数据库的安全性与完整性
数据库实验4 索引、数据完整性与安全性

实验四索引、数据完整性与安全性一、实验目的(1) 掌握利用SQL Server Management Studio和SQL语言建立、删除索引的方法;(2) 掌握利用SQL Server Management Studio和SQL语言实现数据完整性的方法;(3) 掌握在SQL Server Management Studio中实现数据安全性管理的方法。
二、实验原理1.索引在关系型数据库中,索引是一种可以加快数据检索的数据库结构。
SQL Server系统中主要有两种类型的索引,即聚集索引、非聚集索引。
(1)聚集索引聚集索引定义了数据在表中存储的物理顺序。
一个表只能定义一个聚集索引。
(2)非聚集索引非聚集索引并不存储表数据本身。
相反,非聚集索引只存储指向表数据的指针,该指针作为索引键的一部分,因此,在一个表中同时可以存在多个非聚集索引。
(3)利用SQL命令建立索引简化语法格式:CREATE [UNIQUE] [CLUSTERED|NONCLUSTERED]INDEX index_name ON {table|view}(column|ASC|DESC][,…n])其中:UNIQUE。
可选。
该选项用于通知SQL Server索引中列出的列的值是每行唯一的。
如果试图插入重复的行,则该选项会强制SQL Server返回一个错误信息。
CLUSTERED或NONCLUSTERED。
可选。
如果这两个选项都没有被明确列出,则默认将索引创建为NONCLUSTERED(非聚集索引)。
(4)通过SQL命令删除索引语法格式:DROP INDEX ‘table.index|view.index’[,…n]2.表主键和UNIQUE约束表主键通过表数据中一个列或者多个列组合的数据来唯一标识表中的每一行数据。
即表主键就是用来约束数据表中不能存在相同的两行数据。
在SQL Server系统中,定义表的主键可以在创建表的同时定义,也可以给已有的表添加主键。
数据库的安全性、完整性、并发控制和恢复

数据库的安全性、完好性、并发控制和恢复为了保证数据库数据的安全靠谱性和正确有效, DBMS 一定供给一致的数据保护功能。
数据保护也为数据控制,主要包含数据库的安全性、完好性、并发控制和恢复。
数据库的安全性数据库的安全性是指保护数据库以防备不合法的使用所造成的数据泄漏、改正或损坏。
计算机系统都有这个问题,在数据库系统中大批数据集中寄存,为很多用户共享,使安全问题更加突出。
在一般的计算机系统中,安全举措是一级一级设置的。
在 DB 储存这一级可采纳密码技术,当物理储存设施失窃后,它起到保密作用。
在数据库系统这一级中供给两种控制:用户表记和判定,数据存取控制。
在 ORACLE 多用户数据库系统中,安全体制作以下工作:防备非受权的数据库存取;防备非受权的对模式对象的存取;控制磁盘使用;控制系统资源使用;审计用户动作。
数据库安全可分为二类:系统安全性和数据安全性。
系统安全性是指在系统级控制数据库的存取和使用的体制,包含:有效的用户名 /口令的组合;一个用户能否受权可连结数据库;用户对象可用的磁盘空间的数目;用户的资源限制;数据库审计是不是有效的;用户可履行哪些系统操作。
数据安全性是指在对象级控制数据库的存取和使用的体制,包含:哪些用户可存取一指定的模式对象及在对象上同意作哪些操作种类。
在 ORACLE 服务器上供给了一种随意存取控制,是一种鉴于特权限制信息存取的方法。
用户要存取一对象一定有相应的特权授给该用户。
已受权的用户可随意地可将它受权给其余用户,因为这个原由,这类安全性种类叫做随意型。
ORACLE 利用以下体制管理数据库安全性:数据库用户和模式;特权;角色;储存设置和空间份额;资源限制;审计。
