初二数学十字相乘法因式分解
十字相乘因式分解法

十字相乘因式分解法摘要:一、引言二、十字相乘法的基本概念1.什么是十字相乘法2.十字相乘法的符号表示三、十字相乘法的应用1.分解单项式2.分解多项式四、十字相乘法的优势与局限1.优势2.局限五、结论正文:一、引言十字相乘法是一种常用的因式分解方法,尤其在初中阶段数学学习中占据着重要地位。
本文将对十字相乘法进行详细介绍,包括其基本概念、应用以及优势与局限。
二、十字相乘法的基本概念1.什么是十字相乘法十字相乘法是一种因式分解方法,主要用于分解二次多项式。
具体操作步骤如下:首先,将二次多项式的二次项系数a、常数项b和一次项系数c、d分别填入一个十字形的四个格子中(如下所示)。
```c da |b | a b|-------|-------| c d | c d```然后,根据a、b、c、d的值,利用乘法分配律进行计算,得出两个括号中的表达式。
最后,将这两个括号中的表达式相乘,即可得到原二次多项式的因式分解式。
2.十字相乘法的符号表示我们可以用如下符号表示十字相乘法:```(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd```其中,a、b、c、d为常数,x为变量。
三、十字相乘法的应用1.分解单项式假设我们有一个单项式:ax^2 + bx + c。
我们可以先提取出公因式x,得到x(ax + b) + c。
然后,我们可以使用十字相乘法分解ax + b,从而得到单项式的因式分解式。
2.分解多项式十字相乘法主要用于分解二次多项式,如ax^2 + bx + c。
我们可以根据二次项系数a、常数项b和一次项系数c、d的值,将多项式表示为(ax + b)(cx + d)的形式。
然后,利用乘法分配律计算括号中的表达式,最后将两个括号中的表达式相乘,即可得到原二次多项式的因式分解式。
四、十字相乘法的优势与局限1.优势十字相乘法具有较高的实用价值,尤其在初中阶段数学学习中。
它可以帮助学生快速、准确地分解二次多项式,从而简化问题,便于求解。
部编数学八年级上册专题31十字相乘法因式分解(解析版)含答案

专题31 十字相乘法因式分解1.下列式子中,因式分解正确的是( )A .2815(3)(5)x x x x -+=--B .2815(3)(5)x x x x -+=-+C .2815(3)(5)x x x x -+=++D .2815(3)(5)x x x x -+=+-【答案】A【分析】根据十字相乘法即可分解因式.【详解】解:2815(3)(5)x x x x -+=--.故选:A .【点睛】本题主要考查用十字相乘法分解因式,掌握分解因式的方法是解题的关键.2.将多项式x 2-2x -8分解因式,正确的是( )A .(x +2)(x -4)B .(x -2)(x -4)C .(x +2)(x +4)D .(x -2)(x +4)【答案】A【分析】利用十字相乘法分解即可.【详解】解:()()2-2-8=24x x x x +-,故选:A .【点睛】本题考查用十字相乘法进行因式分解,正确掌握十字相乘法是求解本题的关键.3.分解因式x 2-5x -14,正确的结果是( )A .(x -5)(x -14)B .(x -2)(x -7)C .(x -2)(x +7)D .(x +2)(x -7)【答案】D【分析】根据-14=-7×2,-5=-7+2,进行分解即可.【详解】解:x 2-5x -14=(x -7)(x +2),故选:D .【点睛】本题考查了因式分解-十字相乘法,熟练掌握因式分解-十字相乘法是解题的关键.4.把多项式256x x -+分解因式,下列结果正确的是( )A .(1)(6)x x -+B .(6)(1)x x -+C .(2)(3)x x ++D .(2)(3)x x --【答案】D【分析】利用公式2()()()x a b x ab x a x b +++=++即可得答案.【详解】解:256(2)(3)x x x x -+=--故选:D .【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握公式2()()()x a b x ab x a x b +++=++.5.如果x 2+kx ﹣10=(x ﹣5)(x +2),则k 应为( )A .﹣3B .3C .7D .﹣7【答案】A【分析】根据多项式乘以多项式把等号右边展开,即可得答案.【详解】解:(x -5)(x +2)=x 2-3x -10,则k =-3,故选:A .【点睛】本题主要考查了因式分解,关键是掌握x 2+(p +q )x +pq =(x +p )(x +q ).6.如果多项式x 2﹣5x +c 可以用十字相乘法因式分解,那么下列c 的取值正确的是( )A .2B .3C .4D .5【答案】C【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A 、252x x -+,不能用十字相乘法进行因式分解,不符合题意;B 、253x x -+,不能用十字相乘法进行因式分解,不符合题意;C 、()()25414x x x x -+=--,能用十字相乘法进行因式分解,符合题意;D 、255x x -+,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.7.