山东省滨州市惠民县2017_2018学年八年级数学上学期期中试题

合集下载

2017-2018学年新人教版八年级上期中数学试卷及答案

2017-2018学年新人教版八年级上期中数学试卷及答案

2017-2018学年新人教版八年级上期中数学试卷及答案2017-2018学年新人教版八年级(上)期中数学试卷时间:120分钟分值:100分一、选择题:本大题共10小题,每小题3分,共30分。

将答案填在表格内。

1.在下列各电视台的台标图案中,是轴对称图形的是()A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cmB.3cm,3cm,6cmC.5cm,8cm,2cmD.4cm,5cm,6cm3.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cmB.4cmC.6cmD.8cm4.如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.45°D.60°5.如图,把长方形ABCD沿EF对折后使两部分重合,若∠AEF=110°,则∠1=()A.30B.35C.40°D.50°6.一个三角形三个内角之比为1:3:5,则最小的角的度数为()A.20°B.30°C.40°D.60°7.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形8.正n边形的内角和等于1080°,则n的值为()A.7B.8C.9D.109.AC=A′C′,在△ABC与△A′B′C′中,已知∠A=∠A′,下列说法错误的是()A.若添加条件AB=A′B′,则△ABC与△A′B′C′全等B.若添加条件∠C=∠C′,则△ABC与△A′B′C′全等C.若添加条件∠B=∠B′,则△ABC与△A′B′C′全等D.若添加条件BC=B′C′,则△ABC与△A′B′C′全等10.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于()A.90°B.75°C.70°D.60°二、填空题:本大题共8小题,每小题2分,共16分。

山东省滨州市2017—2018学年八年级(上)期末数学试卷(含答案)

山东省滨州市2017—2018学年八年级(上)期末数学试卷(含答案)

滨州市2017—2018学年第一学期期末学业水平测试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。

满分为120分。

考试用时100分钟。

考试结束后,只上交答题卡。

2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。

3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案不能答在试题卷上。

4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列根式中不是最简二次根式的是(A )13 (B )12 (C )42+a (D )22.无论a 取何值时,下列分式一定有意义的是 (A )221a a + (B )21a a + (C )112+-a a (D )112+-a a 3.如图,ABC ABD ∠=∠,要使ABC ABD ∆≅∆,还需添加一个条件,那么在①AC AD =;②BC BD =;③C D ∠=∠;④CAB DAB ∠=∠这四个关系中可以选择的是(A )①②③ (B )①②④ (C )①③④ (D )②③④4.如图是用直尺和圆规作一个角等于已知角的示意图, 则说明∠A′O′B′=∠AOB 的依据是(A )SSS (B )SAS (C )ASA (D )AAS5.如图,36DBC ECB ∠=∠=︒,72BEC BDC ∠=∠=︒,则图中等腰三角形的个数是(A ) 5 (B ) 6 (C ) 8 (D ) 96.下列运算:(1)a a a 2=+;(2)1243a a a =⨯;(3)()22ab ab = ;(4)()632a a =-.其中错误的个数是(A ) 1 (B ) 2 (C ) 3 (D ) 47.若A b a b a +-=+22)()(,则A 等于(A )ab 2 (B )ab 2- (C )ab 4- (D )ab 48.练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有①)1)(1(3-+=+x x x x x ②222)(2y x y xy x -=+-③1)1(12+-=+-a a a a ④)4)(4(1622y x y x y x -+=-(A )1个 (B )2个 (C )3个 (D )4个9.关于x 的分式方程101mx x -=+的解,下列说法正确的是(A )不论m 取何值,该方程总有解(B )当1m ≠时该方程的解为1mx m =-(C )当1,0m m ≠≠且时该方程的解为1mx m =-(D )当2m =时该方程的解为2x =10.如果把分式yx x 34y 3-中的x 和y 的值都扩大为原来的3倍,那么分式的值 (A )扩大为原来的3倍 (B )扩大6倍(C )缩小为原来的12倍 (D )不变11.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在C ′处,折痕为EF ,若AB =4,BC =8,则△BC ′F 的周长为(A )12 (B )16 (C )20 (D )2412.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2EC ,给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AB =3BF ,其中正确的结论共有(A )①②③ (B )①③④ (C )②③ (D )①②③④第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.在△ABC 中,∠C =90°,BC =16,∠BAC 的平分线交BC 于D ,且BD :DC =5:3,则D 到AB 的距离为_____________.14.已知等腰三角形的一个内角为50°,则顶角角的大小为________________.15.分解因式:322318122xy y x y x -+- =__________________________________.16.若362+-mx x 是一个完全平方式,则m =____________________.17.当x 的值为 ,分式242x x -+的值为0.18.如果直角三角形的三边长为10、6、x ,则最短边上的高为______.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(本小题满分8分)(1)计算:)35()35(45205152+--+-.(2)计算:2(3)(3)(2)a b a b a b ---+-20.(每小题5分,共10分)根据要求,解答下列问题:(1)计算:()()()()x x x x x -+--÷-123286234(2)化简:)111(3121322-+--+-⨯--x x x x x x .21.(本小题满分10分)如图,已知点E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C 、D 是垂足.连接CD ,且交OE 于点F .(1)求证:OE 是CD 的垂直平分线.(2)若∠AOB =60°,求证:OE =4EF .22.(本小题满分10分)如图,已知B 、C 、E 三点在同一条直线上,△ABC 与△DCE 都是等边三角形.其中线段BD 交AC 于点G ,线段AE 交CD 于点F .(第21题图)求证:(1)△ACE≌△BCD;(2)△GFC是等边三角形.23.(本小题满分12分)如图,中,,若动点P从点C开始,按的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求的周长.(2)问t满足什么条件时,为直角三角形?(3)另有一点Q,从点C开始,按的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动当t为何值时,直线PQ把的周长分成相等的两部分?24.(本小题满分10分)如图所示,港口A 位于灯塔C 的正南方向,港口B 位于灯塔C 的南偏东60°方向,且港口B 在港口A的正东方向的135公里处.一艘货轮在上午8时从港口A 出发,匀速向港口B 航行.当航行到位于灯塔C 的南偏东30°方向的D 处时,接到公司要求提前交货的通知,于是提速到原来速度的1.2倍,于上午12时准时到达港口B ,顺利完成交货.求货轮原来的速度是多少?A CB第24题图D参考答案一、选择题(本大题12个小题,每小题3分,共36分)二、填空题(本大题6个小题,每小题4分,共24分)13.6; 14.50°或80°; 15.232)(y x xy --;16.21±; 17.2 ; 18. 8或10三、解答题(本大题6个小题,共60分)19.(本小题满分10分)解:(1)原式=)35(453525-++- …………………………2分=125453525-++- …………………………3分=1256- ………………………………………………5分(2)2(3)(3)(2)a b a b a b ---+-= 2222944b a a ab b -+-+ ……………4分= 2134b ab - ……………5分20.(每小题5分,共10分)化简:解:原式()()x x x x x 23234322--+-+-= ……………4分 x x x x x 23234322++--+-=23-=x . ……………5分(2)原式=()()()⎪⎭⎫⎝⎛++-+---⨯-+--1111311132x x x x x x x x ……2分=111+++--x xx x ……………4分=11x . ……………5分21.(本小题满分10分)解:(1)∵OE 是∠AOB 的平分线,EC ⊥OB ,ED ⊥OA ,OE =OE ,∴Rt △ODE ≌Rt △OCE (AAS ), …………………………2分∴OD =OC ,∴△DOC 是等腰三角形, …………………………3分∵OE 是∠AOB 的平分线,∴OE 是CD 的垂直平分线. …………………………5分(2)∵OE 是∠AOB 的平分线,∠AOB =60°,∴∠AOE =∠BOE =30°, ………………6分∵EC ⊥OB ,ED ⊥OA ,∴OE =2DE ,∠ODF =∠OED =60°, …………………………8分∴∠EDF =30°,∴DE =2EF , …………………………9分∴OE =4EF . …………………………10分22.(本小题满分10分)证明:(1)∵△ABC 与△DCE 都是等边三角形,∴AC =BC ,CE =CD ,∠ACB =∠DCE =60°, ------------------------3分∴∠ACB +∠ACD =∠DCE +∠ACD ,即∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ). ----------------------------5分(2)∵△ABC 与△DCE 都是等边三角形,CD =ED ,∠ABC =∠DCE =60°(此步不再赋分),由平角定义可得∠GCF =60°=∠FCE , ---------------------7分又由(1)可得∠GDC =∠FEC , ∴△GDC ≌△FEC (AAS ). ----------8分∴GC =FC , --------------------------9分又∠GCF =60°,∴△GFC 是等边三角形. -----------------------10分23.解:,,动点P 从点C 开始,按的路径运动,速度为每秒1cm ,出发2秒后,则,,,的周长为:;-----------------3分,动点P从点C开始,按的路径运动,且速度为每秒1cm,在AC上运动时为直角三角形,,当P在AB上时,时,为直角三角形,,,解得:,,,速度为每秒1cm,,综上所述:当或为直角三角形;-----------------8分当P点在AC上,Q在AB上,则,直线PQ把的周长分成相等的两部分,,;当P 点在AB 上,Q 在AC 上,则, 直线PQ 把的周长分成相等的两部分,,, 当或6秒时,直线PQ 把的周长分成相等的两部分.-------------12分24.(本小题满分10分)解:根据题意,A ∠=90°,ACB ∠=60°,ACD ∠=30°,∴603030DCB ∠=︒-︒=︒,906030B ∠=︒-︒=︒,∴DCB B ∠=∠∴CD BD = -----------2分∵A ∠=90°,ACD ∠=30°∴2CD AD =∴2BD AD = -----------4分又135AB =∴45AD =,,90BD = -----------5分设货轮原来的速度是x 公里/时,列方程得45901281.2x x+=- ----------8分 解得 x =30 ----------9分检验,当x =30时,1.2x ≠0.所以,原分式方程的解为x =30.答: 货轮原来的速度是30公里/时. -----------10分注意:评分标准仅做参考,只要学生作答正确,均可得分。