数据库的存取控制ORACLE保护信息的方法采纳随意存取控制来控制所有用户对命名对象的存取。
用户对对象的存取受特权控制。
一种特权是存取一命名对象的同意,为一种规定格式。
ORACLE 使用多种不一样的体制管理数据库安全性,此中有两种体制:模式和用户。
数据库的安全性与完整性【模板范本】

4 数据库的安全性与完整性数据库在各种信息系统中得到广泛的应用,数据在信息系统中的价值越来越重要,数据库系统的安全与保护成为一个越来越值得重要关注的方面。
数据库系统中的数据由DBMS统一管理与控制,为了保证数据库中数据的安全、完整和正确有效,要求对数据库实施保护,使其免受某些因素对其中数据造成的破坏。
一般说来,对数据库的破坏来自以下4个方面:(1)非法用户非法用户是指那些未经授权而恶意访问、修改甚至破坏数据库的用户,包括那些超越权限来访问数据库的用户.一般说来,非法用户对数据库的危害是相当严重的。
(2)非法数据非法数据是指那些不符合规定或语义要求的数据,一般由用户的误操作引起。
(3)各种故障各种故障指的是各种硬件故障(如磁盘介质)、系统软件与应用软件的错误、用户的失误等。
(4)多用户的并发访问数据库是共享资源,允许多个用户并发访问(Concurrent Access),由此会出现多个用户同时存取同一个数据的情况。
如果对这种并发访问不加控制,各个用户就可能存取到不正确的数据,从而破坏数据库的一致性.针对以上4种对数据库破坏的可能情况,数据库管理系统(DBMS)核心已采取相应措施对数据库实施保护,具体如下:(1)利用权限机制,只允许有合法权限的用户存取所允许的数据,这就是本章4.1节“数据库安全性”应解决的问题。
(2)利用完整性约束,防止非法数据进入数据库,这是本章4。
2节“数据库完整性"应解决的问题。
(3)提供故障恢复(Recovery)能力,以保证各种故障发生后,能将数据库中的数据从错误状态恢复到一致状态,此即本章4。
3节“故障恢复技术”的内容.(4)提供并发控制(Concurrent Control)机制,控制多个用户对同一数据的并发操作,以保证多个用户并发访问的顺利进行,此即本章4.4节“并发控制”的内容。
4.1 数据库安全性4.1.1 数据库安全性问题的概述1.数据库安全问题的产生数据库的安全性是指在信息系统的不同层次保护数据库,防止未授权的数据访问,避免数据的泄漏、不合法的修改或对数据的破坏。
数据库简答题

1.什么是数据的安全性?答:数据库的安全性是指保护数据库以防止不合法的使用所造成的数据泄露、更改或破坏2.什么是数据库的完整性?答:数据库的完整性是指数据的正确性和相容性。
3.数据库的安全性和完整性有什么关系?答:数据的完整性和安全性是两个不同的概念,但是有一定的联系。
前者是为了防止数据库中存在不符合语义的数据,防止错误信息的输入和输出,即所谓垃圾进垃圾出所造成的无效操作和错误结果。
后者是保护数据库防止恶意的破坏和非法的存取。
也就是说,安全性措施的防范对象是非法用户和非法操作,完整性措施的防范对象是不合语义的数据。
4.试述实现数据库安全性控制的常用方法和技术。
答:实现数据库安全性控制的常用方法和技术有:(1)用户标识和鉴别:该方法由系统提供一定的方式让用户标识自己的名字或身份。
每次用户要求进入系统时,由系统进行核对,通过鉴定后才提供系统的使用权。
(2)存取控制:通过用户权限定义和合法权检查确保只有合法权限的用户访问数据库,所有未被授权的人员无法存取数据。
例如C2 级中的自主存取控制(DAC),B1级中的强制存取控制(MAC)。
(3)视图机制:为不同的用户定义视图,通过视图机制把要保密的数据对无权存取的用户隐藏起来,从而自动地对数据提供一定程度的安全保护。
(4)审计:建立审计日志,把用户对数据库的所有操作自动记录下来放入审计日志中,DBA可以利用审计跟踪的信息,重现导致数据库现有状况的一系列事件, 找出非法存取数据的人、时间和内容等。