因式分解22212x x --=_________【答案】()()223x x +-【分析】先提公因式再利用十字相乘法进行因式分解即可;【详解】解:()()22212=232x x x x ---+;故答案为:()()223x x +-.【点睛】本题考查分解因式.熟练掌握因式分解的方法是解题的关键.8.分解因式:2246a a --=______.【答案】()()231a a -+##()()213a a +-【分析】先提取公因数,再用十字相乘法分解因式即可;【详解】解:原式=()()()2223231a a a a --=-+;故答案为:()()231a a -+;【点睛】本题考查了十字相乘法分解因式:对于形如x 2+px +q 的二次三项式,若能找到两数a 、b ,使a •b =q 且a +b =p ,那么x 2+px +q = x 2+(a +b )x +a •b =(x +a )(x +b ).9.因式分解:289x x --=______________.【答案】()()19x x +-【分析】根据二次三项式的特征,采取十字相乘因式分解法直接分解即可.【详解】解:采取十字相乘因式分解法直接分解289x x --,289x x \--()()19x x =+-,故答案为:()()19x x +-.【点睛】本题考查十字相乘法因式分解,根据代数式特征选择恰当的因式分解方法是解决问题的关键.10.因式分解:2412x x --=_______.【答案】(6)(2)x x -+【分析】利用十字相乘法分解因式即可得.【详解】解:因为1262,624-=-´-+=-,且4-是x 的一次项的系数,所以2412(6)(2)--=-+x x x x ,故答案为:(6)(2)x x -+.【点睛】本题考查了因式分解,熟练掌握十字相乘法是解题关键.11.观察下列因式分解中的规律:①()()23212x x x x ++=++;②()()271025x x x x ++=++;③()()25623x x x x -+=--;④()()28422x x x x -=+--;利用上述系数特点分解因式26x x +-=__________.【答案】()()32x x +-【分析】利用十字相乘法分解因式即可.【详解】解:()()2632x x x x +-=+-,故答案为:()()32x x +-.【点睛】本题考查了十字相乘法因式分解,解题关键是明确二次项系数为1的十字相乘法公式:()()2()x a b x ab x a x b +++=++.12.分解因式:x 2﹣7xy ﹣18y 2=___.【答案】()()92x y x y -+【分析】根据十字相乘法因式分解即可.【详解】x 2﹣7xy ﹣18y 2()()92x y x y =-+,故答案为:()()92x y x y -+.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.三、解答题13.阅读材料:由多项式乘法:(x +a )(x +b )=x ²+(a +b )x +ab ,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x ²+(a +b )x +ab =(x +a )(x +b ).示例:分解因式:x 2+5x +6=x ²+(2+3)x +2×3=(x +2)(x +3). 请用上述方法分解因式:(1)x 2-3x -4;(2)x 2-7x +12.【答案】(1)()()14x x +-(2)()()34x x --【分析】(1)根据-4=1×(−4),1-4=-3即可分解因式;(2)根据-3×(-4)=12,-3-4=-7即可分解因式.(1)解:x 2−3x −4=x 2+(1-4)x +1×(−4)=(x +1)(x −4);(2)解:x 2−7x +12=x 2+(−3−4)x +(−3)×(−4)=(x −3)(x −4).【点睛】本题考查了十字相乘法,解题的关键是把常数项拆成两个数的积,而两个数的和正好等于一次项的系数.14.阅读理解题:由多项式乘法:()()()2x a x b x a b x ab ++=+++,将该式从右到左使用,即可进行因式分解的公式:()()()2x a b x ab x a x b +++=++.示例:分解因式:()()()2256232323x x x x x x ++=+++´=++.分解因式:()()()()222121212x x x x x x éùéùëû--=++-+´-=+û+ë.多项式()2x a b x ab +++的特征是二次项系数为1,常数项为两数之积,一次项系数为这两数之和.