中国基因工程药物研究进展
生物制药技术的进展及未来发展趋势

生物制药技术的进展及未来发展趋势引言生物制药技术是指利用生物学和工程学的原理和方法,通过对生物体内的生物大分子(如蛋白质和核酸)进行研究和应用,开发和生产用于预防、诊断和治疗疾病的药物。
随着科技的不断进步,生物制药技术取得了显著的进展,并在医药领域发挥着重要的作用。
本文将介绍生物制药技术的进展以及未来的发展趋势。
生物制药技术的进展1. 基因工程技术的应用:基因工程技术的发展使得生物制药技术得以快速发展。
通过基因工程技术,科学家们能够将人类需要的基因插入到细胞中,使细胞产生特定的蛋白质,从而生产出具有治疗作用的药物。
2. 重组蛋白技术的突破:重组蛋白技术是指通过基因工程技术,将人类需要的基因插入到细胞中,使细胞能够合成具有特定功能的蛋白质。
这种技术的突破使得生产大规模的重组蛋白变得可能,从而满足了大量患者的需求。
3. 单克隆抗体技术的发展:单克隆抗体技术是指通过克隆技术获得一种特定的抗体,并使其能够大规模生产。
这种技术的发展使得抗体药物的研发和生产更加高效和可行,为疾病的治疗提供了新的选择。
生物制药技术的未来发展趋势1. 个性化药物的发展:随着基因组学和生物信息学的迅速发展,个性化药物的研发将成为生物制药技术的重要方向。
个性化药物是指根据个体的基因信息和生理特征,为患者提供个性化的治疗方案和药物。
这将提高治疗效果和减少药物副作用。
2. 基因编辑技术的应用:基因编辑技术如CRISPR-Cas9的发展将为生物制药技术带来新的突破。
通过基因编辑技术,科学家能够直接修改细胞的基因序列,实现对疾病基因的修复或抑制,从而开发出更加有效的治疗方法和药物。
3. 仿生药物的研究:仿生药物是指通过模仿生物大分子在生物体内的作用机制,开发出具有类似效果的药物。
仿生药物的研究将为生物制药技术的发展带来新的思路和方法。
结论生物制药技术在过去几十年中取得了巨大的进展,为医药领域的发展做出了重要贡献。
未来,随着基因工程技术、基因编辑技术和仿生药物的不断发展,生物制药技术将继续迎来新的突破和进展。
生物制药技术的最新进展报告

生物制药技术的最新进展报告近年来,生物制药技术在医药领域取得了许多重大突破。
生物制药是利用生物技术手段制造药物的过程,通过对生物体的遗传物质和生理活动的研究,实现了药物的高效生产和治疗的个体化。
下面将介绍生物制药技术的最新进展。
1. 基因工程与重组蛋白基因工程是生物制药技术的核心,通过重组DNA技术,将所需基因导入表达宿主,使其生产特定蛋白质。
近年来,基因工程在重组蛋白的生产方面得到了极大的发展。
重组蛋白是从非人类源获得,常用于治疗癌症、血液疾病、免疫系统疾病等。
通过基因工程,我们可以大规模生产这些蛋白质,为患者提供更好的治疗选择。
2. 基因编辑技术的应用基因编辑技术是指通过直接修改DNA序列来改变生物体的遗传信息。
其中,CRISPR-Cas9系统是最常用的基因编辑工具。
近年来,基因编辑技术在生物制药中的应用一直处于快速发展的阶段。
通过基因编辑技术,我们可以精确地修改疾病相关基因,实现个体化治疗。
例如,利用基因编辑技术,科学家们可以修复遗传病患者的突变基因,为患者带来病情改善的希望。
3. 细胞疗法的突破细胞疗法是一种利用活细胞作为治疗手段的技术,通过改变细胞的特性和功能来治疗疾病。
目前,细胞疗法已成为生物制药领域的重要研究方向之一。
干细胞疗法和CAR-T细胞疗法是细胞疗法的两个热点领域。
干细胞疗法可以通过向患者输注干细胞来修复受损器官或组织,为治疗退行性疾病提供新的方案。
CAR-T细胞疗法则是通过改造患者自身的T细胞,使其具有针对癌细胞的特异性杀伤能力,从而实现肿瘤的精准治疗。
4. 个体化药物研发在生物制药技术的最新进展中,个体化药物研发是一个重要的方向。
个体化药物指的是根据患者的基因组、表型等信息,开发适合特定患者的药物。