2017——2018学年人教版八年级数学上册期中试卷

2017——2018学年人教版八年级数学上册期中试卷

2017——2018学年度第一学期期中质量调研八年级数学试卷(考试时间:120分钟满分:120分)一、选择题(共10小题,每小题3分,共30分.每小题所给出的四个选项中只有一项是符合要求的,请将正确答案的序号填入下面的表格内)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是().A. B. C. D.2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是().A.带①去B.带②去 C.带③去D.带①和②去第2题第6题第7题3.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为().A. 5或7B. 7或9C. 7D. 94.等腰三角形的一个角是80°,则它的底角是().A. 50°B. 80°C. 50°或80°D. 20°或80°5.点M(3,2)关于y轴对称的点的坐标为().A.(-3,2)B.(-3,-2)C. (3,-2)D. (2,-3)6.如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是().A. SSSB. SASC. ASAD. AAS7.如图,在ΔABC中,已知∠ABC=66°,∠ACB=54°BE是AC上的高,CF是AB上的高,H是BE和CF的交点,∠EHF的度数是().A. 50°B. 40°C. 130°D.120°8.已知1405=a,2103=b,2802=c,则a、b、c的大小关系是(). A.a<b<c B.b<a<c C.c<a<b D.c<b<a9.如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积为()班级:____________姓名:______________学号:____________——————————————————————装订线内不得答题————————————————————————A .2cm ²B .4cm ²C .6cm ²D .8cm 2 10.如图,已知ΔABC 和ΔDCE 均是等边三角形,点B ,C ,E 在同一条直线上,AE 与CD 交于点G ,AC 与BD 交于点F ,连接FG ,则下列结论:①AE=BD ;②AG=BF ;③FG ∥BE ;④CF=CG.其中正确的结论的个数是( ).A .4个B .3个C .2个D .1个第9题 第10题 二.填空题.(每小题3分,共24分)11.已知,如图:∠ABC=∠DEF ,AB=DE ,要说明ΔABC ≌ΔDEF 还要添加的条件为_____________。

2017-2018学年八年级数学上学期期中考试原(含答案)

2017-2018学年八年级数学上学期期中考试原(含答案)

2017-2018学年上学期期中原创卷A卷八年级数学(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:人教版第11~13章。

