字母表示数4.2 代数式4.3 代数式的值4.4 整式4.5 合并同类项4.6 整式的加减第5章一元一次方程5.1 一元一次方程5.2 解一元一次方程的方法和步骤5.3 一元一次方程的应用5.4 问题解决的基本步骤第6章数据和图表6.1 数据的收集和整理6.2 统计表6.3 条形统计图和折线形统计图6.4 扇形统计图第7章图形的初步知识7.1 几何图形7.2 线段射线和直线7.3 线段的长短比较7.4 角和角的度量7.5 角的大小比较7.6 余角和补角7.7 相交线7.8 平行线七年级下册第1章三角形的初步认识1.1 认识三角形1.2 三角形的角平分线和中线1.3 三角形的高线1.4 全等三角形1.5 三角全等的条件1.6 作三角形第2章图形和变换2.1 轴对称图形2.2 轴对称变换2.3 平移变换2.4 旋转变换2.5 相似变换2.6 图形变换的简单应用第3章事件的可能性3.1 认识事件的可能性3.2 可能性的大小3.3 可能性和概率第4章二元一次方程4.1 二元一次方程4.2 二元一次方程组4.3 解二元一次方程组4.4 二元一次方程组的应用第5章整式的乘除5.1 同底数幂的乘法5.2 单项式的乘法5.3 多项式的乘法5.4 乘法公式5.5 整式的化简5.6 同底数幂的除法5.7 整式的除法第6章因式分解6.1 因式分解6.2 提取公因式6.3 用乘法公式分解因式6.4 因式分解的简单应用第7章分式7.1 分式7.2 分式的乘除7.3 分式的加减7.4 分式方程八年级上册第1章平行线1.1 同位角内错角同旁内角1.2 平行线的判定1.3 平行线的性质1.4 平行线之间的距离第2章特殊三角形2.1 等腰三角形2.2 等腰三角形的性质2.3 等腰三角形的判定2.4 等边三角形2.5 直角三角形2.6 探索勾股定理直角三角形的全等判定第3章直棱柱3.1 认识直棱柱3.2 直棱柱的外表展开图3.3 三视图3.4 由三视图描述几何体第4章样本与数据的分析初步4.1 抽样4.2 平均数中位数和众数4.4 方差和标准差4.5 统计量的选择和应用第5章一元一次不等式5.1 认识一元一次不等式5.2 不等式的基本性质5.3 一元一次不等式5.4 一元一次不等式组第6章图形与坐标6.1 探索确定位置的方法6.2 平面直角坐标系6.3 坐标平面内的图形变换第7章一次函数7.1 常量和变量7.2 认识函数7.3 一次函数7.4 一次函数的图象7.5 一次函数的简单应用八年级下册第1章二次根式1.1 二次根式1.2 二次根式的性质1.3 二次根式的运算第2章一元二次方程2.1 一元二次方程2.2 一元二次方程的解法2.3 一元二次方程的应用第3章频数及其分布3.1 频数与频率3.2 频数分布直方图3.3 频数分布折线图第4章命题与证明4.1 定义与命题4.2 证明4.3 反例与证明4.4 反证法第5章平行四边形5.1 多边形5.2 平行四边形5.3 平行四边形的性质5.4 中心对称5.5 平行四边形的判定5.6 三角形的中位线5.7 逆命题和逆定理第6章特殊平行四边形与梯形6.1 矩形6.2 菱形6.3 正方形6.4 梯形九年级上册第一章反比例函数反比例函数反比例函数的图象和性质反比例函数的应用第二章二次函数2.1 二次函数2.2 二次函数的图象2.3 二次函数的性质2.4 二次函数的应用第三章圆的基本性质3.1 圆3.2 圆的轴对称3.3 圆心角3.4 圆周角3.5 弧长及扇形的面积3.6 圆锥的侧面积和全面积第四章相似三角形4.1 比例线段4.2 相似三角形4.3 两个三角形相似的判定4.4 相似三角形的性质及应用4.5 相似多边形4.6 图形的位似九年级下册第一章解直角三角形1.1 锐角三角函数1.2 有关三角函数的计算1.3 解直角三角形第二章简单事件的概率2.1 简单事件的概率2.2 估计概率2.3 概率的简单应用第三章直线与圆、圆与圆的基本性质3.1 直线与圆的位置关系3.2 三角形的内切圆3.3 圆与圆的位置关系第四章投影与三视图4.1 视角与盲区4.2 