通过个体化治疗,药物的疗效和安全性可以得到更好的保证。
现代技术的发展,如基因测序和生物信息学分析,为个体化药物研发提供了强有力的支持。
个体化药物的研发将为患者提供更精准、有效的治疗方案。
基因工程大肠杆菌发酵生产重组人胰岛素的研究

《基因工程大肠杆菌发酵生产重组人胰岛素的研究》一、引言基因工程技术的发展为生物医药领域带来了革命性的变革,其中重组DNA 技术作为一种能够改变生物体基因组的技术,为生产重组蛋白素(包括重组人胰岛素)提供了可行性。
本文将从深度和广度两个方面来探讨基因工程大肠杆菌发酵生产重组人胰岛素的研究。
二、基因工程大肠杆菌发酵生产重组人胰岛素的原理在基因工程大肠杆菌发酵生产重组人胰岛素的研究中,首先需要获取重组人胰岛素的基因序列,然后以质粒或病毒为载体将其转染至大肠杆菌的体内,经过培养和发酵,大肠杆菌体内合成重组人胰岛素,并通过纯化后得到最终的产品。
三、基因工程大肠杆菌发酵生产重组人胰岛素的研究进展1. 基因克隆技术的应用基因克隆技术的应用是基因工程大肠杆菌发酵生产重组人胰岛素的关键技术之一。
利用限制酶切剪切 DNA,然后重组连接,将重组的DNA 导入质粒内,再将质粒导入大肠杆菌细胞内,实现外源基因的表达。
2. 基因工程大肠杆菌的选择为了高效地生产重组人胰岛素,研究者需要筛选高产重组蛋白素的大肠杆菌菌株,并进行相关的改造以提高其产量。
3. 发酵工艺的优化发酵工艺的优化对于提高重组人胰岛素的产量至关重要。
包括对培养基成分、厌氧发酵条件、发酵时间等因素的优化。
四、基因工程大肠杆菌发酵生产重组人胰岛素的意义基因工程大肠杆菌发酵生产重组人胰岛素具有重要的生物医药意义。
大肠杆菌是一种广泛存在于自然界中的细菌,其发酵生产成本低、抗污染能力强,适用于大规模工业化生产。
另重组人胰岛素与天然胰岛素具有相同的生物活性,可以作为治疗糖尿病的药物,在临床上有着重要的应用前景。
五、个人观点和理解基因工程大肠杆菌发酵生产重组人胰岛素的研究是基因工程技术的一个重要应用方向,其有着较高的生产效率和较低的成本,为生物医药领域带来了巨大的潜力和机遇。
但是,需要注意的是,基因工程技术在应用过程中也存在一些伦理和社会问题,例如生物安全性、环境影响等方面,需要引起足够的重视。
生物制药领域中基因工程技术研究进展

生物制药领域中基因工程技术研究进展随着生物技术的不断发展和进步,基因工程技术已成为生物制药领域的重要研究方向之一。
基因工程技术以重组DNA技术为主要手段,将人工合成的DNA序列导入细胞中,从而改变细胞代谢途径和遗传信息,达到生产特定蛋白质的目的。
基因工程技术的发展不仅提升了生物制药的品质和效率,也拓展了生物制药的研究领域,其中可分为基础研究和应用研究两个方面。
一、基础研究方面1. 基因编辑基因编辑是指通过特定技术手段,在基因组准确位置上创造、修复或抑制特定的突变或蛋白质功能缺陷。
基因编辑技术适用于开发新型药物和治疗疾病。
如利用CRISPR/Cas9技术,将一段许多地区无法使用的DNA修复,恢复了基因功能,从而达到治疗疾病的目的。
2. 基因表达分析基因表达分析是基于细胞或组织水平,对基因表达情况的研究,并探讨了基因调控机制和信号通路。
该研究领域为基于细胞、信号传递通路和病理学的治疗研究提供了铺技术基础。
利用基因表达分析技术,可以开发特定的生物制剂,提供精确定制药品。
3. 转基因技术转基因技术是将外来DNA序列通过特定手段导入宿主细胞基因组中,从而产生想要的功能或表达产物。
该技术有助于构建生物制剂的细胞工厂,并可提升生产效率。
随着转基因技术的发展和完善,同时也产生出了许多争议,对生物农业和生物医药等领域产生了影响。
二、应用研究方面1. 基因治疗基因治疗是指通过基因工程技术,将人工构建的DNA序列导入到病人的细胞或组织中,从而治疗相关疾病。
该技术已成为生物制药领域的重要研究方向之一,包括了基因替代治疗、基因编辑治疗和基因靶向治疗等多个领域。