(1)尝试:分解因式:()()268____________x x x x ++=++;(2)应用:请用上述方法将多项式:256x x -+、256x x --进行因式分解.【答案】(1)2,4(2)()()23x x --,()()16+-x x 【分析】(1)利用阅读材料的方法解答,即可求解;(2)利用阅读材料的方法解答,即可求解;(1)268x x ++()22424x x =+++´()()24x x =++;故答案为:2,4(2)解:256x x -+()()()()22323x x éùéùëû=+-+-+-´-ëû()()23x x =--;256x x --()()21616x x éùéùëû=++-+-ë´û()()16x x =+-【点睛】本题主要考查了多项式的因式分解,理解阅读材料的因式分解方法是解题的关键.15.阅读材料:根据多项式乘多项式法则,我们很容易计算:2(2)(3)56x x x x ++=++;2(1)(3)23x x x x -+=+-.而因式分解是与整式乘法方向相反的变形,利用这种关系可得:256(2)(3)x x x x ++=++;223(1)(3)x x x x +-=-+.通过这样的关系我们可以将某些二次项系数是1的二次三项式分解因式.如将式子223x x +-分解因式.这个式子的二次项系数是111=´,常数项3(1)3-=-´,一次项系数2(1)3=-+,可以用下图十字相乘的形式表示为:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求和,使其等于一次项系数,然后横向书写.这样,我们就可以得到:223(1)(3)x x x x +-=-+.利用这种方法,将下列多项式分解因式:(1)2710x x ++=__________;(2)223x x --=__________;(3)2712y y -+=__________;(4)2718x x +-=__________.【答案】(1)()()25x x ++(2)()()31x x -+(3)()()34y y --(4)()()92x x +-【分析】(1)仿照题意求解即可;(2)仿照题意求解即可;(3)仿照题意求解即可;(4)仿照题意求解即可.(1)解:根据题意可知()()271025x x x x ++=++(2)解:根据题意可知()()22331x x x x --=-+(3)解:根据题意可知()()271234y y y y =---+(4)解:根据题意可知()()271892x x x x +-=+-【点睛】本题主要考查分解因式,正确理解题意是解题的关键.16.阅读下列材料:根据多项式的乘法,我们知道,()()225710x x x x --=-+.反过来,就得到2710x x -+的因式分解形式,即2710(2)(5)x x x x -+=--.把这个多项式的二次项系数1分解为11´,常数项10分解为(2)(5)-´-,先将分解的二次项系数1,1分别写在十字交叉线的左上角和左下角;再把2-,5-分别写在十字交叉线的右上角和右下角,我们发现,把它们交叉相乘,再求代数和,此时正好等于一次项系数7-(如图1).像上面这样,先分解二次项系数,把它们分别写在十字交叉线的左上角和左下角;再分解常数项,把它们分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其正好等于一次项系数,我们把这种借助“十字”方式,将一个二次三项式分解因式的方法,叫做十字相乘法.例如,将二次三项式243x x +-分解因式,它的“十字”如图2:所以,()()243143x x x x +-=+-.请你用十字相乘法将下列多项式分解因式:(1)256x x ++= ;(2)2273x x -+= ;(3)()222x m x m +--= .【答案】(1)(x +2)(x +3)(2)(2x -1)(x -3)(3)(x +2)(x -m )【分析】根据阅读材料中的十字相乘法即可得出答案.(1)解:由上图可知:x 2+5x +6=(x +2)(x +3),故答案为:(x +2)(x +3);(2)解:由上图可知:2x 2-7x +3=(2x -1)(x -3),故答案为:(2x -1)(x -3);(3)解:由上图可知:x2+(2-m)x-2m=(x+2)(x-m),故答案为:(x+2)(x-m).【点睛】本题考查了十字相乘法因式分解,关键是读懂材料掌握十字相乘的基本步骤.17.探究:如何把多项式x2+8x+15因式分解?(1)观察:上式能否可直接利用完全平方公式进行因式分解?答:________;(2)(阅读与理解):由多项式乘法,我们知道(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左地使用,即可对形如x2+(a+b)x+ab的多项式进行因式分解,即:x2+(a+b)x+ab=(x+a)(x+b)此类多项式x2+(a+b)x+ab的特征是二次项系数为1,常数项为两数之积,一次项系数为这两数之和.