(5)数据加密:对存储和传输的数据进行加密处理,从而使得不知道解密算法的人无法获知数据的内容。
5.什么是数据库的审计功能,为什么要提供审计功能?答:审计功能是指DBMS 的审计模块在用户对数据库执行操作的同时把所有操作自动记录到系统的审计日志中。
因为任何系统的安全保护措施都不是完美无缺的,蓄意盗窃破坏数据的人总可能存在。
利用数据库的审计功能,DBA 可以根据审计跟踪的信息,重现导致数据库现有状况的一系列事件,找出非法存取数据的人、时间和内容等。
数据库安全性和完整性

完整性措施可以确保数据的准确性和一致性,防止数据被错误地修改或损坏。
安全性措施和完整性措施相互补充,共同维护数据库的整体可靠性。
01
02
03
04
数据库安全性和完整性之间的联系
数据库安全性和完整性之间的区别
01
安全性主要关注数据的保密性,即防止未授权访问和泄露。
数据完整性包括实体完整性、域完整性和参照完整性等不同类型,分别对应不同的约束条件和规则。
数据库完整性的定义
提高数据可靠性
通过维护数据库完整性,可以减少数据不一致和冲突的情况,提高数据的可靠性和可信度。
保障业务正常运行
数据库中存储着大量关键业务数据,数据库完整性的保持对于保障业务的正常运行至关重要。
数据修复
一旦发现数据完整性问题,及时进行修复。根据问题的性质,可能需要回滚事务、更新数据或删除无效数据等操作。
检查完整性约束
定期检查数据库表中的约束条件是否得到满足,如主键约束、外键约束等。
数据库完整性的检查和修复
03
数据库安全性和完整性之间的关系
数据库安全性和完整性是相互关联的,它们共同确保数据库中数据的可靠性和保密性。
数据资产保护
保障数据库的安全性和完整性是确保业务连续性的关键,一旦数据库遭到破坏或泄露,可能导致业务中断或遭受重大损失。
业务连续性
访问控制
数据加密
备份与恢复
安全审计
如何保障数据库的安全性和完整性
对敏感数据进行加密存储,即使数据被非法获取也无法轻易解密。
定期进行数据库备份,并制定详细的备份和恢复计划,以便在数据出现问题时能够及时恢复。
解释数据库安全性的基本原则如机密性完整性和可用性

解释数据库安全性的基本原则如机密性完整性和可用性数据库安全性是现代信息系统中至关重要的一个方面。
它涉及到确保数据库中存储的数据得到保护,防止未经授权的访问、修改或破坏。
为了实现数据库的安全性,有一些基本原则需要遵循,包括机密性、完整性和可用性。
1. 机密性机密性是指确保数据库中的数据只能被授权的人员或实体访问。
为了保障机密性,可以采取以下措施:- 访问控制:通过使用用户名和密码、访问权限控制列表等方法,只允许授权的用户或角色访问数据库。
- 加密:采用加密技术对数据库中的敏感数据进行加密,使得即使数据被非法获取,也无法得到其中的实际内容。
- 审计和监控:实时监控数据库的访问情况,及时发现异常行为,以保护数据的机密性。
2. 完整性完整性是指确保数据库中的数据的准确性和一致性。
为了保护数据库的完整性,可以采取以下措施:- 数据校验:对输入的数据进行验证,包括数据类型、长度、格式等方面的检查,防止错误的数据被插入数据库。
- 关系约束:使用关系型数据库管理系统提供的约束机制,定义实体之间的关系和约束条件,确保数据的一致性和完整性。
- 备份和恢复:定期对数据库进行备份,以应对意外情况,如数据损坏、误删除等,保障数据的完整性。
3. 可用性可用性是指数据库能够在需要时可靠地提供服务。
为了保证数据库的可用性,可以采取以下措施:- 容灾备份:设置数据库的容灾备份策略,包括故障转移、冗余备份等,以确保在硬件故障或灾难发生时,数据能够持续可用。
- 性能优化:对数据库进行性能调优,包括合理的索引设计、查询优化等,以提升数据库的访问速度和响应能力。