比如用基因治疗技术,研制出治疗乳腺癌的新型生物制剂,为临床应用提供了新的思路。
2. 细胞治疗细胞治疗技术是指通过人工合成的细胞,治疗相关疾病的技术。
该技术适用于血液疾病,如骨髓瘤和淋巴瘤等。
逐渐地,细胞治疗也被越来越多的关注,成为医学研究领域的热点之一。
总之,基因工程技术在生物制药领域的应用充分展示了其研究价值和广阔的应用前景。
国内外基因工程的发展现状及展望

国内外基因工程的发展现状及展望学号:20103164 姓名:王雪班级:生物工程1003班摘要:从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。
许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。
基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。
本文主要介绍了现阶段国内外基因工程的发展状况及未来的展望。
关键词:基因工程国内外发展展望一.基因工程的成果1.工程在农业生产中的应用农业领域是目前转基因技术应用最为广泛的领域之一。
农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。
基因工程在这些领域已取得了令人瞩目的成就。
由于植物病毒分子生物学的发展,植物抗病基因工程也已全面展开。
自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。
在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。
植物对逆境的抗性一直是植物生物学家关心的问题。
由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。
植物的抗寒性对其生长发育尤为重要。
科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。
将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。
随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。
实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,大大提高了营养价值,得到了农场主及消费者的普遍欢迎。
药学领域的前沿研究进展解析

药学领域的前沿研究进展解析随着科技的不断进步和人们对健康的关注度增加,药学领域的研究也在不断取得突破。
本文将从药物研发、药物递送系统和个性化药物治疗三个方面,解析药学领域的前沿研究进展。
一、药物研发药物研发一直是药学领域的核心内容,近年来,随着生物技术的发展,基因工程药物的研发成为热点。
基因工程药物利用重组DNA技术,通过改变人体内基因的表达,来治疗疾病。
例如,基因工程药物可以通过修复或替代缺陷基因来治疗遗传性疾病,如囊性纤维化等。
此外,纳米技术在药物研发中的应用也备受关注。
纳米技术可以将药物包裹在纳米粒子中,提高药物的溶解度和稳定性,并减少副作用。
纳米药物递送系统可以将药物精确地送达到病变部位,提高治疗效果。
例如,纳米粒子可以通过靶向功能分子与肿瘤细胞表面的受体结合,实现肿瘤靶向治疗。
二、药物递送系统药物递送系统是指将药物有效地送达到病变部位的技术和方法。
近年来,随着纳米技术的发展,药物递送系统取得了重大突破。
纳米递送系统可以通过改变药物的物理性质,如粒径、表面电荷等,来提高药物的溶解度和稳定性。
此外,纳米递送系统还可以通过改变药物的释放速率和靶向性,来提高药物的治疗效果。
除了纳米递送系统,基因递送系统也是药物递送领域的研究热点。
基因递送系统可以将治疗性基因导入人体细胞,来治疗遗传性疾病和某些癌症。
例如,利用载体将基因导入肌肉细胞,可以治疗肌营养不良症。