猜想并填空:x2+8x+15=x2+[(_____)+(_____)]x+(___)×(___)=(x+____)(x+_____)(3)上面多项式x2+8x+15的因式分解是否符合题意,我们需要验证.请写出验证过程.(4)请运用上述方法将下列多项式进行因式分解:x2-x-12【答案】(1)不能;(2)3;5;3;5;3;5;(3)x2+8x+15;(4)(x-4)(x+3)【分析】(1)根据完全平方公式的结构特征进行判断即可;(2)将x2+8x+15=x2+(3+5)x+(3×5)即可得出答案;(3)根据整式乘法计算(x+3)(x+5)的结果即可;(4)将x2+[3+(-4)]x+[3×(-4)]即可得出答案.【详解】解:(1)因为x2+8x+16=(x+4)2,所以x2+8x+15不是完全平方公式,故答案为:不能;(2)∵x2+8x+15=x2+(3+5)x+(3×5)∴x2+8x+15=x2+(3+5)x+(3×5)=(x+3)(x+5),故答案为:3,5,3,5,3,5;(3)∵(x+3)(x+5)=x2+5x+3x+15=x2+8x+15,∴x2+8x+15=(x+3)(x+5)因此多项式x2+8x+15的因式分解是符合题意的;(4)x2-x-12=x2+[3+(-4)]x+[3×(-4)]=(x+3)(x-4).【点睛】本题考查了十字相乘法分解因式,掌握x 2+(a +b )x +ab =(x +a )(x +b )的结构特征是正确应用的前提.18.由多项式乘法:(x +a )(x +b )=x 2+(a +b )x +ab ,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x 2+(a +b )x +ab =(x +a )(x +b ).示例:分解因式:x 2+5x +6=x 2+(2+3)x +2×3=(x +2)(x +3).(1)尝试:分解因式:x 2+6x +8=(x +____)(x +____);(2)应用:请用上述方法解方程:①x 2﹣3x ﹣4=0;②x 2﹣7x +12=0.【答案】(1)2,4;(2)①1x =-或4x =;②3x =或4x =【分析】(1)类比题干因式分解方法求解可得;(2)①利用十字相乘法将左边因式分解为()()41x x -´+后求解可得;②利用十字相乘法将左边因式分解()()43x x -´-后求解可得.【详解】解:(1)2268(24)24(2)(4)x x x x x x ++=+++´=++,故答案为:2,4;(2)①2340x x Q --=,2(41)(4)10x x +-++-´=,(4)(1)0x x \-+=,则10x +=或40x -=,解得:1x =-或4x =,②27120x x -+=Q ,2(34)(3)(4)0x x +--+-´-=,(3)(4)0x x \--=,则30x -=或40x -=,解得:3x =或4x =.【点睛】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法中的因式分解法.19.阅读材料:解方程22350x x +-=我们可以按下面的方法解答:(1)分解因式2235x x +-,①竖分二次项与常数项:2x x x =×,()()3557-=-´+.②交叉相乘,验一次项:57x x -+752x x x Þ-=.③横向写出两因式:()()223557x x x x +-=-+.(2)根据乘法原理:若0ab =,则0a =或0b =,则方程22350x x +-=可以这样求解22350x x +-=方程左边因式分解得()()570x x -+=所以原方程的解为15=x ,27x =-.试用上述方法和原理解下列方程:(1)2560x x ++=;(2)2670x x --=.【答案】(1)12x =-,23x =-;(2)11x =-,27x =【分析】(1)利用已知结合十字相乘法分解因式得出即可;(2)利用已知结合十字相乘法分解因式得出即可.【详解】解:(1)2560x x ++=,()()230x x ++=,20,30x x +=+=,12x =-,23x =-.(2)2670x x --=,()()170x x +-=,10,70x x +=-=,11x =-,27x =.【点睛】本题主要考查了十字相乘法分解因式的应用,解题的关键是正确利用十字相乘法分解因式.20.阅读下列材料:材料1:将一个形如x 2+px +q 的二次三项式因式分解时,如果能满足q =mn 且p =m +n ,则可以把x 2+px +q 因式分解成(x +m )(+n )的形式,如x 2+4x +3=(x +1)(x +3);x 2﹣4x ﹣12=(x ﹣6)(x +2)材料2:因式分解:(x +y )2+2(x +y )+1解:将“x +y ”看成一个整体,令x +y =A ,则原式=A 2+2A +1=(A +1)2,再将“A ”还原,得原式=(x +y +1)2上述解题方法用到“整体思想”,“整体思想”是数学解题中常见的一种思想方法.