第Ⅰ卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为三角形的第三边的是A.13 cm B.6 cm C.5 cm D.4 cm2.中国汽车工业经过100 多年的发展,已成为世界上规模大和重要的产业之一,下面是我国部分汽车标志图形,其中不是轴对称图形是A B C D△的高的是3.下面四个图形中,线段BE是ABCA.B.C.D.4.如果正多边形的一个内角是140°,则这个多边形是A.正十边形B.正九边形C.正八边形D.正七边形5.下列说法不正确的是A.三角形的一个外角等于两个内角的和B.三角形具有稳定性C .四边形的内角和与外角和相等D .角是轴对称图形6.如图,ABC BAD △≌△,点A 和点B ,点C 和点D 是对应点.如果AB =6厘米,BD =5厘米,AD =4厘米,那么BC 的长是 A .6 cmB .5 cmC .4 cmD .不能确定7.如图,ABC △中,AB AC =,点D 在AC 边上,且BD BC AD ==,则A ∠的度数为 A .36°B .45°C .54°D .72°8.如图,在ABC △中,∠BAC =56°,∠ABC =74°,BP 、CP 分别平分∠ABC 和∠ACB ,则∠BPC =A .102°B .112°C .115°D .118°9.如图,在ABC △中, AB AC =, 36A ∠=︒, BD 、CE 分别是ABC ∠、BCD ∠的角平分线,则图中的等腰三角形有 A .5个B .4个C .3个D .2个10.在ABC △和A B C '''△中,下面能得到ABC A B C '''△≌△的条件是A .AB A B AC AC B B =''=''∠=∠',, B . AB A B BC B C A A =''=''∠=∠',, C .AC AC BC B C C C =''=''∠=∠',,D .AC AC BC B C B B =''=''∠=∠',,11.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,AB =36 cm,BC =24 cm, 2120cm ABC S =△,DE 长是A .4 cmB . 4.8 cmC . 5 cmD .无法确定12.使两个直角三角形全等的条件是A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .斜边及一条直角边对应相等 13.如图,已知40AOB ∠=︒,在AOB ∠的两边OA OB 、上分别存在点Q 、点P ,过点Q 作直线QR OB ∥,当OP QP =时,∠PQR 的度数是 A .60°B .80°C .100°D .120°14.如图,ABC △的面积为10 cm 2,AP 垂直∠B 的平分线BP 于点P ,则PBC △的面积为A .4 cm 2B .5 cm 2C .6 cm 2D .7 cm 215.如图,已知点B 、C 、D 在同一条直线上,ABC △和CDE △都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是A .AD =BEB .BE ⊥AC C . CFG △为等边三角形D . FG ∥BC第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)16.如图,ABC △中,∠B =45°,∠C =72°,则∠1的度数为__________.17.一个四边形,截一刀后得到的新多边形的内角和为__________. 18.若等腰三角形的一个角为80︒,则顶角为__________.19.已知点A (2a +3b ,−2)和A '(−1,3a +b )关于y 轴对称,则a +b 的值为__________.20.如图,ABC △中,90C ∠=︒,60BAC ∠=︒,AD 是角平分线,若8BD =,则CD 等于__________.21.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分7分)如果a 、b 、c 是ABC △的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求ABC △的周长.23.(本小题满分7分)如图,,100,75AB CD A C ∠=︒∠=︒∥,∠1∶∠2=5∶7,求∠B 的度数.24.(本题满分8分)已知:如图,在ABC △中, D 为BC 上的一点, AD 平分EDC ∠,且E B ∠=∠, DE DC =.求证: AB AC =.25.(本小题满分8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与直线l 成轴对称的A B C '''△; (2)线段CC ′被直线l ; (3)ABC △的面积为 ;(4)在直线l 上找一点P ,使PB+PC 的长最短.26.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.27.(本小题满分9分)如图,在Rt ABC △中,∠A =90°,AB=AC=4 cm ,若O 是BC 的中点,动点M 在AB 上移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)在点M,N运动的过程中,四边形AMON的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON的面积.△边AB上一动点(不与A,B重合)分别过点A,B向直线CD作垂28.(本小题满分9分)已知点D是ABC线,垂足分别为E,F,O为边AB的中点.(1)如图1,当点D与点O重合时,AE与BF的位置关系是____________,OE与OF的数量关系是__________;(2)如图2,当点D在线段AB上不与点O重合时,试判断OE与OF的数量关系,并给予证明;(3)如图3,当点D在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.(备注:直角三角形中,斜边上的中线等于斜边的一半)2017-2018学年上学期期中原创卷A卷八年级数学答案一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为三角形的第三边的是A.13 cm B.6 cm C.5 cm D.4 cm【答案】B2.中国汽车工业经过100 多年的发展,已成为世界上规模大和重要的产业之一,下面是我国部分汽车标志图形,其中不是轴对称图形是A B C D【答案】C△的高的是3.下面四个图形中,线段BE是ABCA.B.C.D.【答案】D4.如果正多边形的一个内角是140°,则这个多边形是A.正十边形B.正九边形C.正八边形D.正七边形【答案】B5.下列说法不正确的是A.三角形的一个外角等于两个内角的和B.三角形具有稳定性C.四边形的内角和与外角和相等D.角是轴对称图形【答案】A△≌△,点A和点B,点C和点D是对应点.如果AB=6厘米,BD=5厘米,AD=4厘米,6.如图,ABC BAD那么BC的长是A.6 cm B.5 cm C.4 cm D.不能确定【答案】B解:∵△ABC≌△BAD,对应为点A对点B,点C对点D,∴AC=BD∵BD=5cm(已知)∴AC=5cm故选B.7.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A为A.36° B.45° C.54° D.72°【答案】A∵BD=BC=AD,AC=AB,∴∠A=∠ABD,∠C=∠ABC=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°∵∠A+∠C+∠ABC=180°∴x+2x+2x= 180,∴x=36,∴∠A=36° .故选B .△中,∠BAC=56°,∠ABC=74°,BP、CP分别平分∠ABC和∠ACB,则∠BPC= 8.如图,在ABCA.102°B.112°C.115°D.118°【答案】D∵∠BAC=56°,∠A+∠ABC+∠ACB= 180°,∴∠ABC+∠ACB2=62°∵BP 、CP 分别平分∠ABC 和∠ACB , ∴∠BPC +∠ABC+∠ACB2= 180°∴∠BPC=118° .9.如图,在ABC △中, AB AC =, 36A ∠=︒, BD 、CE 分别是ABC ∠、BCD ∠的角平分线,则图中的等腰三角形有 A .5个B .4个C .3个D .2个【答案】A10.在ABC △和A B C '''△中,下面能得到ABC A B C '''△≌△的条件是A .AB A B AC AC B B =''=''∠=∠',, B . AB A B BC B C A A =''=''∠=∠',, C .AC AC BC B C C C =''=''∠=∠',,D .AC AC BC B C B B =''=''∠=∠',, 【答案】C11.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,AB =36cm ,BC =24cm ,2120cm ABC S =△,DE 长是( )A .4 cmB . 4.8 cmC . 5 cmD .无法确定【答案】A12.使两个直角三角形全等的条件是( )A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .斜边及一条直角边对应相等 【答案】D13.如图,已知∠AOB=40°,在∠AOB 的两边OA 、OB 上分别存在点Q 、点P ,过点Q 作直线QR ∥OB ,当OP=QP 时,∠PQR ∠的度数是( ) A .60°B .80°C .100°D .120°【答案】C14.如图,ABC △的面积为10 cm 2,AP 垂直∠B 的平分线BP 于点P ,则PBC △的面积为A .4 cm 2B .5 cm 2C .6 cm 2D .7 cm 2【答案】B15.如图,已知点B 、C 、D 在同一条直线上,ABC △和CDE △都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是A .AD =BEB .BE ⊥AC C . CFG △为等边三角形D . FG ∥BC【答案】B第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)16.如图,ABC △中,∠B =45°,∠C =72°,则∠1的度数为__________.【答案】117°解:∵∠1是OABC 的外角,且∠B=45°,∠C=72° ∴∠1=∠A+∠B=45°+72°=117° . 故答案为: 117°17.一个四边形,截一刀后得到的新多边形的内角和为__________.【答案】180°或360°或540°解:∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和为180°或360°或540°故答案为:180°或360°或540°18.若等腰三角形的一个角为80 ,则顶角为__________.【答案】80°或20°解:(1 )当80°的角是顶角时,顶角是80°;(2 )当80°的角是底角时,顶角的度数是:180°-80°- 80°= 100°- 80°=20°综上,可得等腰三角形的顶角是20°或80°故选:C.19.已知点A(2a+3b,−2)和A'(−1,3a+b)关于y轴对称,则a+b的值为__________.【答案】0解:∵点A( 2a+3b,−2 )和点A′ (−1 ,3a+b )关于y轴对称∴2a+3b=1,3a+b=−2∴2 ( 2a+3b ) +3a+b=1×2+ (−2 ) =0∴a+b=020.如图,△ABC中,∠C =90°,∠BAC=60°,AD是角平分线,若BD=8,则CD等于__________.【答案】4解:∵∠C=90°,∠BAC=60°∴∠B=30°∵AD是角平分线∴∠DAB=∠CAD=∠B=30°∴AD=BD=8∴CD=12AB=4 故答案为:421.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.【答案】4解:根据垂线段最短,当DP ⊥BC 的时候, DP 的长度最小,∵BD ⊥CD ,即∠BDC=90°,又∠A=90°∴∠A=∠BDC ,又∠ADB=∠C∴∠ABD=∠CBD ,又DA ⊥BA , DP ⊥BC∴AD=DP ,又AD=4∴DP=4故答案为: 4三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分7分)如果a 、b 、c 是△ABC 的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求ABC △的周长.【答案】解: ∵ (b −3)2≥0,|c −4|≥0且(b −3)2 +|c −4|=0 ,∴(b −3)2=0,|c −4|=0,∴b =3 , c =4∵4−3<a <4+3且a 为奇数,∴a =3或5当a =3时,△ABC 的周长是3+4+3=10当a =5时,△ABC 的周长是3+4+5=1223.(本小题满分7分)如图,,100,75AB CD A C ∠=︒∠=︒∥,∠1∶∠2=5∶7,求∠B 的度数.【答案】解:设∠1=5x °,∠2=7x °,在△ABE 中,∠B =180°−∠A −∠2=180°−100°−7x °=80°−7x °在△CDE 中,∠CDE =180°−∠C −∠1−∠2=180°−75°−5x °−7x °=105°− 12x °, ∵AB//CD ,∴∠B=∠CDE ,∴80°−7x°=105°− 12x°解得:x =5,∴∠B =80°−7x °=45°24.(本题满分8分)已知:如图,在△ABC 中, D 为BC 上的一点, AD 平分∠EDC ,且E B ∠=∠, DE DC =.求证: AB AC =.【答案】证明:∵AD 平分∠EDC∴∠ADE=∠ADC ,在△AED 和△ACD 中{DE =DC∠ADE =∠ADC AD =AD∴△AED ≌△ACD ( SAS )∴∠C=∠E又∵∠E=∠B∴∠C=∠B∴AB=AC25.(本小题满分8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与直线l 成轴对称的A B C '''△;(2)线段CC ′被直线l ;(3)ABC △的面积为 ;(4)在直线l 上找一点P ,使PB+PC 的长最短.【答案】( 1 )无(2)垂直平分(3) 3(4)无26.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.【答案】解: ∵∠BCE=∠ACD=90°∴∠3+∠4=∠4+∠5∴∠3=∠5在△ABC 和△DEC 中,{∠l =∠D∠3=∠5BC =CE∴△ABC ≌△DEC ( AAS ),∴AC=CD ;(2 ) ∵∠ACD=90°,AC=CD ,∴∠2=∠D=45°∵AE=AC∴∠4=∠6=67.5°∴∠DEC=180°-∠6=112.5°.27.(本小题满分9分)如图,在Rt ABC△中,∠A=90°,AB=AC=4 cm,若O是BC的中点,动点M在AB上移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)在点M,N运动的过程中,四边形AMON的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON的面积.【答案】解:(1)连接OA∵∠A=90°,AB=AC又∵O是BC的中点∴OA=OB=OC,(直角三角形中,斜边上的中线是斜边的一半)∴∠CAO=∠BAO=45°在△ONA和△OMB中{OA=OB∠CAO=∠BAO AN=BM∴△ONA≌△OMB ( SAS)∴OM=ON ( 全等三角形的对应边相等)(2)不变,理由如下:由上知△ONA≌△OMB∴S△ONA=S△OMB∴S四边形ANOM=S△ONA+S△OMA=S△OMB+S△OMA=S△OAB∴S四边形ANOM=S△OAB=12S△ABC=4(cm2)28.(本小题满分9分)已知点D 是ABC △边AB 上一动点(不与A ,B 重合)分别过点A ,B 向直线CD 作垂线,垂足分别为E ,F ,O 为边AB 的中点.(1)如图1,当点D 与点O 重合时,AE 与BF 的位置关系是____________,OE 与OF 的数量关系是__________;(2)如图2,当点D 在线段AB 上不与点O 重合时,试判断OE 与OF 的数量关系,并给予证明;(3)如图3,当点D 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路. (备注:直角三角形中,斜边上的中线等于斜边的一半)【答案】解:(1)如图1,当点D 与点O 重合时,AE 与BF 的位置关系是AE//BF , OE 与OF 的数量关系是OE=OF ,理由是:∵O 为AB 的中点∴AQ=BO∵AE ⊥CO, BF ⊥CO∴AE//BF ,∠AEO=∠BFO=90°在△AEO 和△BFO 中{∠AOE =∠BOF∠AEO =∠BFO AO =BO∴△AEO ≌△BFO ,∴OE=OF ,故答案:AE//BF ;OE=OF(2)OE=OF证明:延长EO 交BF 于M∵由(1)知:AE//BF∴∠AEO=∠BMO在△AEO 和△BMO 中{∠AOE =∠BOM∠AEO =∠BMO AO =BO∴△AEO ≌△BMO∴EO=MO∵∠BFE=90°∴OE=OF(3)当点D在线段BA(或AB)的延长线上时,此时(2)中的结论成立,证明:延长EO交FB于M,∵由(1)知:AE//BF∴∠AEO=∠BMO在△AEO和△BMO中{∠AOE=∠BOM∠AEO=∠BMOAO=BO∴△AEO≌△BMO∴EO=DO∵∠BFE=90°∴OE=OF。