三、个性化药物治疗个性化药物治疗是指根据患者的基因型、表型和环境因素,来制定个体化的治疗方案。
近年来,随着基因测序技术的发展,个性化药物治疗成为药学领域的研究热点。
个性化药物治疗可以通过遗传标记物来预测患者对药物的反应,从而调整药物剂量和疗程,提高治疗效果。
此外,人工智能技术的应用也为个性化药物治疗提供了新的思路。
人工智能可以通过分析大量的临床数据和基因数据,来预测患者的疾病进展和药物反应,从而指导临床决策。
例如,人工智能可以通过分析肿瘤基因组学数据,来预测患者对某种抗癌药物的敏感性,从而选择最合适的治疗方案。
基因工程药物的综述

基因工程药物的研究及进展摘要:20世纪70年代,随着DNA重组技术的成熟,诞生了基因工程药物,高产值、高效率的基因药物给医药产业带来了一场革命,推动了整个医药产业的发展,医药产业进入了新的历史时期。
本文以基因工程药物的发展为导向,简要的介绍了国内外基因工程药物的发展概况、研究现状、研究方向、发展方向。
关键词:基因工程,药物,现状,发展1 基因工程药物的发展概况20世纪70年代,随着DNA重组技术的成熟,诞生了基因工程药物,高产值、高效率的基因药物给医药产业带来了一场革命,推动了整个医药产业的发展,医药产业进入了新的历史时期。
基因药物经历了三个阶段:第一阶段是把药用蛋白基因导入到大肠杆菌等细菌中,通过大肠杆菌等表达药用蛋白,但这类药物往往有缺陷,人类的基因在低等生物的细菌中往往不表达或表达的蛋白没有生物活性。
第二阶段是人们用哺乳动物的细胞代替细菌,生产第二代基因工程药物。
但由于哺乳动物细胞培养条件相对苛刻,生产的药物成本居高不下。
第一、二代基因药物的研制和生产已经成熟。
从第一个反义核酸药物Vitrovene于1998年和1999相继在美国和欧洲上市以来,发展迅速。
第三阶段是到了80年代中期,随着基因重组和基因转移技术的不断发展和完善,科学家可以将人们所需要的药用蛋白基因导入NN-~L动物体内,使目的基因在哺乳动物身上表达,从而获得药用蛋白。
携带外源基因并能稳定遗传的这种动物,我们称之为转基因动物。
由于从哺乳动物乳汁中获取的基因药物产量高、易提纯,因此利用乳腺分泌出的乳汁生产药物的转基因动物称为“动物乳腺生物反应器”。
90年代中后期,国际上用转基因牛、羊和猪等家畜生产贵重药用蛋白的成功实例已有几十种,一些由转基因动物乳汁中分离的药物正用于临床试验,但还没有一例药品成功上市。
2 基因工程药物的研究现状2.1国外基因工程药物研究现状随着1971年第一家生物制药公司Cetus公司在美国的成立,1973年重组DNA技术的出现,生物医药即已显示出巨大的应用价值和商业前景。
基因工程技术制药及其应用现状

基因工程技术制药及其应用现状摘要自1972年DNA重组技术诞生以来,生命科学进入了一个崭新的发展时期。
1982年美国礼莱公司推出基因工程胰岛素,这是第一个人用基因工程药物。
从那时起,以基因工程为核心的现代生物技术已应用到农业、医药、化工、环境等各个领域。
基因工程技术的迅速发展不仅使医学基础学科发生了革命性的变化,也为医药工业发展开辟了广阔的前景,以DNA重组技术为基础的基因工程技术改造和替代传统医药工业技术,已成为重要的发展方向。
关键词:基因工程制药应用1.基因工程及基因工程药物脱氧核糖核酸即人们常讲的DNA,它与蛋白质等组成细胞的染色体。
20世纪50年代,物理学家克里克和生物学家华生在前人工作的基础上,建立了DNA分子双螺旋结构,此后又提出遗传中心法则说。
根据这些学说,DNA分子为双链呈螺旋状,复制时其双链先解开,分别以其双链为模板合成新链,然后新链再解开,合成新链。
当基因需要发挥功能时,以DNA谋一链的特定片段,也就是基因为模板,合成相应的核糖核酸。
核糖核酸又称RNA,和DNA一起称为核酸,其分子与DNA相似,唯一不同是分子中含有核糖,而DNA分子中含有脱氧核糖。