请你解答下列问题:(1)根据材料1,把x 2﹣6x +8分解因式;(2)结合材料1和材料2,完成下面小题:分解因式:(x ﹣y )2+4(x ﹣y )+3【答案】(1)()()42x x --;(2)()()31x y x y -+-+【分析】(1)根据材料1的方法,满足()()()()842,642=-´--=-+-,进而进行因式分解即可;(2)根据材料1的方法,满足313,413=´=+,根据材料2将“x y -” 看成一个整体,进而因式分解即可【详解】(1)()()()()842,642=-´--=-+-Q \x 2﹣6x +8()()42x x =--(2)令x y A -=,313,413=´=+Q 则(x ﹣y )2+4(x ﹣y )+3(3)(1)A A =++\(x ﹣y )2+4(x ﹣y )+3=()()31x y x y -+-+【点睛】本题考查了因式分解,运用整体思想是解题的关键.。
初二下册因式分解公式法、十字相乘法

因式分解的常用方法第一部分:方法介绍提取公因式法、运用公式法、分组分解法和十字相乘法. 一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.【知识要点】1.运用公式法:如果把科法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
2.乘法公式逆变形(1)平方差公式:))((22b a b a b a -+=-(2)完全平方公式:222222)(2,)(2b a b ab a b a b ab a -=+-+=++ 3.把一个多项式分解因式,一般可按下列步骤进行: (1)如果多项式的各项有公因式,那么先提公因式;(2)如果多项式没有公因式,那么可以尝试运用公式来分解; (3)如果上述方法不能分解,那么可以尝试用。
思维导航:运用公式法是分解因式的常用方法,运用公式法分解因式的思路主要有以下几种情况: 一、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。
例1、 分解因式:(1)x 2-9 (2)9x 2-6x+1二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。
例2、 分解因式:(1)x 5y 3-x 3y 5 (2)4x 3y+4x 2y 2+xy 3三、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公式的形式,然后再利用公式法分解.例3、 分解因式:(1)4x 2-25y 2 (2)4x 2-12xy 2+9y 4四、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因式,应注意分解到每个因式都不能再分解为止.例4、 分解因式:(1)x 4-81y 4 (2)16x 4-72x 2y 2+81y 4五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。
八年级数学十字相乘法因式分解

八年级数学十字相乘法因式分解人教四年制【同步教育信息】一. 本周教学内容:1. pq x q p x +++)(2型式子的因式分解。
2. 十字相乘法因式分解。
二. 教学重点、难点: 1. 重点:pq x q p x +++)(2型式子因式分解。
2. 难点:常数项分解成两个数时,如何确定符号。
三. 教学要点:1. q p x q p x ⋅+++)(2型二次三项式子的特点是: (1)二次项的系数是1。
(2)常数项是两个数之积。
(3)一次项系数是常数的两个因数之和。
对这个式子先去括号,得到:pq x q p x +++)(2)()(22pq qx px x pq qx px x +++=+++= ))(()()(q x p x p x q p x x ++=+++=利用此式的结果可以直接将某些二次项系数是1的二次三项式分解因式。
2. 十字相乘法:将))((2211c x a c x a ++计算得:211221221211221221)(c c x c a c a x a a c c x c a x c a x a a +++⋅=+++=反之:))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++利用这个等式,我们可以用下面的写法,尝试把某些二次三项式如c bx ax ++2分解因式,先把a 分解成21a a a =,把c 分解成21c c c =,并且排列如下:2211c a c a这里按斜线交叉相乘的积的和就是1221c a c a +,如果它正好等于二次三项式c bx ax ++2中一次项的系数b ,那么c bx ax ++2就可以分解成))((2211c x a c x a ++,其中1a 、1c 是上图中上面一行的两个数,2a 、2c 是下面一行的两个数。