投影4.3 简单物体的三视图湘教版初中数学目录:七年级上册第一章有理数1.1具有相反意义的量1.2 数轴,相反数与绝对值1.3有理数大小的比较1.4有理数的加法1.5 有理数的减法1.6有理数的乘法1.7有理数的除法1.8有理数的乘方1.9有理数的混合运算1.10用计算器计算第二章代数式2.1用字母表示数2.2列代数式2.3代数式的值2.4一类代数式的加法第三章图形欣赏人与操作3.1图形欣赏3.2平面图形与空间图形3.3观察物体3.4图形操作3.5视图第四章一元一次方程模型与算法4.1 一元一次方程模型4.2 解一元一次方程的算法4.3 一元一次方程的应用第五章一元一次不等式5.1 不等式的基本性质5.2 一元一次不等式的解法5.3 一元一次不等式的应用第六章数据的收集与描述6.1 数据的收集6.2 统计图6.3 平均数、中位数和众数七年级下册第一章一元一次不等式组1.1 一元一次不等式组1.2 一元一次不等式组的解法1.3 一元一次不等式组的应用第二章二元一次方程组2.1 二元一次方程组2.2 二元一次方程组的解法2.3 二元一次方程组的应用第三章平面上直线的位置关系和度量3.1 线段、直线、射线3.2 角3.3 平面直线的位置关系3.4 图形的平移3.5 平行线的性质与判定3.6 垂线的性质与判定第四章多项式4.1 多项式4.2 多项式的加减4.3 多项式的乘法4.4 乘法公式第五章轴对称图形5.1 轴反射与轴对称图形5.2 线段的垂直平分线5.3 三角形5.4 三角形的内角和5.5 角平分线的性质5.6 等腰三角形5.7 等边三角形第六章数据的分析与比较6.1 加权平均数6.2 极差、方差6.3 两组数据的比较八年级上册第一章实数1.1 平方根1.2 立方根1.3 实数1.4 平面直角坐标系第二章一次函数2.1 函数和它的表示法2.2 一次函数和它的图象3.3 建立一次函数模型第三章全等三角形3.1 旋转3.2 图案设计3.3 全等三角形及其性质3.4 全等三角形的判定定理3.5 直角三角形3.6 勾股定理3.7 作三角形第四章频数与频率4.1 频数与频率4.2 数据的分布八年级下册第一章因式分解1.1 多项式的因式分解1.2 提公因式法1.3 公式法第二章分式2.1 分式和它的基本性质2.2 分式的乘除法2.3 整数指数幂2.4 分式的加减法2.5 分式方程第三章四边形3.1 平行四边形与中心对称图形3.2 菱形3.3 矩形3.4 正方形3.5 梯形3.6 多边形的内角和与外角和第四章二次根式4.1 二次根式和它的化简4.2 二次根式的乘除法4.3 二次根式的加、减法第五章概率的概念5.1 概率的概念5.2 概率的含义九年级上册第一章一元二次方程1.1 建立一元二次方程模型1.2 一元二次方程的算法1.3 一元二次方程的应用第二章定义命题公理与证明2.1 定义2.2 命题2.3 公理与定理2.4 证明第三章相似形3.1 相似的图形3.2 比与比例3.3 相似三角形的性质和判定3.4 相似多边形及性质3.5 图形的放大与缩小、位似变换第四章解直角三角形4.1 正弦和余弦4.2 正切4.3 直角三角形及其应用第五章概率的计算5.1 用频率估计概率5.2 用列举法计算概率九年级下册第一章反比例函数1.1 建立反比例函数模型1.2 反比例函数的图像与性质1.3 实际生活中的反比例函数第二章二次函数2.1 建立二次函数模型2.2 二次函数的图像与性质2.3 二次函数的应用第三章圆3.1 圆3.2 点、直线与圆的位置关系,圆3.3 圆与圆的位置关系3.4 弧长和扇形的面积,圆锥的侧面积3.5 平行投影和中心投影第四章统计估计4.1 总体与样本4.2 用样本估计总体华师大版初中数学目录:七年级上册第一章走进数学世界1.1 与数学交朋友1.2 让我们来做数学第二章有理数2.1 正数和负数2.2 数轴2.3 相反数2.4 绝对值2.5 有理数的大小比较2.6 有理数的加法2.7 有理数的减法2.8 有理数加减混合运算2.9 有理数的乘法2.10 