高二数学解析几何练习题及答案
高二数学解析几何试题

高二数学解析几何试题1.中心在原点、焦点在轴上的椭圆与双曲线有公共焦点,左右焦点分别为、,且它们在第一象限的交点为,是以为底边的等腰三角形.若,双曲线离心率的取值范围为,则椭圆离心率的取值范围是.【答案】【解析】由题意得:,因此椭圆离心率【考点】椭圆离心率2.(本小题满分12分)已知椭圆经过点A(0,4),离心率为;(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.【答案】(1)(2)【解析】(1)待定系数法求椭圆方程;(20先求出直线方程代入椭圆方程,然后由韦达定理求出两根之和,再求出中点横坐标,最后代入直线方程求出中点纵坐标即得结果.试题解析:(1)因为椭圆经过点A,所以b=4.又因离心率为,所以所以椭圆方程为:依题意可得,直线方程为,并将其代入椭圆方程,得.(2)设直线与椭圆的两个交点坐标为,则由韦达定理得,,所以中点横坐标为,并将其代入直线方程得,故所求中点坐标为.【考点】求椭圆方程、直线与椭圆相交求弦的中点坐标.3.已知椭圆(a>5)的两个焦点为F1、F2,且|F1F2|=8,弦AB过点F1,则△ABF2的周长为()A.10B.20C.D.【答案】D【解析】由|F1F2|=8得,由椭圆定义可知△ABF2的周长为【考点】椭圆方程及性质4. 已知椭圆C 1的方程为,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点。
(1)求双曲线C 2的方程; (2)若直线l :与双曲线C 2恒有两个不同的交点A 和B ,且(其中O 为原点),求k 的取值范围。
【答案】(1)(2)(-1,-)∪(,1)【解析】(1)由椭圆方程确定其顶点和焦点坐标,从而得到双曲线的焦点和顶点,求得的值,得到双曲线方程;(2)将直线方程与双曲线方程联立,得到二次方程,找到根与系数的关系,将用点的坐标表示出来,代入已知条件从而得到关于k 的不等式,求得其范围 试题解析:(1)设双曲线C 2的方程为,则A 2=4-1=3,C 2=4, 由A 2+B 2=C 2,得B 2=1,故C 2的方程为.(2)将y =kx +代入-y 2=1,得(1-3k 2)x 2-6kx -9=0.由直线l 与双曲线C 2交于不同的两点,得∴k 2≠且k 2<1. ①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=,x 1x 2=.∴x 1x 2+y 1y 2=x 1x 2+(kx 1+)(kx 2+)=(k 2+1)x 1x 2+k (x 1+x 2)+2=.又∵·>2,得x 1x 2+y 1y 2>2,∴>2,即>0,解得<k 2<3, ②由①②得<k 2<1,故k 的取值范围为(-1,-)∪(,1).【考点】1.椭圆双曲线的方程及性质;2.直线与双曲线相交的位置关系5. (本小题满分16分)已知椭圆. (1)求椭圆的离心率;(2)设为原点,若点在直线上,点在椭圆上,且,求线段长度的最小值.【答案】(1)(2)【解析】(1)研究椭圆性质,一般先将方程化为标准方程,再根据标准方程对应量的几何意义确定性质:椭圆化为标准方程为,因此,从而椭圆的离心率(2)求线段长度的最小值,一般需先根据两点间距离公式列出参数关系式,再根据参数间关系,转化为一元函数关系式,最后根据函数关系特点,利用基本不等式求最值. 设,且,则线段长度中有三个参数,而由题意有两个条件:一是,可得;二是点在椭圆上,即,因此先消去t ,再消去,即得,最后利用基本不等式求最值,注意参数取值范围试题解析:解:(1)椭圆化为标准方程为,∴,∴椭圆的离心率;(2)设,且,∵,∴,∴,∴∵,∴,∵,当且仅当,即时等号成立,∴.∴线段长度的最小值为.【考点】椭圆离心率,直线与椭圆位置关系【名师】1.求椭圆的离心率的方法.①直接求出a,c来求解,通过已知条件列方程组,解出a,c的值;②构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解;③通过取特殊值或特殊位置,求出离心率2.圆锥曲线中最值的求法有两种:(1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.(2)代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立起目标函数,再求这个函数的最值,求函数最值的常用方法有配方法、判别式法、重要不等式法及函数的单调性法等.6.