惠民县第一学期期中学业检测八年级数学试题

惠民县第一学期期中学业检测八年级数学试题

绝密★启用前试卷类型:A2018—2019学年度第一学期期中学业检测八年级数学试题(惠民)温馨提示:1. 本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将答题卡交回。

2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、姓名、准考证号填写在答题卡中规定的位置上。

3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案不能答在试题卷上。

4. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第I卷(选择题,共36分)一、选择题(本大题共12个小题,每小题的四个选项中只有一个是正确的,把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑,每小题涂对得3分,满分36分)1.下列图形中,轴对称图形的个数为A.2个 B.3个 C.4个 D.5个2.等腰三角形的两边长分别为3cm和7cm,则其周长为A.13cm B.15cm C.13cm或17cm D.17cm3.点A(2 , 4)关于x轴的对称点B的坐标是A.(-2, 4) B.(2,-4)C.(-2,-4) D.(4, 2)4.已知13aa+=,则221aa+的值为A.5 B.6 C.7 D.85.如图,BC的垂直平分线分别交AB、BC于点D和点E,连接CD,AC=DC,∠B=25°,则∠ACD的度数是A.50° B.60° C.80° D.100°6.如图,A 、B 两点在正方形网格的格点上,每个方格都是边长为1的正方形.点C 也在格点上,且△ABC 为等腰三角形,则符合条件的点C 有 A.7个 B.8个 C. 9个 D.10个 7.下列运算正确的是A.532a a a +=B. 236a a a ⋅= C.()()22a b a b a b +-=- D.()222a b a b +=+8.计算()()224x y x y xy ⎡⎤+--÷⎣⎦的结果为A. 4x y +B. 4x y - C.1 D.2xy9.如果x 2-(m +1)x +1是完全平方式,那么m 的值为A.-1 B .1 C .1或-1 D .1或-310.如右上图,五角星的五个角都是顶角为36°的等腰三角形,则∠AMB 的度数为 A. 144° B.120° C. 108° D. 100°11.若,79,43==yx,则yx 23- 的值为A.47 B. 74 C. 3- D. 2712.如图,在△ABC 中,AB=AC ,∠C=70°,△AB′C′与△ABC 关于直线 EF 对称,∠CAF=10°,连接 BB′,则∠ABB′的度数是A . 30°B . 35°C . 40°D . 45°第II 卷(非选择题,共114分)二、填空题:本大题共8个小题,每小题5分,满分40分 13. 当x 时,()041x -=。