- 故障监测和恢复:实施自动化的故障监测和快速恢复机制,及时检测和处理数据库故障,减少停机时间。
综上所述,数据库安全性的基本原则涵盖了机密性、完整性和可用性。
通过严格控制访问权限、加密敏感数据、校验数据完整性、备份和恢复等措施,可以有效保护数据库中的数据并确保其安全性。
只有在遵循这些基本原则的前提下,才能够建立一个安全可靠的数据库系统。
数据库安全性和数据备份验证确保备份数据的完整性

数据库安全性和数据备份验证确保备份数据的完整性数据库是现代信息系统的核心组成部分,它存储和管理着大量的关键数据。
为了确保数据库的安全性和保证备份数据的完整性,数据库管理人员需要采取一系列的措施,包括数据库安全性和数据备份验证。
一、数据库安全性的重要性数据库安全性是指对数据库中存储的数据进行保护和控制的能力。
它包括数据的机密性、完整性和可用性。
保证数据库的安全性对于保护数据的隐私和防止数据的丢失具有重要意义。
以下是几种常见的数据库安全威胁:1. 数据泄露:黑客攻击、内部人员非法获取和误操作等都可能导致敏感数据泄露。
2. 数据破坏:病毒攻击、恶意删除数据等行为可能导致数据被破坏或无法正常使用。
3. 数据篡改:未经授权的修改数据库中的数据,导致数据的准确性和完整性受到破坏。
为了保证数据库的安全性,数据库管理人员需要采取以下措施:1. 访问控制:通过用户身份验证、权限管理等手段,限制用户对数据库的访问权限,防止未经授权的操作。
2. 数据加密:对敏感数据进行加密存储,即使数据被泄露,也无法被非法使用。
3. 审计日志:记录数据库的操作日志,及时发现异常操作和安全事件,并采取相应措施。
4. 强化网络安全:保护数据库服务器的物理安全,防止黑客通过网络入侵数据库系统。
二、数据备份验证的重要性数据备份验证是指对备份数据进行验证,确保备份数据的完整性和可用性。
在数据库系统中,数据备份是一项基本且重要的任务。
只有备份的数据完整无误,才能保证在数据丢失或损坏时能够及时恢复数据。
数据备份验证的主要目的是检查备份数据的完整性,确认备份的数据与原始数据一致。
以下是一些常用的数据备份验证方法:1. 校验和验证:通过计算数据的校验和,比对备份数据与原始数据的校验和是否一致,来验证备份数据的完整性。
2. 恢复测试:使用备份数据进行恢复操作,并对恢复后的数据进行验证,确保备份数据可用性。
3. 定期验证:定期对备份数据进行验证,确保备份数据的完整性和可用性。
数据库设计的基本原则

数据库设计的基本原则数据库设计是创建和维护数据库的过程,它是系统设计中的关键环节。
一个合理的数据库设计可以提高系统的效率、数据的安全性和可靠性。
数据库设计的基本原则如下:1.数据完整性数据完整性是指数据的正确性和一致性,它是数据库设计中最基本的原则。
数据完整性可以通过定义关系约束、主键约束、外键约束等来保证。
在数据库设计过程中,应该充分考虑数据的完整性,以避免数据错误和冗余。
2.数据独立性数据独立性是指数据和应用程序之间的独立性。
在数据库设计中,应该将数据和应用程序分开设计,以便于修改和维护。
数据独立性可以通过使用视图、存储过程等技术实现,从而提高系统的可维护性和可扩展性。
3.数据冗余性数据冗余性是指在一个系统中存储相同的数据。
数据冗余性不仅会浪费存储空间,而且容易导致数据的不一致性。
在数据库设计中,应该尽量避免数据冗余,以提高数据的一致性和安全性。
4.数据安全性数据安全性是指保护数据不被非法访问、修改或删除。
在数据库设计中,应该采取一系列的安全措施,如定义访问权限、加密存储、备份和恢复等,以确保数据的安全性。
5.数据可靠性数据可靠性是指系统能够正确地处理和存储数据。
在数据库设计中,应该采用合适的技术和方法,以确保数据的可靠性。
例如,定义适当的数据类型、采用合适的索引、优化查询语句等。