若点是以为焦点的双曲线上一点,满足,且,则此双曲线的离心率为.【答案】【解析】由双曲线的定义可知,,,即.,.【考点】1双曲线的定义;2双曲线的离心率.7.已知点P为抛物线上的动点,点P在x轴上的射影为M,点A的坐标是,则的最小值是______________.【答案】【解析】抛物线的标准方程为,焦点为,由抛物线的定义知(当且仅当三点共线时等号成立).故最小值为.【考点】抛物线的定义.【名师点晴】利用抛物线的定义可解决的常见问题:(1)轨迹问题:用抛物线的定义可以确定动点与定点、定直线距离有关的轨迹是否为抛物线;(2)距离问题:涉及抛物线上的点到焦点的距离、到准线的距离问题时,注意利用两者之间的转化在解题中的应用.8.将一张坐标纸折叠一次,使点与点重合,则与点重合的点的坐标是()A.B.C.D.【答案】A【解析】折叠后的对应点的连线相互平行,,,因此与点重合的点为,故选A.【考点】折叠问题.9.已知中心在原点,焦点在轴的双曲线的渐近线方程为,则此双曲线的离心率为( ) A.B.C.D.【答案】A【解析】因为中心在原点,焦点在轴的双曲线,所以可设该双曲线的方程为:,所以其渐近线的方程为,而双曲线的渐近线方程为,所以,所以,所以,故应选.【考点】1、双曲线的标准方程;2双曲线的简单几何性质.【思路点睛】本题主要考查了双曲线的标准方程和双曲线的简单几何性质,渗透着数形结合的数学思想和方程的数学思想,属中档题.其解题的一般思路为:首先根据已知条件设出双曲线的方程,然后根据双曲线的方程求出其渐近线的方程,结合已知可得的等式关系,最后由即可得出之间的等式关系,进而得出其离心率的大小.10.已知两直线和.试确定的值,使(1)与相交于点;(2)∥;(3),且在轴上的截距为-1.【答案】(1)m=1,n=7.(2)m=4,n≠-2或m=-4,n≠2(3)m=0,n=8【解析】(1)将点P(m,-1)代入两直线方程,解出m和n的值;(2)由∥得斜率相等,求出m值,再把直线可能重合的情况排除;(3)先检验斜率不存在的情况,当斜率存在时,看斜率之积是否等于-1,从而得到结论试题解析:(1)由题意得,解得m=1,n=7.(2)当m=0时,显然l1不平行于l2;当m≠0时,由得∴或即m=4,n≠-2时或m=-4,n≠2时,l1∥l2.(3)当且仅当m·2+8·m=0,即m=0时,l1⊥l2.又-=-1,∴n=8.即m=0,n=8时,l1⊥l2,且l1在y轴上的截距为-1.【考点】1.直线平行垂直的位置关系;2.直线交点11.已知椭圆过点离心率,(1)求椭圆方程;(2)若过点的直线与椭圆C交于A、B两点,且以AB为直径的圆过原点,试求直线的方程.【答案】(1)椭圆方程:(2)直线的方程:y="2x-2" 或 y=-2x+2.【解析】(1)求椭圆标准方程,要找到关于的两个等式,把点的坐标代入方程得一个等式,再由离心率是又得一个,两者联立,再结合可得结论;(2)直线与椭圆相交问题,设交点为,直线方程为(斜率不存在的直线不符题意,解题时说明一下),代入椭圆方程,消去参数,得的二次方程,由韦达定理得,而以AB为直径的圆过原点说明,即,即,借助刚才的结论可求得.试题解析:(1)由题意,,解得,椭圆方程:(2)由题义得,代入得:①设②由①.代入②得:【考点】椭圆标准方程;直线与椭圆相交问题.12.(2013秋•下城区校级期中)直线在y轴上的截距是()A.|b|B.﹣b2C.b2D.±b【答案】B【解析】要求直线与y轴的截距,方法是令x=0求出y的值即可.解:令x=0,得:﹣=1,解得y=﹣b2.故选B【考点】直线的截距式方程.13.过平面区域内一点作圆的两条切线,切点分别为,记,则当最小时的值为()A.B.C.D.【答案】D【解析】由题意可知为直角三角形,且,,,.由数形结合可知当最小时取得最大值.作出不等式组表示的可行域如图:由得直线与的交点.由图可知,所以当最小时.故D正确.【考点】1线性规划;2直线与圆的位置关系问题.【思路点晴】本题主要考查的是线性规划,直线与圆的位置关系,属于中档题.从同一点引的两条直线与圆相切,由图像分析可得当两切线夹角最小时,此点与圆心的距离最大.即将问题转化为定点到可行域内点距离的最值问题.线性规划类问题的解题关键是先正确画出不等式组所表示的平面区域,然后确定目标函数的几何意义,通过数形结合确定目标函数何时取得最值.画不等式组所表示的平面区域时要通过特殊点验证,防止出现错误.14.椭圆内有一点P(3,2),过P点的弦恰好以P点为中点,则此弦所在的直线方程为.【答案】【解析】设过点的直线与椭圆交于两点其中点,则将两点代入题意方程作差可得:,即。