滨州市惠民县2017-2018学年八年级数学上期中试题含答案

滨州市惠民县2017-2018学年八年级数学上期中试题含答案

山东省滨州市惠民县2017-2018学年八年级数学上学期期中试题第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列“禁毒”“和平”“志愿者”“节水”这四个标志中,属于轴对称图形的是( )2.下列计算中,结果正确的是 ( )A. B. C. D.3.若等腰三角形中有一个角为50度,则这个等腰三角形的顶角的度数为()A.50° B.80° C.65°或50°D.50°或80°4.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°方向的N处,则N处与灯塔P的距离为()A.40海里 B.60海里 C.70海里 D.80海里5.如图,在Rt△ABC中,∠C=90°,直线DE是斜边AB的垂直平分线交AC于D.若AC=8,BC=6,则△DBC的周长为()A.12 B.14 C.16 D.无法计算6.一个多边形的每一个内角都等于144°,则这个多边形的内角和是()A.720° B.900° C.1440° D.1620°7.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为()A.5 B.6 C.7 D.88.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为( ) A.40° B.36° C.80° D.25°5题 7题A4题9.如图,图中显示的是从镜子中看到背后墙上的电子钟读数,这时的实际时间是( )A .10:05B .20:01C .20:10D .10:0210.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪开后拼成一个长方形,上述操作能验证的等式是( )A .(a +b)(a -b)=a 2-b 2B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .a 2+ab =a(a +b)11.在平面直角坐标系中,点A (1,3)在第一象限,点P 在x 轴上,若以P,O,A 为顶点的三角形是等腰三角形,则满足条件的P 共有( )A. 2个B. 3个C. 4个D. 5个12.如图,在△ABC 中,AB=AC ,∠BAC=90°,P 是BC 中点,∠EPF=90°,PE 、PF 分别交AB 、AC 于点E 、F .给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形; ③S 四边形AEPF =S △APC ;④EF=AP .上述结论正确的有( ) A .1个 B .2个 C .3个 D .4个第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.计算⎝ ⎛⎭⎪⎫232 017×⎝ ⎛⎭⎪⎫322 018×(-1)2 019的结果是_______. 14.若9x 2+kxy +16y 2是完全平方式,则k 的值为_________.15.如图,在Rt △ACB 中,∠ACB=90°,∠A=25°,D 是AB 上一点,将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B′处,则∠ADB′等于 .16题 17题18题16.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF=AC , 则∠ABC=_______度.17.如图, 已知BD 是∠ABC 的平分线,DE ⊥BC 于E,S △ABC =36cm 2;,AB=12cm,BC=18cm 则 DE 的长为 cm.18.如图,△ABC 的面积为1,分别倍长(延长一倍)AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2.…按此规律,倍长n 次后得到的△A 2017B 2017C 2017的面积为________.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程. 19.(6分)先化简,在求值:其中.20.(9分)如图,在平面直角坐标系中,A(1, 2),B(3, 1),C(-2, -1). (1)在图中作出关于轴对称的.(2)写出点的坐标(直接写答案).(3)的面积为___________21.(10分) 如图, 已知: △OAB ,△EOF 都是等腰直角三角形,∠AOB=900,中,∠EOF=900, 连结AE 、BF. 求证: (1) AE=BF; (2) AE ⊥BF.yxo 12312 3- 1 - 1 - 2- 2 - 3 ABC22.(9分) 下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y原式=(y+2)(y+6)+4 (第一步)= y2+8y+16 (第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______.A.提取公因式 B.平方差公式 C.两数和的完全平方公式 D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.23.(12分) 如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形;(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.24.(14分) 已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并说明理由.2017-2018第一学期期中测试八年级数学试题答案一、选择题:(本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分).1、B2、C3、D4、D5、B6、C7、A8、B9、B 10、A 11、C 12、B二、填空题:(本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分). 13、-— 14、24或-24 15、40° 16、45 17、2.4 18、72017三、解答题:(本大题共6个小题,满分60分.解答时请写出必要的演推过程). 19、=4x 4- —y 4------4分 代入得 :原式=0------2分20、(1)(3分) (2)A 1(-1,2) B 1(-3,1) C 1(2,-1)(3分)(3)—(3分) 21、解:(1)证明:在△AEO 与△BFO 中, ∵Rt △OAB 与Rt △EOF 等腰直角三角形,∴AO=OB ,OE=OF ,∠AOE=90o-∠BOE=∠BOF , ∴△AEO ≌△BFO ,∴AE=BF ; ---------5分(2)延长AE 交BF 于D ,交OB 于C ,则∠BCD=∠ACO , 由(1)知:∠OAC=∠OBF ,∴∠BDA=∠AOB=90o,∴AE ⊥BF . ------5分22、(1)C -----2分(2)不彻底 (x-2)-----3分(3)(x-1)4-------4分 23、(1)、证明:∵AE∥BC,∴∠B=∠DAE,∠C=∠CAE ,∵AE 平分∠DAC,∴∠DAE=∠CAE,∴∠B=∠C.∴△ABC 是等腰三角形.(5分)(2)、解:∵点F 是AC 的中点,∴AF=CF. 在△AEF 和△CGF 中,⎩⎪⎨⎪⎧∠FAE=∠C,AF =FC ,∠AFE=∠CFG,∴△AEF≌△CGF(ASA).∴AE=GC =8.∵GC=2BG ,∴BG=4,∴BC=12,∴△ABC 的周长为AB +AC +BC =10+10+12=32.(7分)24、 (1)证明:∵点D 是AB 的中点,AC =BC ,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD =45°,∠CAD=∠CBD=45°,∴∠CAE =∠BCG.又B F⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,∴△AEC≌△CGB,∴AE=CG.(7分)(2)解:BE =CM.理由:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC.又∵CA=BC ,∠ACM=∠CBE=45°,∴△BCE≌△CAM,∴BE=CM.(7分) 注意:评分标准仅做参考,只要学生作答正确,均可得分。

山东省滨州市 八年级(上)期中数学试卷-(含答案)

山东省滨州市 八年级(上)期中数学试卷-(含答案)