6.数据的易用性数据的易用性是指用户能够方便地访问和使用数据。
在数据库设计中,应该采用合适的数据模型和数据结构,以便于用户查询和操作数据。
例如,采用关系型数据库模型、定义合适的数据表和字段等。
7.数据的可扩展性数据的可扩展性是指系统能够方便地扩展和修改数据结构。
在数据库设计中,应该考虑到系统的未来发展,采用合适的数据模型和技术,以便于系统的扩展和升级。
8.数据的性能优化数据的性能优化是指通过优化数据库结构和查询语句,提高系统的性能和响应速度。
在数据库设计中,应该采用合适的索引、分区、缓存等技术,以提高系统的性能和响应速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 数据库的安全性与完整性数据库在各种信息系统中得到广泛的应用,数据在信息系统中的价值越来越重要,数据库系统的安全与保护成为一个越来越值得重要关注的方面。
数据库系统中的数据由DBMS统一管理与控制,为了保证数据库中数据的安全、完整和正确有效,要求对数据库实施保护,使其免受某些因素对其中数据造成的破坏。
一般说来,对数据库的破坏来自以下4个方面:(1)非法用户非法用户是指那些未经授权而恶意访问、修改甚至破坏数据库的用户,包括那些超越权限来访问数据库的用户。
一般说来,非法用户对数据库的危害是相当严重的。
(2)非法数据非法数据是指那些不符合规定或语义要求的数据,一般由用户的误操作引起。
(3)各种故障各种故障指的是各种硬件故障(如磁盘介质)、系统软件与应用软件的错误、用户的失误等。
(4)多用户的并发访问数据库是共享资源,允许多个用户并发访问(Concurrent Access),由此会出现多个用户同时存取同一个数据的情况。
如果对这种并发访问不加控制,各个用户就可能存取到不正确的数据,从而破坏数据库的一致性。
针对以上4种对数据库破坏的可能情况,数据库管理系统(DBMS)核心已采取相应措施对数据库实施保护,具体如下:(1)利用权限机制,只允许有合法权限的用户存取所允许的数据,这就是本章4.1节“数据库安全性”应解决的问题。
(2)利用完整性约束,防止非法数据进入数据库,这是本章4.2节“数据库完整性”应解决的问题。
(3)提供故障恢复(Recovery)能力,以保证各种故障发生后,能将数据库中的数据从错误状态恢复到一致状态,此即本章4.3节“故障恢复技术”的内容。
(4)提供并发控制(Concurrent Control)机制,控制多个用户对同一数据的并发操作,以保证多个用户并发访问的顺利进行,此即本章4.4节“并发控制”的内容。
4.1 数据库安全性4.1.1 数据库安全性问题的概述1.数据库安全问题的产生数据库的安全性是指在信息系统的不同层次保护数据库,防止未授权的数据访问,避免数据的泄漏、不合法的修改或对数据的破坏。
安全性问题不是数据库系统所独有的,它来自各个方面,其中既有数据库本身的安全机制如用户认证、存取权限、视图隔离、跟踪与审查、数据加密、数据完整性控制、数据访问的并发控制、数据库的备份和恢复等方面,也涉及到计算机硬件系统、计算机网络系统、操作系统、组件、Web服务、客户端应用程序、网络浏览器等。
只是在数据库系统中大量数据集中存放,而且为许多最终用户直接共享,从而使安全性问题更为突出,每一个方面产生的安全问题都可能导致数据库数据的泄露、意外修改、丢失等后果。
例如,操作系统漏洞导致数据库数据泄漏。
微软公司发布的安全公告声明了一个缓冲区溢出漏洞(/china/security/),Windows NT、Windows 2000、Windows 2003等操作系统都受到影响。
有人针对该漏洞开发出了溢出程序,通过计算机网络可以对存在该漏洞的计算机进行攻击,并得到操作系统管理员权限。