高二数学解析几何单元过关练习

高二数学解析几何单元过关练习一、填空题:1. 如果直线0=++C By Ax 的倾斜角为 45,则A,B 之间的关系式为 .2. 直线122=-by a x 在y 轴上的截距是 . 3. 下列命题中准确的是 . (1)平行的两条直线的斜率一定相等 (2).平行的两条直线的倾斜角一定相等(3)垂直的两直线的斜率之积为-1 (4).斜率相等的两条直线一定平行4. 圆2)3()2(22=++-y x 的半径是 .5. 如果直线l 上的一点A 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到直线l 上,则l 的斜率是 .6. 已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为31,则m+n 的值为 . 7.已知点P (0,-1),点Q 在直线x-y+1=0上,若直线PQ 垂直于直线x+2y-5=0,则点Q 的坐标是 . 8.已知三角形ABC 的顶点A (2,2,0),B (0,2,0),C(0,1,4),则三角形ABC 是 三角形。
9.平行于直线2x-y+1=0且与圆x 2+y 2=5相切的直线的方程是 . 10.从点P(4,-1)向圆x2+y2-4y -5=0作切线PT(T 为切点),则PT 等于 .11. 已知两点A (1,-1)、B (3,3),点C (5,a )在直线AB 上,则实数a 的值是 .12. 直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是 .13. 直线0323=-+y x 截圆422=+y x 所得的劣弧所对的圆心角为 .14. 已知两圆C1:x2+y2=10,C2:x2+y2-2x +2y -14=0,则经过两圆交点的公共弦所在的直线方程为 .二.解答题15. 已知一条直线经过两条直线0432:1=--y x l 和0113:2=-+y x l 的交点,并且垂直于这个交点和原点的连线,求此直线方程。
高二解析几何题目答案

高二解析几何题目答案高二解析几何题目答案1. 设直线l过点A(1,-1,2),B(-3,2,6),平面P过点B并且垂直于直线l,求平面P的解析式。
解:由于直线l经过A,B两点,所以直线l的方向向量为AB(AC-BD)=(4,-3,4)。
由于平面P垂直于直线l,所以平面P的法向量为直线l的方向向量,即n=(4,-3,4)。
又因为平面P过点B(-3,2,6),所以平面P的解析式为4x-3y+4z+19=0。
2. 已知四面体ABCD的所有棱长,求四面体的体积。
解:设四面体ABCD的底面为△ABC,高为h,底面积为S。
由题意可知,四面体ABCD的所有棱长已知,则可以用海伦公式求出底面△ABC的周长和面积。
AB、BC、CA的长度分别为a、b、c,则底面△ABC的周长为p=(a+b+c)/2。
底面△ABC的面积为S=sqrt[p(p-a)(p-b)(p-c)]。
由题意可知,四面体的高为h,所以四面体的体积为V=1/3×Sh。
3. 已知锥台ABCDPQ的上底圆半径r1=6cm,下底圆半径r2=12cm,锥台高h=8cm,求锥台的侧面积和体积。
解:由题意可知,锥台的母线长为l=sqrt[(r1-r2)²+h²]=10cm。
锥台的侧面积为S=π(r1+r2)l=180π cm²。
锥台的体积为V=1/3πh(r1²+r2²+r1r2)=448π/3 cm³。
4. 已知抛物线y=ax²+bx+c的对称轴方程为x=2,且经过点(1,3),求抛物线的解析式。
解:由于抛物线y=ax²+bx+c关于对称轴x=2对称,所以它也关于x=2垂直。
因此,抛物线的两根是2±k,其中k是另外一条直线的斜率。
由题意可知,抛物线经过点(1,3),所以3=a+b+c。
同时,抛物线关于对称轴x=2对称,因此(1,3)在对称轴x=2上的平移点(3,1)也在抛物线上,因此1=4a+2b+c。
解析几何-高二上数学好题-原卷版