八年级(上)期中数学试卷一、选择题(本大题共12小题,共36.0分)1.下列图形中不是轴对称图形的是()A. B. C. D.2.一个多边形的内角和是它的外角和的2倍,则这个多边形是()A. 五边形B. 六边形C. 七边形D. 八边形3.下列长度的各种线段,可以组成三角形的是()A. 2,3,4B. 1,1,2C. 4,4,9D. 7,5,14.如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠BDC的度数为()A.B.C.D.5.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A. AASB. ASAC. SSSD. 角平分线上的点到角两边距离相等6.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.B.C.D.7.三角形中,到三个顶点距离相等的点是()A. 三边垂直平分线的交点B. 三条中线的交点C. 三条角平分线的交点D. 三条高线的交点8.如图,直线l1∥l2,以直线l1上的点A为圆心,适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC,若∠ABC=66°,则∠1=()A. B. C. D.9.如图,一个等边三角形纸片剪去一个角后变成一个四边形,则图中∠1+∠2的度数为()A.B.C.D.10.下列说法正确的是()A. 等腰三角形的高、中线、角平分线互相重合B. 顶角相等的两个等腰三角形全等C. 等腰三角形一边不可以是另一边的三倍D. 等腰三角形的两个底角相等11.如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(P不与AA′共线),下列结论中错误的是()A. △′是等腰三角形B. MN垂直平分′,′C. △与△′′′面积相等D. 直线AB、′′的交点不一定在MN上12.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,有以下结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确结论的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共24.0分)13.点P(2,3)关于x轴的对称点的坐标为______.14.等腰三角形的一个角是110°,则它的底角是______ .15.一个等腰三角形的两边分别为5和6,则这个等腰三角形的周长是______ .16.如图是一台起重机的工作简图,前后两次吊杆位置OP1、OP2与线绳的夹角分别是30°和70°,则吊杆前后两次的夹角∠P1OP2=______°.17.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=______度.18.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AC-AB=2BE中正确的是______ .三、解答题(本大题共6小题,共60.0分)19.如图,在△ABC中,∠BAC=90°,∠B=56°,AD⊥BC,DE∥CA,求∠ADE的度数.20.如图,△ABC与△DCB,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=50°,求∠EBC的度数.21.如图,已知△ABC.(1)画出与△ABC关于x轴对称的图形△A1B1C1,并写出△A1B1C1各项点坐标;(2)△ABC的面积为多少?(3)在x轴上找一点P,使点PA+PC的值最小,在图上标出P点位置.22.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=8,则△ADE周长是多少?(2)若∠BAC=118°,则∠DAE的度数是多少?23.已知:如图,△DAC、△EBC均是等边三角形,点A、C、B在同一条直线上,且AE、BD分别与CD、CE交于点M、N.求证:(1)AE=DB;(2)△CMN为等边三角形.24.问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F 分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______.探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.答案和解析1.【答案】D【解析】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.根据轴对称图形的概念对各选项分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】B【解析】解:设这个多边形是n边形,根据题意,得(n-2)×180°=2×360,解得:n=6.故这个多边形是六边形.故选:B.多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n-2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.3.【答案】A【解析】解:A、2+3>4,能构成三角形;B、1+1=2,不能构成三角形;C、4+4<9,不能构成三角形;D、5+1<7,不能构成三角形.故选:A.看哪个选项中两条较小的边的和大于最大的边即可.本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长那条就能够组成三角形.4.【答案】D【解析】解:∵AB=AC,∠A=36°,∴∠ABC=(180°-36°)÷2=72°,又CD平分∠ACB,∴∠DB C=∠DBA=36°.∴∠BDC=∠A+∠DBA=72°.故选D.由AB=AC,CD平分∠ACB,∠A=36°,根据三角形内角和180°可求得∠B等于∠ACB,并能求出其角度,在△DBC求得所求角度.本题考查了等腰三角形的性质,本题根据三角形内角和等于180度,在△CDB 中从而求得∠BDC的角度.5.【答案】C【解析】解:连接NC,MC,在△ONC和△OMC中,,∴△ONC≌△OMC(SSS),∴∠AOC=∠BOC,故选C.连接NC,MC,根据SSS证△ONC≌△OMC,即可推出答案.本题考查了全等三角形的性质和判定的应用,主要考查学生运用性质进行推理的能力,题型较好,难度适中.6.【答案】A【解析】解:A、添加BD=CD不能判定△ABD≌△ACD,故此选项符合题意;B、添加AB=AC可利用SAS定理判定△ABD≌△ACD,故此选项不合题意;C、添加∠B=∠C可利用AAS定理判定△ABD≌△ACD,故此选项不合题意;D、添加∠BDA=∠CDA可利用ASA定理判定△ABD≌△ACD,故此选项不合题意;故选:A.根据全等三角形的判定定理SSS、SAS、ASA、AAS、HL分别进行分析即可.本题考查三角形全等的判定;熟记三角形全等的判定方法是关键.7.【答案】A【解析】解:∵垂直平分线上任意一点,到线段两端点的距离相等,∴到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选A.根据线段垂直平分线的性质进行解答即可.本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.8.【答案】D【解析】解:根据题意得:AB=AC,∴∠ACB=∠ABC=66°,∵直线l1∥l2,∴∠1+∠ACB+∠ABC=180°,∴∠1=180°-∠ABC-∠ACB=180°-66°-66°=48°.故选D.首先由题意可得:AB=AC,根据等边对等角的性质,可求得∠ACB的度数,又由直线l1∥l2,根据两直线平行,同旁内角互补即可求得∠1的度数.此题考查了平行线的性质,等腰三角形的性质.此题难度不大,解题的关键是注意掌握两直线平行,同旁内角互补与等边对等角定理的应用.9.【答案】C【解析】【分析】由等边三角形的性质及四边形的内角和为360°可求得∠1+∠2=240°.本题考查等边三角形的性质,关键是利用了:1、四边形内角和为360°;2、等边三角形的内角均为60°.【解答】解:如图,∵等边三角形∴∠1+∠2=360°-(∠A+∠B)=360°-120°=240°.故选C.10.【答案】D【解析】解:A、等腰三角形底边的高、中线、角平分线互相重合,故选项错误;B、顶角相等的两个三角形全等,故选项错误;C、等腰三角形一边可以是另一边的三倍,故选项错误;D、等腰三角形的两个底角相等,故选项正确.故选D.利用等腰三角形的性质分别判断后即可确定正确的选项.本题考查了等腰三角形的性质,解题的关键是熟知等腰三角形的所有性质,难度不大.11.【答案】D【解析】解:∵△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,∴△AA′P是等腰三角形,MN垂直平分AA′,CC′,这两个三角形的面积相等,A、B、C选项正确;直线AB,A′B′关于直线MN对称,因此交点一定在MN上.D错误;故选:D.据对称轴的定义,△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,可以判断出图中各点或线段之间的关系.本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.12.【答案】C【解析】解:在△AEB和△AFC中,,∴△AEB≌△AFC,∴∠EAB=∠FAC,EB=CF,AB=AC,∴∠EAM=∠FAN,故③正确,在△AEM和△AFN中,,∴△AEM≌△AFN,∴EM=FN,AM=AN,故①正确,∵AC=AB,∴CM=BN,在△CMD和△BNC中,,∴△CMD≌△BND,∴CD=DB,故②错误,在△ACN和△ABM中,,∴△ACN≌△ABM,故④正确,故①③④正确,故选:C.先证明△AEB≌△AFC得∠EAB=∠FAC即可推出③正确,由△AEM≌△AFN即可推出①正确,由△CMD≌△BND可以推出②错误,由△ACN≌△ABM可以推出④正确,由此即可得出结论.本题考查全等三角形的判定和性质,解题的关键是灵活应用全等三角形的判定和性质解决问题,题目中全等三角形比较多,证明方法不唯一,属于中考常考题型.13.【答案】(2,-3)【解析】解:∵点P(2,3)∴关于x轴的对称点的坐标为:(2,-3).故答案为:(2,-3).根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y)得出即可.此题主要考查了关于x轴、y轴对称点的性质,正确记忆坐标规律是解题关键.14.【答案】35°【解析】解:①当这个角是顶角时,底角=(180°-110°)÷2=35°;②当这个角是底角时,另一个底角为110°,因为110°+110°=240°,不符合三角形内角和定理,所以舍去.故答案为:35°.题中没有指明已知的角是顶角还是底角,故应该分情况进行分析,从而求解.此题主要考查等腰三角形的性质及三角形内角和定理的综合运用.15.【答案】16或17【解析】解:①当等腰三角形的腰为5,底为6时,周长为5+5+6=16.②当等腰三角形的腰为6,底为5时,周长为5+6+6=17.故这个等腰三角形的周长是16或17.故答案为:16或17.由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为5;(2)当等腰三角形的腰为6;两种情况讨论,从而得到其周长.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.16.【答案】40【解析】解:根据题意得:P1A∥P2B,∠1=30°,∠2=70°,∴∠3=∠2=70°,∵∠3=∠1+∠P1OP2,∴∠P1OP2=∠3-∠1=70°-30°=40°.故答案为:40.首先根据题意可得:P1A∥P2B,∠1=30°,∠2=70°,然后由两直线平行,内错角相等,即可求得∠3的度数,又由三角形外角的性质,求得吊杆前后两次的夹角∠P1OP2的度数.此题考查了平行线的性质与三角形外角的性质.注意两直线平行,内错角相等.17.【答案】45【解析】解:∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45.根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.18.【答案】①②④【解析】解:在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,故①正确;又∵DE⊥AB,DF⊥AC,∴AD平分∠BAC,故②正确;在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴AB+BE=AC-FC,∴AC-AB=BE+FC=2BE,即AC-AB=2BE,故④正确;由垂线段最短可得AE<AD,故③错误,综上所述,正确的是①②④.故答案为:①②④.利用“HL”证明Rt△BDE和Rt△CDF全等,根据全等三角形对应边相等可得DE=DF,再根据到角的两边距离相等的点在角的平分线上判断出AD平分∠BAC,然后利用“HL”证明Rt△ADE和Rt△ADF全等,根据全等三角形对应边相等可得AE=AF,再根据图形表示出表示出AE、AF,再整理即可得到AC-AB=2BE.本题考查了全等三角形的判定与性质,到角的两边距离相等的点在角的平分线上,熟练掌握三角形全等的判定方法并准确识图是解题的关键.19.【答案】解:∵∠BAC=90°,DE∥AC(已知)∴∠DEA=180°-∠BAC=90°(两直线平行,同旁内角互补).∵AD⊥BC,∠B=56°,∴∠BAD=34°,在△ADE中,∵DE⊥AB,∴∠ADE=56°.【解析】根据平行线的性质推知△AED是直角三角形;在直角△ABD中,利用“直角三角形的两个锐角互余的性质”求得∠BAD=34°;然后在直角△AED中,利用“直角三角形的两个锐角互余的性质”求得∠ADE的度数.本题考查了三角形内角和定理以及平行线的性质,直角三角形的性质.直角三角形的两个锐角互余,此题难度不大.20.【答案】(1)证明:在△ABE和△DCE中,,∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.【解析】(1)根据AAS即可推出△ABE和△DCE全等;(2)根据三角形全等得出EB=EC,推出∠EBC=∠ECB,根据三角形的外角性质得出∠AEB=2∠EBC,代入求出即可.本题考查了三角形外角性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.21.【答案】解:(1)如图所示:△A1B1C1,即为所求,A1(0,2),B1(2,4),C1(4,1);(2)△ABC的面积为:3×4-×2×2-×2×3-×1×4=5;(3)如图所示:点P即为所求.【解析】(1)直接利用关于x轴对称点的性质得出对应点位置进而得出答案;(2)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(3)利用轴对称求最短路线的方法得出P点位置.此题主要考查了轴对称变换以及利用轴对称求最短路线,正确找出对应点位置是解题关键.22.【答案】解:(1)∵在△ABC中,边AB、AC的垂直平分线分别交BC于D、E,∴AD=BD,AE=EC,∵BC=8,∴△ADE周长=AD+DE+AE=BD+DE+CE=BC=8;(2)∵∠BAC=118°,∴∠B+∠C=62°,∵DA=DB,EA=EC,∴∠BAD=∠B,∠EAC=∠C,∴∠BAD+∠EAC=62°,∠DAE=【解析】(1)根据线段垂直平分线性质得出AD=BD,CE=AE,求出△ADE的周长=BC,即可得出答案;(2)由∠BAC=118°,即可得∠B+∠C=62°,又由DA=DB,EA=EC,即可求得∠DAE的度数.本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段的两个端点的距离相等.23.【答案】证明:(1)∵△DAC、△EBC均是等边三角形,∴AC=DC,EC=BC,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中,∴△ACE≌△DCB(SAS).∴AE=DB.(2)由(1)可知:△ACE≌△DCB,∴∠CAE=∠CDB,即∠CAM=∠CDN.∵△DAC、△EBC均是等边三角形,∴AC=DC,∠ACM=∠BCE=60°.又点A、C、B在同一条直线上,∴∠DCE=180°-∠ACD-∠BCE=180°-60°-60°=60°,即∠DCN=60°.∴∠ACM=∠DCN.在△ACM和△DCN中,∴△ACM≌△DCN(ASA).∴CM=CN.又∠DCN=60°,∴△CMN为等边三角形.【解析】(1)根据△DAC、△EBC均是等边三角形,求证△ACE≌△DCB(SAS)即可得出结论.(2)由(1)可知:△ACE≌△DCB,和△DAC、△EBC均是等边三角形,求证△ACM≌△DCN(ASA)即可得出结论.此题主要考查学生对等边三角形的性质与判定、全等三角形的判定与性质、三角形内角和定理等知识点的理解和掌握,此题难度不大,但是步骤繁琐,属于中档题.24.【答案】EF=BE+DF【解析】证明:(1)在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(1)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;(2)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题.本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.。