有理数的除法2.11 有理数的乘方2.12 科学记数法2.13 有理数的混合运算2.14 近似数和有效数字2.15 用计算器进行数的简单运算第三章整式的加减3.1 列代数式3.2 代数式的值3.3 整式3.4 整式的加减第四章图形的初步认识4.1 生活中的立体图形4.2 画立体图形4.3 立体图形的展开图4.4 平面图形4.5 最基本的图形——点和线4.6 角4.7 相交线4.8 平行线第五章数据的收集与表示5.1 数据的收集5.2 数据的表示七年级下册第六章一元一次方程6.1 从实际问题到方程6.2 解一元一次方程6.3 实践与探索第七章二元一次方程组7.1 二元一次方程组和它的解7.2 二元一次方程组的解法7.3 实践与探索第八章一元一次不等式8.1 认识不等式8.2 解一元一次不等式8.3 一元一次不等式组第九章多边形9.1 三角形9.2 多边形的内角和与外角和9.3 用正多边形拼地板第十章轴对称10.1 生活中的轴对称10.2 轴对称的认识10.3 等腰三角形第十一章体验不确定现象11.1 可能还是确定11.2 时机的均等与不等11.3 在反复实验中观察不确定现象八年级上册第12章数的开方12.1 平方根与立方根12.2 实数与数轴第13章整式的乘除13.1 幂的运算13.2 整式的乘法13.3 乘法公式13.4 整式的除法13.5 因式分解第14章勾股定理14.1 勾股定理14.2 勾股定理的应用第15章平移与旋转15.1 平移15.2 旋转15.3 中心对称15.4 图形的全等第16章平行四边形的认识16.1 平行四边形的性质16.2 矩形、菱形与正方形的性质16.3 梯形的性质八年级下册第17章分式17.1 分式及其基本性质17.2 分式的运算17.3 可化为一元一次方程的分式方程17.4 零指数幂与负整指数幂第18章函数及其图像18.1 变量与函数18.2 函数的图象18.3 一次函数18.4 反比例函数18.5 实践与探索第19章全等三角形19.1 命题与定理19.2 三角形全等的判定19.3 尺规作图19.4 逆命题与逆定理课题学习图形中的趣题第20章平行四边形的判定20.1 平行四边形的判定20.2 矩形的判定20.3 菱形的判定20.4 正方形的判定20.5 等腰梯形的判定第21章数据的整理与初步处理21.1 算术平均数与加权平均数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 有理数的除法[必练篇]A 组 基础练1. 下列计算正确的是(C ) A. 0÷(-3)=-13B. ⎝ ⎛⎭⎪⎪⎫-37÷⎝⎛⎭⎪⎪⎫-335=-5 C. 1÷⎝ ⎛⎭⎪⎪⎫-19=-9D. ⎝ ⎛⎭⎪⎪⎫-34×⎝⎛⎭⎪⎪⎫-112+⎝ ⎛⎭⎪⎪⎫-34÷⎝ ⎛⎭⎪⎪⎫-112=942. 在1,2,-2这三个数中,任意两数之商的最小值是(D )A. 12B. -12C. -1D. -2 3. 若||a a=-1,则a 是(B )A. 正数B. 负数C. 非正数D. 非负数 4. 已知0>a >b ,则1a 与1b 的大小是(C )A. 1a >1bB. 1a =1bC. 1a <1bD. 无法判定5. -12÷2÷(-2)=__18__.6. 若a >0,b <0,则a b __<__0;若a =0,b >0,则a b __=__0.7. 若a ,b 互为相反数,c ,d 互为倒数,则a +bcd=__0__.B 组 提升练8. 计算:(1) ⎝ ⎛⎭⎪⎪⎫-223÷⎝⎛⎭⎪⎪⎫-179; (2) ⎝ ⎛⎭⎪⎪⎫-1.4+1415÷⎝⎛⎭⎪⎪⎫-730; (3) (-0.75)÷54÷(-0.3);(4) ⎝ ⎛⎭⎪⎪⎫-130÷⎝ ⎛⎭⎪⎪⎫16-110-25. 解:(1)原式=32.(2)原式=2. (3)原式=2.(4)原式=-130÷⎝ ⎛⎭⎪⎪⎫-13=110.9. 下面是李明作业中的一道错题,他不知道老师为什么打叉,请你帮他指出错误的部分,用线画出来,并写出订正过程.