RNA忠实地携带了从基因获得的信息,根据这些信息合成蛋白质,由这个特定的蛋白质发挥特定的生物学功能。
蛋白质在生物体的组成及其生命活动中起极其重要的作用,几乎所有基因的生物学特性和功能都是由蛋白质来体现和执行的。
蛋白质是由氨基酸按不同顺序组成的分子,这些氨基酸共有20种。
那么RNA携带的从基因获得的信息又怎样转换成特定的氨基酸顺序的呢?原来,DNA和RNA分子组成中有4种碱基,这4种碱基的不同排列顺序就是基因的遗传信息。
人们从菌获得了抗四环素和绿霉素的能力。
按照他们开创的方法和程序,人们将需要的基因切割下来,连接到合适的载体上,然后将这个重组载体导入相应的细菌、细胞或生物个体中,使其产生人们所期望的生物学特性,生产原不能生产的产品,并大量生产原来不容易获得的产品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尚珂 胡鹤 胡又佳中国基因工程药物研究进展有关作者: 尚珂博士,女,1980年生,现就职于上海医药工业研究院,创新药物与制药工艺国家重点实验室(筹),任助理研究员。
2001年毕业于中国药科大学,2006年获上海医工院微生物与生化药学博士学位。
主要研究方向:链霉菌基因工程;重大抗生素品种产生菌的基因工程改造。
我国生物技术药物工业总产值至2006年为400~500亿元,仍然保持了高速的增长,新批准的进行临床研究和注册的基因工程药物及新剂型有17个,但其中大部分属于新剂型。
创新药物的研究更多地体现在科研领域,尤其是在基因重组蛋白方面,无论是研究的创新性还是品种的多样性都体现了我国在基因工程药物研究领域所取得的长足进步。
近年来有越来越多的研究结果发表在国外SCI收录的杂志上,引起了国际上广泛的关注。
1重组蛋白1.1 活性多肽1.1.1 志贺毒素抑制多肽志贺毒素是痢疾志贺菌的主要毒力因子,是一种烈性蛋白质毒素。
以制备的重组志贺毒素B亚单位(StxB)为靶标,利用噬菌体展示亲和淘选技术的4轮筛选,从随机十二肽库中筛选到与StxB结合的一批噬菌体克隆,对特异结合活性较高的27个噬菌体克隆的表面展示肽进行序列测定,克隆展示肽出现频率最高的A6噬菌体,在体外与志贺毒素孵育进行动物试验,动物存活率达33.3%,表明毒素的毒性得到部分抑制,A6短肽可能发展成为志贺毒素的拮抗剂[1]。
1.1.2 降钙素降钙素是甲状腺滤泡旁细胞产生的一种多肽类激素,它是体内钙平衡和骨代谢的调节因子,鲑降钙素已经在临床上用于骨质疏松症,但需要反复多次的注射,且与人降钙素的同源性仅为50%,易产生抗体。
将人降钙素在成肌细胞中进行表达,能持续表达人降钙素的细胞进行微囊包埋后仍能持续分泌重组人降钙素到培养液中,这为利用包埋的重组成肌细胞释放人降钙素以及进一步采用移植细胞来治疗绝经后骨质疏松提供了可能[2]。
降钙素基因相关肽(Calcitonin gene-related peptide,CGRP)是从甲状腺髓样癌细胞中克隆发现的一种神经肽,由降钙素基因初级转录产物选择性剪接产生,属于降钙素(Calcitonin,CT) 超家族。
CGRP 有两种分子异构肽:αCGRP和βCGRP。
采用大肠杆菌偏爱的密码子人工合成hαCGRP 基因,构建了原核融合表达载体,对融合蛋白成功地进行了表达和纯化,Western免疫印迹验证该蛋白具有αCGRP 抗原性,为下一步hαCGRP 纯品的获得及动物实验的研究奠定了基础[3]。
1.1.3 葡萄糖依赖性促胰岛素多肽GIP,即葡萄糖依赖性促胰岛素多肽或抑胃肽(glucose-dependent insulinotropic polypeptide or gastric inhibitory peptide)是由42个氨基酸组成的胃肠调节肽,具有广泛的临床应用价值。
人工合成具有大肠杆菌偏爱密码子的编码GIP成熟肽的cDNA序列,利用pET32a(+)系统进行原核表达。