2017-2018年度第一学期八年级数学期中考试卷(一).pdf

2017-2018年度第一学期八年级数学期中考试卷(一).pdf
第 22 题


23.(10 分)如图, △ ABC 为等边三角形, AE= CD,AD ,BE 相交于点 P,BQ⊥AD 于 Q, 线
PQ=3,PE=1.
(1)求证: BE= AD;

(2)求 AD 的长. 不
第 23 题



20. (10 分)如图,点 C 是线段 AB 上任意一点 (点 C 与点 A ,B 不 重合 ),分别以 AC,BC 为边在直线 AB 的同侧作等边三角形 ACD 和等边三角形 BCE,AE 与 CD 相交于点 M ,BD 与 CE 相交于点 N, 连接 MN. 求证: (1)△ ACM ≌△ DCN; (2)MN ∥AB.
∠A = α , 则 ∠BOC =
1 ( 用 α 表示 ) ;如图 2 ,∠ CBO = 3
∠ABC ,∠BCO=13∠ACB ,∠A =α,
则∠ BOC=
(用 α表示 );
拓展研究:
(2)如图 3,∠ CBO=13∠DBC ,∠ BCO=13∠ECB,∠ A = α,猜想∠ BOC =
(用 α表示 ),并说明理由;
的关系即可判断中线 AD 的取值范围是