例如:把二次三次式101132++x x 分解因式。
我们知道:313⨯=,5210⨯=写成5321后发现113251=⨯+⨯,所以)53)(2(101132++=++x x x x【典型例题】[例1] 把下列各式分解因式。
7 初二数学 十字相乘法----因式分解

• 当常数项为正数时,拆分成的两个有理数一定同号, 符号与一次项系数相同。
• 当常数项为负数时,拆分成的两个有理数异号;绝对值 大的数与一次项系数同号。
17
18
拓展引申1
把下列各式分解因式
(1)(x+y)2-4(x+y)-5 =(x+y+1)(x+y-5)
(2) y2-2y(x-1)-15(x-1)2 =[y+3(x-1)][y-5 (x-1)]
=(y+3x-3)(y-5 x+5)
13
分解下列因式
(1)(m+n)2-5(m+n)+6 =(m+n-2)(m+n-3)
(2)x2+(2k+2)+2k+1 =(x+2k+1)(x+1)
14
拓展引申2
首项系数非1的整系数二次三项式的因式分解
1.6x2 7x 2 (2x 1)(3x 2)
2.3x2 11x 10 (3x 5)(x 2)
总结
ax2 bx c (a1x c1)(a2 x c2 )
a a1
x
4
⑵ y2- 8y+15
=(y-3)( y-5)
y
-3
y -5
4
例1把下列各式分解因式
⑶ x2 – 3x-4
=(x+1)(x-4)
方法:
➢ 先把首项和尾项拆分成两个因式相乘 ➢ 交叉相乘再相加等于中间项
(不仅要验证绝对值,更要验证符号)
5
例1把下列各式分解因式
⑶ x2 – 3x-4
=(x+1)(x-4)
1
北师大版八年级数学下册专题复习思维特训(十二) 因式分解——十字相乘法

思维特训(十二)因式分解——十字相乘法方法点津·十字相乘法(1)对于二次三项式ax2+bx+c,将a和c分别分解成两个因数的乘积,a=a1·a2 , c=c1·c2,且满足b=a1c2+a2c1ax2+bx+c=(a1x+c1)(a2x+c2).(2)二次三项式x2+px+q的分解:p=a+b,q=ab x2+px+q=(x+a)(x+b).(3)理解:把x2+px+q分解因式时,如果常数项q是正数,那么把它分解成两个同号的因数,它们的符号与一次项系数p的符号相同;如果常数项q是负数,那么把它分解成两个异号的因数,其中绝对值较大的因数与一次项系数p的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p.典题精练·1.分解因式:x2+3x+2.分析:(+1)×(+2)=+2常数项(+1)+(+2)=+3一次项系数解:x2+3x+2=(x+1)(x+2).按以上方法分解因式:x2+14x+48.2.在对多项式进行因式分解时,有一种方法叫“十字相乘法”.如分解二次三项式:2x2+5x-7,具体步骤:①首先把二次项的系数2分解为两个因数的积,即2=2×1,把常数项-7也分解为两个因数的积,即-7=-1×7;②按图12-TX-1所示的方式书写,采用交叉相乘再相加的方法,使之结果恰好等于一次项的系数5,即2×(-1)+1×7=5.图12-TX-1③这样,就可以按图12-TX-1中虚线所指,对2x2+5x-7进行因式分解了,即2x2+5x-7=(2x+7)(x-1).请你仔细体会上述方法,并利用此法对下列二次三项式进行因式分解:(1)x2+4x+3;(2)2x2+3x-20.3.阅读下面的材料并完成填空:因为(x+a)(x+b)=x2+(a+b)x+ab,所以,对于二次项系数为1的二次三项式x2+px +q的因式分解,就是把常数项q分解成两个数的积且使这两数的和等于p,即如果有a,b 两数满足ab=q,a+b=p,则有x2+px+q=(x+a)(x+b).如分解因式:x2+5x+6.解:因为2×3=6,2+3=5,所以x2+5x+6=(x+2)(x+3).再如分解因式:x2-5x-6.解:因为-6×1=-6,-6+1=-5,所以x2-5x-6=(x-6)(x+1).阅读完上述文字后,你能完成下面的题目吗?试试看!因式分解:(1)x2+7x+12;(2)x2-7x+12;(3)x2+4x-12;(4)x2-x-12.4.“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的关于x,y的二次三项式,关键是把x2项的系数a分解成两个因数a1,a2的积,即a=a1·a2,把y2项的系数c分解成两个因数c1,c2的积,即c=c1·c2,并使a1·c2+a2·c1正好等于xy项的系数b,那么可以直接写出结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y).例:分解因式:x2-2xy-8y2.解:如图12-TX-2①,其中1=1×1,-8=(-4)×2,而-2=1×2+1×(-4),∴x2-2xy-8y2=(x-4y)(x+2y).