解:⎝ ⎛⎭⎪⎪⎫-2014÷95×59=⎝ ⎛⎭⎪⎪⎫-2014÷⎝ ⎛⎭⎪⎪⎫95×59=⎝⎛⎭⎪⎪⎫-2014÷1 =-2014解:订正:原式=⎝⎛⎭⎪⎪⎫-2014×59×59=-814×2581=-254.C 组 挑战练10. 某冷冻冷藏公司有一批鲜牛肉需要在零下6℃的温度下冷冻,此时室外气温为27℃.已知该公司的冷冻设备制冷时每小时耗电20.5度可降低温度11℃,那么这批牛肉要冷冻到规定温度需要经过几小时?解:[27-(-6)]÷11=3(h).答:这批牛肉要冷冻到规定温度需要经过3小时. 11. 有理数a ,b ,c ,d 在数轴上的位置如图所示.第11题试确定下面两小题的符号:(1) a +d b ;(2) b -c d -b ×ab.解:(1) 正号 (2) 正号2.4 提高班习题精选[选练篇]1. 两个有理数的商是正数,则(D)A. 它们的和是正数B. 它们的差是负数C. 它们至少有一个数是正数D. 它们的积是正数2. 某种商品标价为1200元,售出价800元,则最接近打几折售出(B)A. 6折B. 7折C. 8折D. 9折3. 一把竖直放着的长为1m 的直尺的下端,有只蚂蚁想爬到直尺的顶端去,每秒钟向上爬3cm ,又下滑2cm ,则这只蚂蚁从该直尺的下端爬到上端要__98__s.解:根据题意可知:蚂蚁的爬行速度为1cm/s , ∴t =(100-3)÷1+1=98s.总结:本题的关键是注意蚂蚁最后一秒钟爬上上端就不往下滑了,因此是98s 而不是100s.4. 计算:1÷⎝ ⎛⎭⎪⎪⎫1-12÷⎝ ⎛⎭⎪⎪⎫1-13÷⎝ ⎛⎭⎪⎪⎫1-14÷…÷⎝⎛⎭⎪⎪⎫1-1n . 解:n5. [2018·绍兴市柯桥区期中]已知有理数a ,b 满足ab <0,|a|>|b|,2(a +b)=|b -a|,求ba的值.解:∵有理数a ,b 满足ab <0, ∴a >0,b <0或a <0,b >0. ①当a >0,b <0时,则b -a <0, ∴|b -a|=a -b , ∵|a|>|b|, ∴a +b>0,∵2(a +b)=|b -a|, ∴2a +2b =a -b , 即a =-3b ;∴b a =-13; ②当a <0,b >0时,则b -a >0, ∴|b -a|=b -a , ∵|a|>|b|, ∴a +b<0 ∴2(a +b)<0 ∵|b -a|>0,∴此时不符合2(a +b)=|b -a|,舍去.6. 已知有理数a ,b ,c 满足|a|a +|b|b +|c|c =-1,求|abc|abc 的值.解:∵|a|a +|b|b +|c|c=-1,∴|a|a ,|b|b ,|c|c 中有2个为负,1个为正, 可以推导出a ,b ,c 中有2个负数,1个正数, ∴||abc abc=1.1. [2017·临沂]计算(-18)÷6的结果等于(A ) A. -3 B. 3 C. -13 D. 132. [2017•宜昌]今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是(B)第2题A. 手串B. 中国结C. 手提包D. 木雕笔筒第2周 周末作业卷(2.1.1~2.4)(考查内容:有理数的加、减、乘、除运算) 一、仔细选一选(每小题3分,共30分)1. [2017·滨州]计算-(-1)+|-1|,其结果为(B ) A. -2 B. 2 C. 0 D. -12. [2017·天津]与-2的乘积为1的数是(D ) A. 2 B. -2 C. 12 D. -123. 如图,数轴上表示的算式是(A )第3题A. (+3)+(-6)B. (+3)-(-6)C. (+3)+(-3)D. (+3)-(-3)4. ⎝ ⎛⎭⎪⎪⎫-78×()-0.25×()-4×⎝⎛⎭⎪⎪⎫+117=⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫-78×⎝ ⎛⎭⎪⎪⎫+117×[](-0.25)×(-4)这是为了运算简便而使用(D )A. 乘法交换律B. 