解析几何-高二上数学好题一、单选题1.已知椭圆C :()22221,0x y a b a b+=>>的左、右焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,点M 在C 上,且12π2F MF ∠=,127π12A MA ∠=,则椭圆C 的离心率为()A .23B .423-C .12D .222.长为2的线段AB 的两个端点A 和B 分别在x 轴和y 轴上滑动,则点B 关于点A 的对称点M 的轨迹方程为()A .22142x y +=B .22142y x +=C .221164x y +=D .221164y x +=3.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分,过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上,由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知112BF F F ⊥,195BF =,11AF =,则光从焦点1F 出发经镜面反射后到达焦点2F 经过的路径长为()A .5B .10C .6D .9二、多选题4.已知直线l 过抛物线2:4C y x =的焦点F ,且与抛物线C 交于()()1122,,,A x y B x y 两点,点M 为C 的准线与x 轴的交点,则下列结论正确的是()A .若125x x +=,则7AB =B .过C 的焦点的最短弦长为4C .当2AF FB =时,直线l 的倾斜角为π3D .存在2条直线l ,使得AF BM BF AM ⋅=⋅成立5.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,点M 在C 上,MN l ⊥于N ,直线NF 与C 交于A ,B两点,若2NA AF =,则()A .60MNF ∠=B .43NF p =C .3MB MN =D .37sin 14NAM ∠=6.已知抛物线()2:20C y px p =>的焦点为F ,,02p A ⎛⎫- ⎪⎝⎭,B 是以FA 为半径的圆F 与抛物线C 的一个公共点,P是圆F 上的动点,则()A .直线BF x ⊥轴B .直线AB 与抛物线C 相切C .0PA PB ⋅≥ D .)21PA PB p ⋅≤7.已知圆22:4C x y +=上的两个动点A ,B 始终满足||4AB =,直线:1l x my =+与x 轴交于点M (M ,A ,B 三点不共线),则()A .直线l 与圆C 恒有交点B .0AM MB ⋅> C .ABM 的面积的最大值为32D .l 被圆C 截得的弦长最小值为8.已知圆1C :()2221x y ++=,圆2C :()2234x y -+=,P ,Q 分别是1C ,2C 上的动点,则下列结论正确的是()A .当12//C P C Q 时,四边形12C C QP 的面积可能为7B .当12//C P C Q 时,四边形12C C QP 的面积可能为8C .当直线PQ 与1C 和2C 都相切时,PQ 的长可能为D .当直线PQ 与1C 和2C 都相切时,PQ 的长可能为49.已知双曲线22:143x y C -=的左、右焦点分别为12,F F ,点P 在C 的右支上,过点P 的直线l 与C 的两条渐近线分别交于点M ,N ,则下列说法正确的是()A .12PF PF +的最小值为4B .与C 仅有公共点P 的直线共有三条C .若(4,3)P ,且P 为线段MN 的中点,则l 的方程为1y x =-D .若l 与C 相切于点()0,1P x -,则M ,N 的纵坐标之积为4-10.在平面直角坐标系中,点()2,0M -在抛物线()2:20C y px p =>的准线上,过抛物线C 的焦点F 作直线l 交抛物线C 于,A B 两点,则下列结论中正确的是()A .当3AF FB = 时,直线l 的斜率为B .当3AF FB = 时,163AB =C .90AOB ∠>︒D .AMF BMF∠=∠11.如图,正方体ABCD A B C D -''''的棱长为3,点M 是侧面ADD A ''上的一个动点(含边界),点P 在棱CC '上,且1PC '=,则下列结论中正确的是()A .若CMB D '⊥,则点M 的轨迹是线段B .若保持13PM =,则点M 的运动轨迹长度为4π3C .若点Q 在平面A BD '内,点G 为AC '的中点,且3QG QA +=,则点Q 的轨迹为一个椭圆D .若点M 到AD 与C D ''的距离相等,则动点M 的轨迹是抛物线的一部分三、填空题12.设P 为圆O :225x y +=上任意一点,过点P 作椭圆22132x y +=的两条切线,切点分别为A ,B ,点O ,P 到直线AB 的距离分别为1d ,2d ,则12d d ⋅的值为.13.已知实数x ,y 满足23ln 0x x y --=,则()222R 2m x y mx my m +-++∈的最小值为.14.