如果该计算机运行了数据库系统,则可轻易获取数据库系统数据。
特别是Microsoft SQL Server的用户认证是和Windows集成的,更容易导致数据泄漏或更严重的问题。
又如,没有进行有效的用户权限控制引起的数据泄露。
Browser/Server结构的网络环境下数据库或其他的两层或三层结构的数据库应用系统中,一些客户端应用程序总是使用数据库管理员权限与数据库服务器进行连接(如Microsoft SQL Server的管理员SA),在客户端功能控制不合理的情况下,可能使操作人员访问到超出其访问权限的数据。
在安全问题上,DBMS应与操作系统达到某种意向,理清关系,分工协作,以加强DBMS的安全性。
数据库系统安全保护措施是否有效是数据库系统的主要指标之一。
为了保护数据库,防止恶意的滥用,可以从低到高的五个级别上设置各种安全措施。
(1)环境级:计算机系统的机房和设备应加以保护,防止有人进行物理破坏。
(2)职员级:工作人员应清正廉洁,正确授予用户访问数据库的权限。
(3)OS级:应防止未经授权的用户从OS处着手访问数据库。
(4)网络级:由于大多数DBS都允许用户通过网络进行远程访问,因此网络软件内部的安全性至关重要。
(5)DBS级:DBS的职责是检查用户的身份是否合法及使用数据库的权限是否正确。
本章只讨论与数据库系统中的数据保护密切相关的内容。
2.数据库的安全标准目前,国际上及我国均颁布有关数据库安全的等级标准。
最早的标准是美国国防部(DOD)1985年颁布的《可信计算机系统评估标准》(Computer System Evaluation Criteria,TCSEC)。
1991年美国国家计算机安全中心(NCSC)颁布了《可信计算机系统评估标准关于可信数据库系统的解释》(Trusted Datebase Interpreation,TDI),将TCSEC扩展到数据库管理系统。
1996年国际标准化组织ISO又颁布了《信息技术安全技术——信息技术安全性评估准则》(Information Technology Security Techniques——Evaluation Criteria For It Secruity)。
我国政府于1999年颁布了《计算机信息系统评估准则》。
目前国际上广泛采用的是美国标准TCSEC(TDI),在此标准中将数据库安全划分为4大类,由低到高依次为D、C、B、A。
其中C级由低到高分为C1和C2,B级由低到高分为B1、B2和B3。
每级都包括其下级的所有特性,各级指标如下:(1)D级标准:为无安全保护的系统(2)C1级标准:只提供非常初级的自主安全保护。
能实现对用户和数据的分离,进行自主存取控制(DAC),保护或限制用户权限的传播。
(3)C2级标准:提供受控的存取保护,即将C1级的DAC进一步细化,以个人身份注册负责,并实施审计和资源隔离。
很多商业产品已得到该级别的认证。
(4)B1级标准:标记安全保护。
对系统的数据加以标记,并对标记的主体和客体实施强制存取控制(MAC)以及审计等安全机制。
一个数据库系统凡符合B1级标准者称之为安全数据库系统或可信数据库系统。
(5)B2级标准:结构化保护。
建立形式化的安全策略模型并对系统内的所有主体和客体实施DAC和MAC。
(6)B3级标准:安全域。
满足访问监控器的要求,审计跟踪能力更强,并提供系统恢复过程。
(7)A级标准:验证设计,即提供B3级保护的同时给出系统的形式化设计说明和验证,以确信各安全保护真正实现。
我国的国家标准的基本结构与TCSEC相似。
我国标准分为5级,从第1级到第5级依次与TCSEC标准的C级(C1、C2)及B级(B1B2B3)一致。
4.1.2 数据库的安全性机制在一般计算机系统中,安全措施是一级一级层层设置的,如图6-1所示。