乘法结合律C. 乘法分配律D. 乘法结合律和交换律5. [2018·嘉兴市秀洲区期中]如果a +b <0,ab >0,那么下列各式中一定正确的是(B )A. a -b >0B. ab >0C. b -a >0D. ab<06. [2018·杭州市临安区月考]水文观测中,常遇到水位上升或下降的问题.我们规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天上升3cm ,今天的水位为0cm ,那么2天前的水位用算式表示正确的是(B )A. (+3)×(+2)B. (+3)×(-2)C. (-3)×(+2)D. (-3)×(-2)7. 8月份是新学期开学准备季,东风和百惠两书店对学习用品和工具书实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后,超出部分按50%收费;在百惠书店购买学习用品或工具书累计花费50元后,超出部分按60%收费.郝爱同学准备买价值300元的学习用品和工具书,则她在哪家书店消费更优惠(A )A. 东风B. 百惠C. 两家一样D. 不能确定8. [2018·嘉兴市秀洲区月考]“三个数-7,12,-2的和”与“它们的绝对值的和”的差为(A )A. -18B. -6C. 6D. 189. 两个不为零的有理数相除,如果交换它们的位置,商不变,那么(C)A. 两数仅相等B. 两数仅互为相反数C. 两数相等或互为相反数D. 两数互为倒数10. 把前2017个数1,2,3,…,2017的每一个数的前面任意添上“+”号或“-”号,然后将它们相加,则所得的结果为(C)A. 正数B. 偶数C. 奇数D. 有时为奇数;有时为偶数解:1+2+…+2016+2017=(1+2017)+(2+2016)+…+(1008+1010)+1009=2018×1008+1009为奇数,其中任何一个数改变它的符号,它们的和减少这个数的2倍,因此所得结果仍为奇数.二、认真填一填(每小题4分,共24分)11. 化简:-36=__-12__;-6-0.3=__-12__.12. 如果把算式20-16看成减法运算,那么减数是__16__;如果把算式6-8看成加法运算,且第一个加数是6,那么第二个加数是__-8__.13. [2018·瑞安市期末]若a ,b 都是有限小数,a <b ,且a·b=1,则a ,b 的值可以是__0.4和2.5(或0.5和2,-1.25和-0.8,……)__(填上一组满足条件的值即可).14. 某企业的产品在2017年1~3月份的销售收入为5亿元,而2016年同期为2亿元,那么该企业销售收入的同期增长率为__150__%.15. 已知m 的绝对值是2,n 比m 的4倍少1,m 与n 的差是__-5或7__.16. 观察下图,寻找规律.“?”处应该填的数字是__4__.第16题三、全面答一答(共66分)17. (6分)计算:(1) 2×(-5)-(-3)÷34;(2) 76×⎝ ⎛⎭⎪⎪⎫16-13×314÷35解:(1)-6(2)-57218. (6分)如图为某一矿井的示意图:以地面为基准,A 点的高度是+4.2m ,B ,C 两点的高度分别是-15.6m 与-24.5m.问:A 点比B 点高多少?B 点比C 点高多少(要写出运算过程)?第18题解:A 点比B 点高:+4.2-(-15.6)=4.2+15.6=19.8(m);B 点比C 点高:-15.6-(-24.5)=-15.6+24.5=8.9(m).答:A 点比B 点高19.8m ,B 点比C 点高8.9m.19. (6分)有这样几个数-1,37,-19,0,-3,16,-213.请从这些数中找出三个有理数,使其中两个有理数的积等于第三个有理数,写出这个等式.解:37×⎝⎛⎭⎪⎪⎫-213=-1.20. (8分)小明和小梅做摸球游戏,每人摸5个球,摸到红球记为-3,摸到白球记为0,摸到黄球记为2.摸完球后,他们将摸到的5个球所代表的数相加,和较大的获胜.