已知双曲线2222:1(0,0)x y C a b a b-=>>,直线1l 和2l 相互平行,直线1l 与双曲线C 交于,A B 两点,直线2l 与双曲线C交于,D E 两点,直线AE 和BD 交于点P (异于坐标原点).若直线1l 的斜率为3,直线(OP O 是坐标原点)的斜率1k ≥,则双曲线C 的离心率的取值范围为.15.已知F 为拋物线21:4C y x =的焦点,过点F 的直线l 与拋物线C 交于不同的两点A ,B ,拋物线在点,A B 处的切线分别为1l 和2l ,若1l 和2l 交于点P ,则225||PF AB +的最小值为.四、解答题16.已知椭圆2222:1(0)x y E a b a b +=>>的左、右焦点分别为12,F F ,离心率2,2e P =为椭圆上一动点,12PF F △面积的最大值为2.(1)求椭圆E 的方程;(2)若,C D 分别是椭圆E 长轴的左、右端点,动点M 满足:MD CD ⊥,连接CM 交椭圆于点,N O 为坐标原点,证明:OM ON ⋅为定值;(3)若点Q 为圆228x y +=上的动点,点(0,R ,求2QR QP PF +-的最小值.17.已知抛物线2:4C x y =的焦点为F ,设动点P 的坐标为(),m n .(1)若2,1m n ==,求过点P 与抛物线有且只有一个公共点的直线方程;(2)设过动点P 的两条直线12,l l 均与C 相切,且12,l l 的斜率分别为12,k k ,满足()()12114k k --=.证明:动点P 在一条定直线上.18.已知椭圆2222Γ:1(0)x y a b a b+=>>的左焦点为()11,0F -,且过点81,3A ⎛⎫ ⎪⎝⎭.(1)求椭圆Γ的标准方程;(2)过1F 作一条斜率不为0的直线PQ 交椭圆Γ于P 、Q 两点,D 为椭圆的左顶点,若直线DP 、DQ 与直线:40l x +=分别交于M 、N 两点,l 与x 轴的交点为R ,则MR NR ⋅是否为定值?若为定值,请求出该定值;若不为定值,请说明理由.19.已知双曲线E :22221x y a b-=(0a >,0b >)的离心率为2,右焦点(),0F c (0c >)到直线l :2a x c =-的距离为5.(1)求E 的方程;(2)设过点F 的直线与E 的右支交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,Q (异于点F ),证明:512PQ AB <.20.已知椭圆()222210x y a b a b +=>>的离心率2e =,左、右焦点分别为1F ,2F ,连接椭圆的四个顶点得到的菱形的面积为(1)求椭圆的方程;(2)过2F 作不平行于坐标轴的直线l 与椭圆交于A ,B 两点,直线1AF 交y 轴于点M ,直线1BF 交y 轴于点N ,若11F AB F MN S S = ,求直线l 的方程.21.已知点M 为圆22:(2)4C x y -+=上任意一点,()2,0B -,线段MB 的垂直平分线交直线MC 于点Q .(1)求Q 点的轨迹方程;(2)设过点C 的直线l 与Q 点的轨迹交于点P ,且点P 在第一象限内.已知()1,0A -,请问是否存在常数λ,使得PCA PAC λ∠=∠恒成立?若存在,求λ的值,若不存在,请说明理由.22.已知双曲线2222:1x y C a b-=(0a >,0b >)的离心率为2,且经过点A .(1)求双曲线C 的方程;(2)点M ,N 在双曲线C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:①直线MN 过定点;②存在定点Q ,使得DQ 为定值.23.已知椭圆2222:1(0)x y G a b a b +=>>经过31,,(2,0)2D E ⎛⎫ ⎪⎝⎭两点.作斜率为12的直线与椭圆G 交于,A B 两点(A 点在B 的左侧),且点D 在直线l 上方.(1)求椭圆G 的标准方程;(2)证明:DAB 的内切圆的圆心在一条定直线上.24.已知抛物线:22y x =,直线:4l y x =-,且点,B D 在抛物线上.(1)若点,A C 在直线l 上,且,,,A B C D 四点构成菱形ABCD ,求直线BD 的方程;(2)若点A 为抛物线和直线l 的交点(位于x 轴下方),点C 在直线l 上,且,,,A B C D 四点构成矩形ABCD ,求直线BD 的斜率.25.设椭圆22221x y a b +=(0a b >>)的上顶点为A ,左焦点为F 2AF =.(1)求椭圆方程;(2)设过点A 且斜率为k 的直线l 与椭圆交于点B (B 异于点A ),与直线1y =-交于点M ,点B 关于y 轴的对称点为E ,直线ME 与y 轴交于点N ,若AMN 的面积为169,求直线l 的方程.26.已知椭圆()2222:10x y C a b a b +=>>12,,A A B 分别为椭圆C 的左、右和上顶点,直线1A B 交直线:l y x =于点P ,且点P 的横坐标为2.(1)求椭圆C 的方程;(2)过点P 的直线与椭圆C 交于第二象限内,D E 两点,且E 在,P D 之间,1A E 与直线l 交于点M ,试判断直线1A D 与2A M 是否平行,并说明理由.。