而对于形如ax2+bxy+cy2+dx+ey+f的关于x,y的二元二次式也可以用十字相乘法来分解,如图12-TX-2②,将a分解成m,n的乘积作为一列,c分解成p,q的乘积作为第二列,f分解成j,k的乘积作为第三列.若mq+np=b,p k+q j=e,m k+n j=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k).图12-TX-2例:分解因式:x2+2xy-3y2+3x+y+2.解:如图12-TX-2③,其中1=1×1,-3=(-1)×3,2=1×2,而2=1×3+1×(-1),1=(-1)×2+3×1,3=1×2+1×1,∴x2+2xy-3y2+3x+y+2=(x-y+1)(x+3y+2).请同学们通过阅读上述材料,完成下列问题:(1)分解因式:①6x2-17xy+12y2=__________;②2x2-xy-6y2+2x+17y-12=__________;③x2-xy-6y2+2x-6y=__________.(2)若关于x,y的二元二次式x2+7xy-18y2-5x+my-24可以分解成两个一次因式的积,求m的值.5.分解因式:(1)5x2-17x+6;(2)20x2-43xy+14y2;(3)(m2-2m-3)x2-(m+5)x-2;(4)(x2-5x+4)(x2-x-2)-72.详解详析1.解:x2+14x+48=(x+6)(x+8).2.解:(1)x2+4x+3=(x+3)(x+1).(2)2x2+3x-20=(x+4)(2x-5).3.解:(1)x2+7x+12=(x+3)(x+4).(2)x2-7x+12=(x-3)(x-4).(3)x2+4x-12=(x+6)(x-2).(4)x2-x-12=(x-4)(x+3).4.解:(1)①(3x-4y)(2x-3y)②(x-2y+3)(2x+3y-4)③(x-3y)(x+2y+2)(2)如图:m=3×9+(-8)×(-2)=43,或m=9×(-8)+3×(-2)=-78.5.解:(1)5x2-17x+6=(5x-2)(x-3).(2)20x2-43xy+14y2=(4x-7y)(5x-2y).(3)(m2-2m-3)x2-(m+5)x-2=(m-3)(m+1)x2-(m+5)x-2=[(m-3)x-2][(m+1)x+1].(4)(x2-5x+4)(x2-x-2)-72=(x-4)(x-1)(x-2)(x+1)-72=[(x-4)(x+1)][(x-1)(x-2)]-72=(x2-3x-4)(x2-3x+2)-72.设x2-3x=t,则(t-4)(t+2)-72=t2-2t-80=(t-10)(t+8)=(x2-3x-10)(x2-3x+8)=(x-5)(x+2)(x2-3x+8).。
八年级数学十字相乘法因式分解

手机在线电影 现在手机看电视已经成为每个人生活的一部分,哪呢怎么才能离线的观看自己喜欢看的电视呢? 手机在线电影 手机怎么下载首先,我们要在手机面板上,找到我们需要的软件,这样我们才可以完成下面的每一个步奏;进入之后,我们可以看到右上角有一个下载的图标,我们点击这个图标就可以进入了;进入之后,我们可以按照自己的意愿,来操作和下载,我们需要的每一个剧情,可以按 手机在线电影 电脑安装影视客户端观看免费电影和电视剧,不需付任何费用,高清1080p电影和电视剧 手机在线电影 Window可安装客户端Mac也可安装客户端 手机在线电影 1、打开任何浏览器,输入网址访问,选择客户端去,进行下载客户端2、根据你的电脑系统来选择哪个安装包,有Window客户端安装程序和Mac客户端安装程序 手机在线电影 3、首页操作简化,左上角菜单有:热门影片、推荐影片、电影、电视剧和动漫。除了这点,你也可以使用搜索功能,去找你想要的片子~4、观看任何影片时,你可以调整360、720或1080高清。尽量选择1080真的非常高清~ 手机在线电影 在我们使用腾讯看剧的时候,我们往往不会只观看一个剧目,那么我们在观看多个电视剧的时候,我们要怎么快速找到自己要长时间追的电视剧呢?办法自然是有的,我们可以选择将电视剧添加到我的收藏里面,这样我们下次观看的时候,直接在我的收藏里面找到该电视剧即可 手机在线电影 电脑:Windows10腾讯:V201010.29 手机在线电影 1、首先呢,我们就是需要打开腾讯2、然后我们打开自己想看的电视剧,进入到播放界面3、找到上方的工具栏,找到一个爱心形状4、点击一下,便可将正在观看的电视剧添加到收藏了 手机在线电影 暴风影音怎么下载电视剧?暴风影音下载电视剧方法,在使用暴风影音时很多人想下载电视剧但是不知道怎么下载,下面小编就和大家分享暴风影音怎么下载电视剧?暴风影音下载电视剧方法 手机在线电影 暴风影音 手机在线电影 暴风影音怎么下载电视剧1、在下载电视剧之前你需要等登陆暴风影音的账号,如果没那就先注册暴风影音账号再登陆。2、登陆之后点击暴风影音界面的《电视剧》再找到自己想要下载的电视剧进入《影片详情》界面。3、打开电视剧的影片详情界面后点击《下载》图标,再选择的
华师大八上数学 12.5.4 因式分解--十字相乘法

怎样形式的多项式才能用这种方法呢?