小明摸到的球分别为:红球、黄球、红球、白球、红球.小梅摸到的球分别为:黄球、黄球、白球、红球、红球.(1) 问:小明和小梅谁获胜?(2) 若将题干中“和较大的获胜”改为“和的绝对值较大的获胜”,问:小明和小梅谁获胜?解:(1) 小明得分:-3+2+(-3)+0+(-3)=-9+2=-7,小梅得分:2+2+0+(-3)+(-3)=4+(-6)=-2,∵-2>-7,∴小梅获胜.(2) 小明得分:-3+2+(-3)+0+(-3)=-9+2=-7,小梅得分:2+2+0+(-3)+(-3)=4+(-6)=-2,∵|-2|<|-7|,∴小明获胜.21. (8分)在奥运五环图案内,分别填写五个数a,b,c,d,e,如图,,其中a,b,c是三个连续偶数(a<b <c),d ,e 是两个连续奇数(d <e),且满足a +b +c =d +e.例如:.请你在0~20之间选择另一组符合条件的数填入下图.第21题解:答案不唯一,如:或22. (10分)[2019·东阳市期末]兴趣小组遇到这样一个问题:任意选取一个数,用这个数乘以2后加8,然后除以4,再减去一开始选取的数的12.问:结果为多少? 小组内4位成员分别令这个数为-5,3,-4,2发现结果一样.(1) 请从上述4个数中任取一个数计算结果.(2) 有一个成员猜想:无论这个数是几,其计算结果都一样,这个猜想对吗?请说明理由.如果你觉得这个猜想不对,请你提出一个新的猜想.解:(1)令这个数为3,则(3×2+8)÷4-3×12=14÷4-1.5=2; (2)猜想正确,理由是:设取的有理数为a ,则14(2a +8)-12a =12a +2-12a =2, ∴猜想是正确的.23. (10分)学习了有理数的乘法后,老师给同学们出了这样一道题目:计算:492425×(-5),看谁算的又快又对. 有两位同学的解法如下:小明:原式=-124925×5=-12495=-24945; 小军:原式=⎝⎛⎭⎪⎪⎫49+2425×(-5)=49×(-5)+2425×(-5)=-24945; (1) 问:对于以上两种解法,你认为谁的解法较好?不必说明理由.(2) 上面的解法对你有何启发?上面题还有更简便的方法,请尝试把它写出来.(3) 用你认为最合适的方法计算:191516×(-8). 解:(1) 小军的解法较好;(2) 还有更好的解法,492425×(-5)=⎝ ⎛⎭⎪⎪⎫50-125×(-5)=50×(-5)-125×(-5)=-250+15=-24945; (3) 191516×(-8)=⎝⎛⎭⎪⎪⎫20-116×(-8)=20×(-8)-116×(-8)=-160+1 2=-15912 .24. (12分)[2019·杭州市江干区二模]阅读下列内容,并完成相关问题:小明定义了一种新的运算,取名为※(加乘)运算,按这种运算进行运算的算式举例如下:(+4)※(+2)=+6;(-4)※(-3)=+7;(-5)※(+3)=-8;(+6)※(-4)=-10;(+8)※0=8;0※(-9)=9;问题:(1) 请归纳※(加乘)运算的运算法则:两数进行※(加乘)运算时,__同号得正,异号得负,并把绝对值相加__.特别地,0和任何数进行※(加乘)运算,或任何数和0进行※(加乘),__都得这个数的绝对值__.(2) 计算:[(-2)※(+3)]※[(-12)※0](括号的作用与它在有理数运算中的作用一致).我们都知道加法有交换律和结合律,这两种运算律在有理数的※(加乘)运算中还适用吗?请任选一个运算律,判断它在※(加乘)运算中是否适用,并举例验证(举一个例子即可).解:(2)[(-2)※(+3)]※[(-12)※0]=(-5)※12=-17;加法交换律仍然适用,加法结合律不适用.例如:(-3)※(-5)=8,(-5)※(-3)=8,∴(-3)※(-5)=8=(-5)※(-3).故加法交换律仍然适用;例如:[0※(+6)]※(-1)=6※(-1)=-7,0※[(+6)※(-1)]=0※(-7)=7,∴[0※(+6)]※(-1)≠0※[(+6)※(-1)]故加法结合律不适用.。