高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.已知椭圆:的左焦点,离心率为,函数,(Ⅰ)求椭圆的标准方程;(Ⅱ)设,,过的直线交椭圆于两点,求的最小值,并求此时的的值.【答案】(Ⅰ);(Ⅱ)的最小值为,此时.【解析】(Ⅰ)利用左焦点F(-1,0),离心率为,及求出几何量,即可求椭圆C的标准方程;(Ⅱ)分类讨论,设直线l的方程来:y=k(x-t)代入抛物线方程,利用韦达定理,结合向量的数量积公式,即可求的最小值,并求此时的t的值.试题解析:(Ⅰ),由得,椭圆方程为(Ⅱ)若直线斜率不存在,则=若直线斜率存在,设直线,由得所以故故的最小值为,此时.【考点】直线与圆锥曲线的综合问题.2.设分别是椭圆的左,右焦点.(1)若是椭圆在第一象限上一点,且,求点坐标;(5分)(2)设过定点的直线与椭圆交于不同两点,且为锐角(其中为原点),求直线的斜率的取值范围.(7分)【答案】(1);(2).【解析】(1)设,求点坐标,即要构建关于的两个方程,第一个方程可根据点在曲线上,点的坐标必须适合曲线的方程得到,即有,第二个方程可由通过坐标化得到,即有,联立方程组,可解得点坐标;(2)求直线的斜率的取值范围,即要构建关于的不等式,可通过为锐角,转化为不等关系,进而转化为关于的不等式,解出的取值范围.注意不要忽略,这是解析几何中常犯的错误.试题解析:(1)依题意有,所以,设,则由得:,即,又,解得,因为是椭圆在第一象限上一点,所以. 5分(2)设直线与椭圆交于不同两点的坐标为、,将直线:代入,整理得:(),则,,因为为锐角,所以,从而整理得:,即,解得,且()方程必须满足:,解得,因此有,所以直线的斜率的取值范围为. 12分【考点】1.直线与椭圆的位置关系;2.方程与不等式思想,3.设而不求的思想与等价转化思想.3.双曲线与椭圆的离心率互为倒数,则()A.B.C.D.【答案】B.【解析】由双曲线与椭圆的离心率的定义知,双曲线的离心率和椭圆的离心率分别为、,然后由题意得,即,将其两边平方化简即可得出结论.【考点】双曲线的几何性质;椭圆的几何性质.4.已知双曲线的渐近线方程为,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于()A.B.C.D.1【答案】A【解析】双曲线的焦点在轴上,又渐近线方程为,可设,则,由题意知在椭圆中,所以该椭圆的离心率等于。
2023年新高考数学创新题型微专题10 解析几何专题(新定义)(解析版)

专题10 解析几何专题(新定义)一、单选题1.(2023春·浙江·高三校联考开学考试)2022年卡塔尔世界杯会徽(如图)正视图近似于伯努利双纽线,定义在平面直角坐标系xOy 中(O 为坐标原点),把到定点1(,0)F c −和2(,0)F c 距离之积等于2(0)c c >的点的轨迹称为双纽线,记为Γ,已知()00,P x y 为双纽线Γ上任意一点,有下列命题: ①双纽线Γ的方程为()()2222222x y c x y +=−; ②12F PF △面积最大值为212c ;③022c c y −≤≤;④PO .其中所有正确命题的序号是( )A .①②B .①②③C .②③④D .①②③④【答案】D【分析】由已知212PF PF c ⋅=,代入坐标整理即可得出方程,判断①;根据正弦定理,结合已知条件,即可判断②;根据面积公式,结合②的结论,即可判断③;根据余弦定理,以及向量可推得222212||cos 2PO c c F PF c ∠=+≤,即可判断④.