(2)问题解决:如图 2,在△ ABC 中,D 是 BC 边上的中点, DE⊥DF 于点 D,DE 交
AB 于点 E,DF 交 AC 于点 F,连接 EF,求证 BE+ CF> EF.
第 18 题
19. (12 分)问题引入:
(1) 如图 1,在△ ABC 中,点 O 是 ∠ABC 和∠ ACB 平分线的交点,若
6.下列图形分别是桂林、 湖南、甘肃、佛山电视台的台徽, 其中为轴对称图形的是 (
) 全等,则 AP=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省滨州市惠民县2017-2018学年八年级数学上学期期中试题第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列“禁毒”“和平”“志愿者”“节水”这四个标志中,属于轴对称图形的是( )2.下列计算中,结果正确的是 ( )A.236a a a=· B.()()26a a a=·3 C.()326a a= D.623a a a÷=3.若等腰三角形中有一个角为50度,则这个等腰三角形的顶角的度数为()A.50° B.80° C.65°或50°D.50°或80°4.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°方向的N处,则N处与灯塔P的距离为()A.40海里 B.60海里 C.70海里 D.80海里5.如图,在Rt△ABC中,∠C=90°,直线DE是斜边AB的垂直平分线交AC于D.若AC=8,BC=6,则△DBC的周长为()A.12 B.14 C.16 D.无法计算6.一个多边形的每一个内角都等于144°,则这个多边形的内角和是()A.720° B.900° C.1440° D.1620°7.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为()A.5 B.6 C.7 D.88.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为( )A.40° B.36° C.80° D.25°5题 7题A4题9.如图,图中显示的是从镜子中看到背后墙上的电子钟读数,这时的实际时间是( )A .10:05B .20:01C .20:10D .10:0210.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪开后拼成一个长方形,上述操作能验证的等式是( )A .(a +b)(a -b)=a 2-b 2B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .a 2+ab =a(a +b)11.在平面直角坐标系中,点A (1,3)在第一象限,点P 在x 轴上,若以P,O,A 为顶点的三角形是等腰三角形,则满足条件的P 共有( )A. 2个B. 3个C. 4个D. 5个12.如图,在△ABC 中,AB=AC ,∠BAC=90°,P 是BC 中点,∠EPF=90°,PE 、PF 分别交AB 、AC 于点E 、F .给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形; ③S 四边形AEPF =S △APC ;④EF=AP .上述结论正确的有( ) A .1个 B .2个 C .3个 D .4个第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.计算⎝ ⎛⎭⎪⎫232 017×⎝ ⎛⎭⎪⎫322 018×(-1)2 019的结果是_______.14.若9x 2+kxy +16y 2是完全平方式,则k 的值为_________.15.如图,在Rt △ACB 中,∠ACB=90°,∠A=25°,D 是AB 上一点,将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B′处,则∠ADB′等于 .16题 17题16.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF=AC ,则∠ABC=_______度.17.如图, 已知BD 是∠ABC 的平分线,DE ⊥BC 于E,S △ABC =36cm 2;,AB=12cm,BC=18cm 则 DE 的长为 cm.18.如图,△ABC 的面积为1,分别倍长(延长一倍)AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2.…按此规律,倍长n 次后得到的△A 2017B 2017C 2017的面积为________.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(6分)先化简,在求值:,21221212222⎪⎭⎫⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+y x y x y x其中2,1=-=y x .20.(9分)如图,在平面直角坐标系中,A(1, 2),B(3, 1),C(-2, -1). (1)在图中作出ABC △关于y 轴对称的111A B C △. (2)写出点111A B C ,,的坐标(直接写答案). (3)111A B C △的面积为___________21.(10分) 如图, 已知: △OAB ,△EOF 都是等腰直角三角形,∠AOB=900,中,∠EOF=900, 连结AE 、BF. 求证: (1) AE=BF; (2) AE ⊥BF.yxo 1 2 312 3- 1 - 1 - 2- 2 - 3 ABC题22.(9分) 下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y原式=(y+2)(y+6)+4 (第一步)= y2+8y+16 (第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______.A.提取公因式 B.平方差公式 C.两数和的完全平方公式 D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.23.(12分) 如图,在△AB C中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形;(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.24.(14分) 已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并说明理由.2017-2018第一学期期中测试八年级数学试题答案一、选择题:(本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分).1、B2、C3、D4、D5、B6、C7、A8、B9、B 10、A 11、C 12、B二、填空题:(本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分). 13、-— 14、24或-24 15、40° 16、45 17、2.4 18、72017三、解答题:(本大题共6个小题,满分60分.解答时请写出必要的演推过程). 19、,21221212222⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+y x y x y x=4x 4- —y 4------4分代入得 :原式=0------2分 20、(1)(3分)(2)A 1(-1,2) B 1(-3,1) C 1(2,-1)(3分) (3)—(3分)21、解:(1)证明:在△AEO 与△BFO 中, ∵Rt △OAB 与Rt △EOF 等腰直角三角形, ∴AO=OB ,OE=OF ,∠AOE=90o-∠BOE=∠BOF , ∴△AEO ≌△BFO , ∴AE=BF ; ---------5分(2)延长AE 交BF 于D ,交OB 于C ,则∠BCD=∠ACO , 由(1)知:∠OAC=∠OBF ,∴∠BDA=∠AOB=90o,∴AE ⊥BF . ------5分22、(1)C -----2分(2)不彻底 (x-2)4-----3分 (3)(x-1)4-------4分23、(1)、证明:∵AE∥BC,∴∠B=∠DAE,∠C=∠CAE ,∵AE 平分∠DAC,∴∠DAE=∠CAE,∴∠B =∠C.∴△ABC 是等腰三角形.(5分)(2)、解:∵点F 是AC 的中点,∴AF =CF. 在△AEF 和△CGF 中,⎩⎪⎨⎪⎧∠FAE=∠C,AF =FC ,∠AFE=∠CFG,∴△AEF≌△CGF(ASA).∴AE=GC =8.∵GC=2BG ,∴BG=4,∴BC=12,∴△ABC 的周长为AB +AC +BC =10+10+12=32.(7分)24、 (1)证明:∵点D 是AB 的中点,AC =BC ,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∠CAD=∠CBD=45°,∴∠CAE =∠BCG.又BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,∴△AEC≌△CGB,∴AE=CG.(7分)(2)解:BE =CM.理由:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA =∠BEC.又∵CA=BC ,∠ACM=∠CBE=45°,∴△BCE≌△CAM,∴BE=CM.(7分)注意:评分标准仅做参考,只要学生作答正确,均可得分。

对于解答题目,答案错误原则上得分不超过分值的一半,有些题目有多种方法,只要做对,即可得分。

另外请各位阅卷老师仔细核对答案,如有问题,请及时更正。

3214 xo 1 2 312 3- 1 - 1 - 2- 2 - 3 ABCA 1B 1C 19 2。

相关文档
最新文档