诱导表达的rhGIP占细胞总蛋白质的35%,纯化后的rhGIP具有免疫活性,大鼠实验证实其具有抑制胃酸分泌和降低大鼠血浆血糖浓度的生理活性,并且对神经细胞有营养和保护作用[4]。
1.1.4 bFGF抑制多肽bFGF,又称FGF-2,即碱性成纤维细胞生长因子。
利用肽类新药开发的重要工具—噬菌体展示技术,以Balb/ c3T3细胞为靶标,以COS-7细胞作消减,对噬菌体随机七肽库进行4轮生物淘洗,再采用ELISA检测单克隆噬菌体对Balb/c3T3的亲和性和特异性,选取阳性克隆进行DNA测序分析。
得到2段bFGF的受体结合模拟肽,有望作为bFGF抑制剂的先导肽,为bFGF肽类抑制剂的研发提供实验基础[5]。
1.1.5 人胰高血糖素样肽人胰高血糖素样肽-1(human glucagon-like peptide-1,hGLP-1)是肠降糖素( incretin )中的主要成分。
将人工合成的hGLP-1基因插入质粒载体pET-32a(+)中,构建成rhGLP-1与硫氧还蛋白(thioredox)及六聚组氨酸(hexahistidine)的融合表达载体pET32-GLP-1,转化大肠杆菌BL21(DE3)获得表达菌株,经IPTG诱导表达及Ni 离子亲和层析纯化等步骤得到rhGLP-1样品,纯度大于90%,等电点介于pH5.2~pH5.85之间。
动物实验表明重组蛋白具有明显的降血糖活性和促胰岛素分泌作用。
该研究使通过基因工程方法在微生物中大量表达hGLP-1成为获得该肽的一种新途径[6]。
1.1.6 抗菌肽传统的抗生素是通过抑制细菌的蛋白质或DNA的合成以及破坏细胞壁来发挥作用,其过程需要特殊受体,微生物很容易通过基因突变对药物产生抗性。
抗菌肽作用机理不同于传统抗生素,一般是通过物理作用造成细胞膜的穿孔,不需要特殊的受体,不会导致抗药菌株的产生,因此极有希望开发成为新型的多肽类抗生素。
昆虫抗菌肽是昆虫体液免疫的重要成分,具有分子量小、对热、广谱抗菌等特点。
自从惜古比天蚕(Hyalophera cecropia)的蛹中分离出第一个昆虫抗菌肽天蚕素(Cecropin)之后,陆续又从家蚕、蚊虫等昆虫体内分离出了很多抗菌肽,它们基本都为碱性的阳离子多肽。
通过浸提、吸附、洗脱、层析等方法,配合杀菌活性检测手段,从家蝇蛆中分离纯化出一组弱酸性抗菌肽,对苏云金芽孢杆菌等革兰氏阳性菌和几种革兰氏阴性菌有强烈的杀灭作用,并有很强的耐热、耐冻融的特性。
通过电洗脱进一步纯化出该抗菌肽MD7095,其分子量为7095Da,等电点为5.59,为一新肽,扫描电镜超微结构观察表明其杀菌机制主要是使细胞膜穿孔,内容物外泄,最终使细菌完全解体死亡[7]。
防御素(defensin)是抗菌肽中较为重要的一种,主要来源于上皮组织,是正常机体抵抗外界病原微生物入侵的第一道防线。
猪的β2防御素1 (porcineβ2defensin 1, PBD21) 广泛分布于消化道、呼吸道、肝肾等多种组织细胞内,在猪防御系统中有重要作用。
根据已发表的猪β防御素1 (PBD-1) 氨基酸序列和酵母偏好密码子,在毕赤氏酵母中重组表达分子量约4.5 kD 的PBD-1,实现了PBD-1的分泌表达,体外抗菌研究表明,重组菌的培养上清对金黄色葡萄球菌有明显的抑菌活性[8]。
将家蝇防御素(Defensin)基因克隆到真核细胞构建了重组表达质粒,以阳离子脂质体为载体转染非洲绿猴肾细胞株COS-7细胞,表达产物经亲和层析纯化后体外试验表明其对大肠杆菌具有明显的抗菌活性[9]。
Perinerin是一种分离自亚洲海蚕Perinereis aibuhitensis的结构新颖的抗菌肽,其对革兰氏阳性和阴性细菌均表现出强大的抑制作用;尤其对临床常见的耐药性绿脓杆菌更有明显的抑菌作用。
采用巴斯德毕赤酵母表达系统,对海蚕抗菌肽perinerin进行分泌性重组表达, 并经超滤和阳离子交换层析进一步纯化。
生物学活性检测证实重组蛋白对金黄色葡萄球菌及绿脓杆菌均具有明显抑制作用[10]。