【详解】对于①,由定义212PF PF c ⋅=2c =, 即()()222222400000022x y c cx x y c cx c +++⋅++−=,整理可得()()22222200002x y c x y +=−,所以双纽线Γ的方程为()()2222222x y c x y +=−,故①正确; 对于②,1212121sin 2F PF SPF PF F PF ∠=221211sin 22c F PF c ∠=≤,故②正确;对于③,因为12212001122F PF SF F y c y c =⨯=≤,所以022c cy −≤≤,故③正确; 对于④,12F PF △中,由余弦定理可得222121212122cos F F PF PF PF PF F PF =+−⋅⋅∠, 所以2222121242cos PF PF c c F PF ∠+=+. 又因为122PO PF PF =+,所以()()22122POPF PF =+uu u ruuu r uuu r 2212122PF PF PF PF =++⋅uuu r uuu r uuu r uuu r 221212122cos PF PF PF PF F PF =++⋅∠uuu r uuu r uuu r uuu r.所以,()22122PO F F +22212212121221212c 2cos os PF PF PF PF PF PF PF F PF F P PF F =++⋅∠++−⋅⋅∠()22122PF PF =+,即()22221244242cos PO c c c F PF ∠+=⨯+,整理可得222212||cos 2PO c c F PF c ∠=+≤,所以||PO ≤,故④正确.故选:D.2.(2023春·四川达州·高二四川省宣汉中学校考开学考试)定义: 椭圆 22221(1)x y a b a b +=>>中长度为整数的焦点弦(过焦点的弦)为 “好弦”. 则椭圆221259x y +=中所有 “好弦” 的长度之和为( )A .162B .166C .312D .364【答案】B【分析】根据题意分类讨论结合韦达定理求弦长的取值范围,进而判断“好弦” 的长度的取值可能,注意椭圆对称性的应用.【详解】由已知可得 5,3a b ==, 所以4c =,即椭圆221259x y +=的右焦点坐标为()4,0,对于过右焦点的弦AB ,则有:当弦AB 与x 轴重合时,则弦长210AB a ==,当弦AB 不与x 轴重合时,设()()1122:4,,,,AB x my A x y B x y =+,联立方程2241259x my x y =+⎧⎪⎨+=⎪⎩,消去x 得:()2292572810m y my ++−=,则()()()()2221212227281Δ72492581810010,,925925m m m m x x x x m m =−+⨯−=+>+=−=−++,故()22290116101925925m AB m m +⎛⎫==− ⎪++⎝⎭, ∵20m ≥,则221192525,092525m m +≥<≤+,可得21616025925m −≤−<+,即29161125925m ≤−<+, ∴18,105AB ⎡⎫∈⎪⎢⎣⎭,综上所述:18,105AB ⎡⎤∈⎢⎥⎣⎦,故弦长为整数有4,5,6,7,8,9,10,由椭圆的对称性可得:“好弦” 的长度和为 ()445678910166⨯++++++=. 故选 :B .3.(2023秋·湖南郴州·高二校考期末)城市的许多街道是互相垂直或平行的,因此往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.如果按照街道的垂直和平行方向建立平面直角坐标系,对两点()()1122,,,A x y B x y ,定义两点间“距离”为()1212,d A B x x y y =−+−,则平面内与x 轴上两个不同的定点12,F F 的“距离”之和等于定值(大于()12,d F F )的点的轨迹可以是( )A .B .C .D .【答案】A【分析】分横坐标在1F 、2F 之外(内)的区域两种情况讨论,结合所给距离公式判断即可. 【详解】解:根据题意,横坐标在1F 、2F 之外的区域,不能出现与x 轴垂直的线段, 否则该线段上的点与1F 、2F 的“距离”之和不会是定值;横坐标在1F 、2F 之内的区域,则必须与x 轴平行,否则该线段上的点与1F 、2F 的“距离”之和不会是定值. 故选:A.4.(2022·江苏·高二专题练习)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆C :()222210x y a b a b +=>>的蒙日圆方程为2222x y a b +=+,1F ,2F 分别为椭圆C 的左、右焦点.,M 为蒙日圆上一个动点,过点M 作椭圆C 的两条切线,与蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为36,则椭圆C 的长轴长为( )A .B .C .D .