1、二次三项式且二次项,一次项和常数项 都存在。
2、二次项系数为“1”。
十字相乘法
2 x 1 x 2 3x x 3 xx
22
步骤: ①竖分二次项与常数项 ②交叉相乘,积相加 ③检验确定,横写因式
x x
2
1
2
x
2 x
3x
3
6 x
当二次项系数和常 数项符号都是正的 时候,可以分解为 两个与一次项系数 同号的因数。
x
合 并
7 x
利用十字相乘法的难点在于如何分解二次项系数和常 数项,再怎样交叉相乘,因此在分解的时候,要仔细 观察,并多次尝试,使相加的结果等于一次项系数。
针对性练习:将下列各式分解因式
1 2 3
5 y 17 y 6
2
5 y 2 y 3 m 3 2m 5 2 3a 1 a 3
2m 11m 15
2
6a 20a 6
2
例2、利用十字相乘法分解因式:
1
2x 3x 9
2
解:原式
2x 3 x 3
16a b
3 3
3 x
2
y
2 2
4x y
探究:怎样将 x 3x 2 分解因式呢? 能用提公因式或公式法吗?
2
计算:
x 1 x 2
2 2 2
x 2x x 2 x 2 1 x 2Байду номын сангаас x 3x 2
回顾: x a x b x a b x ab
1
(
a)
1
(12) [ -4 ]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即:x +(p+q)x+pq=(x+p)(x+q) + + + +
x x p q
2
x 2 px+qx=(p+q)x pq + +
十字相乘法: 十字相乘法: 对于二次三项式的分解因式, 对于二次三项式的分解因式, 借用一个十字叉帮助我们分解因式, 借用一个十字叉帮助我们分解因式, 这种方法叫做十字相乘法。 这种方法叫做十字相乘法。
2
1 -4+1=-3 + - 1 -2 (2x+y) (x-2y) -1 2
222(2x+y)源自- (x- 2 y)=3x+4y + - +
更多资源 更多资源
1 -5 6 1 -5+6=1 + -5 1 2 -1 -1-10=-11 - -
2
2
2
练习: 练习:将下列各式分解因式 2 1、 7x -13x+6 、 + 答案(7x+ 答案 +6)(x+1) + 2、 -y -4y+12 答案- (y+6)(y-2) 、 + 答案- + - 3、 15x +7xy-4y 答案 (3x-y)(5x+4y) 、 - - +
例4 将 2(6x +x) -11(6x +x) +5 分 解因式 2 2 2 解:2(6x +x)-11(6x +x) +5 - 2 2 = [(6x +x) -5][2(6x +x)-1] - 2 2 = (6x +x-5) (12x +2x-1 ) - - 2 = (6x -5)(x +1) (12x +2x-1 ) -
孝感市文昌中学 程世富
在分组分解法中, 在分组分解法中,我们学习 2 了形如 x +(p+q)x+pq 的式子 + + 的因式分解问题。 的因式分解问题。 2 即:x +(p+q)x+pq=(x+p)(x+q) + + + + 实际在使用此公式时,需要把 实际在使用此公式时, 一次项系数和常数项进行分拆, 一次项系数和常数项进行分拆,在 试算时,会带来一些困难。 试算时,会带来一些困难。 下面介绍的方法,正好解决了 下面介绍的方法, 这个困难。更多资源 这个困难。更多资源
2 2 2 2
4、 10(x +2) -29(x+2) +10 、 +
答案 (2x-1)(5x+8) - +
5、 x -(a+1) x+a 答案 (x-1)(x-a) 、 + + - -
2
例5 将 2x -3xy-2y +3x+4y-2 分 - + - 解因式 2 2 解: 2x -3xy-2y +3x+4y-2 - + - 2 2 =(2x -3xy-2y )+3x+4y-2 - + + - =(2x +y)(x-2y)+3x+4y-2 - + + - =(2x +y-1)(x-2y+2) - - +
例1 分解因式 x -6x+8 + x 2 解:x -6x+8 + x =(x-2)(x-4) - -
练习:分解因式 (x-y) +(x-y) -6 练习: - -
2
2
-2 -4
-4x-2x=-6x - -
对于一般地二次三项式ax+bx+c (a≠0) 对于一般地二次三项式 + + 此法依然好用。 此法依然好用。
2
例2 分解因式 3x -10x+3 + 2 x 解:3x -10x+3 + =(x-3)(3x-1) - - 3x
2
2
-3
-1 -9x-x=-10x - - +3
例3 分解因式 5x -17x-12 - 解:5x -17x-12 - =(5x+3)(x-4) + -
2
5x
-4 x -20x+3x=-17x + -