Hepcidin是2000年发现的一个主要在肝脏表达的含有8个半胱氨酸的小分子多肽,和许多富含半胱的抗菌肽类似具有显著的抗菌作用。
重组融合hepcidin经金属螯合初步纯化后,先在cysteine / cystine氧化还原体系中氧化形成二硫键,再经凝胶过滤, 稀释复性,酶切后可得到重组hepcidin。
总收率50% , 纯度大于95%。
和先切除载体蛋白, 再氧化复性的方法相比, 这种方法可以节省50%肠激酶[11]。
1.1.7 内毒素结合肽革兰阴性菌外膜的主要成分LPS是脓毒症发生的主要触发因子,其活性中心lipidA分子富含负电荷磷酸基团,构建带正电荷的肽类通过静电作用与其结合中和其毒性,可减少细胞因子释放。
对一内毒素结合肽(EBP)进行突变,以期通过增加正电荷数来增加其抗内毒素活性,并诱导相应基因得到高效融合表达。
酶切获得目的片段并分离纯化后纯度大于95%。
为进一步研究其生物学功能奠定基础[12]。
1.1.8 线虫抗凝肽线虫抗凝肽(nematode anticoagulant peptide, NAP)是自犬钩口线虫成虫体内分离得到的一系列具有抗凝作用的小分子多肽类物质,其中NAP5的抗凝活性最强。
NAP5含77个氨基酸,通过与凝血因子Factor X/Xa的活性位点结合来抑制其活性,具有丝氨酸蛋白酶抑制作用,可抑制凝血酶原酶的形成,在脓毒血症、弥散性血管内凝血、膝关节完全置换术后防治静脉血栓栓塞等急性血小板相关性动、静脉血栓的预防和治疗中具有良好的临床应用前景。
在毕赤氏酵母中分泌表达重组线虫抗凝肽,酵母培养上清中的重组NAP分子量比预计分子量稍大,可能与糖基化有关。
体外活性检测证实其有较强的抗凝活性[13]。
1.1.9 抗栓肽抗栓肽(Decorsin)作为一种抗血栓药物,其作用靶标与水蛭素不同,水蛭素是凝血酶抑制剂,而抗栓肽是血小板聚集的抑制剂。
它由39个氨基酸组成,其内部含有一个三肽Arg-Gly-Asp (RGD)序列,并且有三对保守的二硫键,重组表达量一般比较低,而且复性时易发生错配。
用基因工程的方法获得抗栓肽基因并采取了与大肠杆菌硫氧还蛋白(TrxA)基因融合表达的策略,在大肠杆菌中获得了可溶性表达,表达量占菌体总蛋白的35%。
纯化的蛋白在体外实验中表明其具有显著的抑制ADP诱导的血小板聚集活性,抑制常数IC50为500nmol/L,完全抑制浓度≤2.5µmol/L,与天然抗栓肽活性相似[14]。
1.1.10 α1胸腺肽α1胸腺素是分离自胸腺素F5的具有激活T-淋巴细胞的活性多肽,在治疗乙肝、丙肝、多种肿瘤及艾滋病等方面有潜在的疗效,但其在胸腺素F5中的含量只有0.6%,尽管α1胸腺素只有28个氨基酸,但化学合成的成本还是较高。
将重组α1胸腺素在大肠杆菌中表达,在周质空间中获得了高效的可溶性表达,表达量占周质蛋白总量的64.7%[15].1.1.11 水蛭素水蛭素(hirudin)是从水蛭中分离出的抗凝血活性成分,是凝血酶的天然抑制剂,有多种变异体。
运用DNA家族改组技术构建了噬菌体展示的水蛭素改组文库,经凝血酶亲和淘选,ELISA筛选得到了高活性的水蛭素变异体。
将水蛭素变异体在大肠杆菌中进行重组表达,得到了一个活性高于野生型水蛭素HV2的突变子,并研究影响水蛭素活性的重要氨基酸位点[16]。
水蛭素作为新一代抗凝剂,有望在临床上取代肝素,但其会引起出血倾向副作用尚没有好的解决办法。
依据血栓形成的生理生化机制,用PCR方法将凝血因子FXa识别氨基酸序列嵌合到水蛭素结构基因的氨基端,纯化的重组蛋白小鼠尾部血栓模型实验表明,此新型嵌合抗栓剂由于在水蛭素的N末端与凝血因子FXa识别位点的短肽相融合,使得融合蛋白在非血栓部位不表现出抗凝血活性,而在血栓部位,水蛭素被从融合蛋白上切割下来发挥抗凝血作用,这样可以在不减少水蛭素抗凝血活性的同时,大幅度地降低出血副作用,在临床上具有非常重要的意义[17]。