用户标识和鉴别存取控制操作系统安全保护数据密码存储在图6.1的安全模型中,用户要进入计算机系统,系统首先根据输入的用户标识进行用户身份鉴定,只有合法的用户才准许进入计算机系统。
对已经进入系统的用户,DBMS要进行存取控制,只允许用户执行合法操作。
操作系统一级也会有自己的保护措施。
数据最后还可以以密码形式存储在数据库中。
在本节中对数据库的一些逻辑安全机制进行介绍,包括用户认证、存取权限,视图隔离、数据加密、跟踪与审查等内容作介绍。
1.用户认证数据库系统不允许一个未经授权的用户对数据库进行操作。
用户标识与鉴别,即用户认证,是系统提供的最外层安全保护措施。
其方法是由系统提供一定的方式让用户标识自己的名字或身份,每次用户要求进入系统时,由系统进行核对,通过鉴定后才提供机器使用权。
对于获得上机权的用户若要使用数据库时,数据库管理系统还要进行用户标识和鉴定。
用户标识和鉴定的方法有很多种,而且在一个系统中往往多种方法并用,以得到更强的安全性。
常用的方法是用户名和口令。
通过用户名和口令来鉴定用户的方法简单易行,但其可靠程度极差,容易被他人猜出或测得。
因此,设置口令法对安全强度要求比较高的系统不适用。
近年来,一些更加有效的身份认证技术迅速发展起来。
例如使用某种计算机过程和函数、智能卡技术,物理特征(指纹、声音、手图等)认证技术等具有高强度的身份认证技术日益成熟,并取得了不少应用成果,为将来达到更高的安全强度要求打下了坚实的理论基础。
2.存取控制数据库安全性所关心的主要是DBMS的存取控制机制。
数据库安全最重要的一点就是确保只授权给有资格的用户访问数据库的权限,同时令所有未被授权的人员无法接近数据,这主要通过数据库系统的存取控制机制实现。
存取控制是数据库系统内部对已经进入系统的用户的访问控制,是安全数据保护的前沿屏障,是数据库安全系统中的核心技术,也是最有效的安全手段。
在存取控制技术中,DBMS所管理的全体实体分为主体和客体两类。
主体(Subject)是系统中的活动实体,包括DBMS所管理的实际用户,也包括代表用户的各种进程。
客体(Object)是存储信息的被动实体,是受主体操作的,包括文件、基本表、索引和视图等。
数据库存取控制机制包括两个部分:一是定义用户权限,并将用户权限登记到数据字典中。
用户权限是指不同的用户对不同的数据对象允许执行的操作权限。
系统必须提供适当的语言定义用户权限,这些定义经过编译后存放在数据字典中,被称作系统的安全规则或授权规则。
二是合法性权限检查。
当用户发出存取数据库的操作请求后(请求一般应包括操作类型、操作对象、操作用户等信息),数据库管理系统查找数据字典,根据安全规则进行合法权限检查,若用户的操作请求超出了定义权限,系统将拒绝执行此操作。
存取控制包括自主型存取控制(DAC)和强制型存取控制(MAC)两种类型。
(1)自主存取控制(Discretionary Access Control,DAC)自主型存取控制是用户访问数据库的一种常用安全控制方法,较为适合于单机方式下的安全控制,大型数据库管理系统几乎都支持自主存取控制。
在自主型存取控制中,用户对于不同的数据对象有不同的存取权限,不同的用户对同一对象也有不同的权限,而且用户还可将其拥有的存取权限转授给其他用户。
用户权限由数据对象和操作类型这两个因素决定。
定义一个用户的存取权限就是要定义这个用户在哪些数据对象上进行哪些类型的操作。
在数据库系统中,定义存取权限称为授权。
自主型存取控制的安全控制机制是一种存取矩阵的模型,此模型由主体、客体与存/取操作构成,矩阵的列表示主体,矩阵的行表示客体,而矩阵中的元素表示存/取操作(如读、写、修改和删除等),如图6-2所示。
图6-2 授权存/取矩阵模型在这种存取控制模型中,系统根据对用户的授权构成授权存取矩阵,每个用户对每个信息资源对象都要给定某个级别的存取权限,例如读、写等。