【答案】B【分析】利用椭圆的离心率可得a =,分析可知PQ 为圆2223x y b +=的一条直径,利用勾股定理得出222236MP MQ PQ c +==,再利用基本不等式即可求即解【详解】因为椭圆C 的离心率5c e a ==,所以a =. 因为222a b c =+,所以2b c =,所以椭圆C 3c =. 因为MP MQ ⊥,所以PQ 为蒙日圆的直径, 所以6PQ c =,所以222236MP MQ PQ c +==.因为222182MP MQMP MQ c +⋅≤=,当MP MQ ==时,等号成立, 所以MPQ 面积的最大值为:2192MP MQ c ⋅=.由MPQ 面积的最大值为36,得2936c =,得2c =,进而有24b c ==,a =,故椭圆C 的长轴长为 故选:B5.(2023·全国·高三专题练习)加斯帕尔·蒙日(图1)是18~19世纪法国著名的几何学家,他在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点都在同一个圆上,其圆心是椭圆的中心,这个圆被称为“蒙日圆”(图2).则椭圆 22:154x y C +=的蒙日圆的半径为( )A .3B .4C .5D .6【答案】A【分析】由蒙日圆的定义,确定出圆上的一点即可求出圆的半径.【详解】由蒙日圆的定义,可知椭圆 22:154x y C +=的两条切线2x y =的交点在圆上,所以3R ==, 故选:A6.(2021秋·四川成都·高二树德中学校考阶段练习)若将一个椭圆绕其中心旋转90°,所得椭圆短轴两顶点恰好是旋转前椭圆的两焦点,这样的椭圆称为“对偶椭圆”.下列椭圆中是“对偶椭圆”的是( ) A .22184x y +=B .22135x y +=C .22162x y +=D .22169x y +=【答案】A. 【详解】由“对偶椭圆”定义得:短半轴长b 与半焦距c 相等的椭圆是“对偶椭圆”, 对于A ,22844c b =−==,即b c =,A 是“对偶椭圆”; 对于B ,22532c b =−=≠,即b c ≠,B 不是“对偶椭圆”; 对于C ,22624c b =−=≠,即b c ≠,C 不是“对偶椭圆”; 对于D ,22963c b =−=≠,即b c ≠,D 不是“对偶椭圆”. 故选:A7.(2021春·上海闵行·高二闵行中学校考期末)若曲线0(),f x y =上存在两个不同点处的切线重合,则称这条切线为曲线的自公切线,下列方程的曲线有自公切线的是( )A .210x y +−=B .10x =C .2210x y x x +−−−=D .2310x xy −+=【分析】通过图象,观察其图象是否满足在其图象上存在两个不同点处的切线重合,从而确定是否存在自公切线,进而得到结论.【详解】A :因为210x y +−=,即21y x =−是抛物线,没有自公切线,故A 错误;B :因为10x =,表示的是图形中的实线部分,没有自公切线,故B 错误;C :因为2210x y x x +−−−=,表示的是图形中的实线部分,由两圆相交,可知公切线,故有自公切线,故C 正确;D :因为2310x xy −+=,即13y x x=+是双勾函数,没有自公切线,故D 错误; 故选:C.8.(2021·辽宁沈阳·东北育才学校校考模拟预测)在平面直角坐标系中,定义x y +称为点(,)P x y 的“δ和”,其中O 为坐标原点,对于下列结论:(1)“δ和”为1的点(,)P x y 的轨迹围成的图形面积为2;(2)设P 是直线240x y −−=上任意一点,则点(,)P x y 的“δ和”的最小值为2;(3)设P 是直线0ax y b −+=上任意一点,则使得“δ和”最小的点有无数个”的充要条件是1a =;(4)设P 是椭圆2212y x +=上任意一点,则“δ和”的最其中正确的结论序号为( ) A .(1)(2)(3) B .(1)(2)(4) C .(1)(3)(4)D .(2)(3)(4)【解析】根据新定义“δ和”,通过数形结合判断(1)正确,通过研究函数最值对选项(2)(3)(4)逐一判断即可.【详解】(1)当1x y +=时,点(,)P x y 的轨迹如图,其面积为2,正确;(2)P 是直线240x y −−=上的一点,24y x ∴=−,24x y x x ∴+=+−43,0,4,02,34,2,x x x x x x −≤⎧⎪=−<<⎨⎪−≥⎩可知,0x ≤,02x <<时递减,2x ≥时递增,故x y +的最小值在2x =时取得,min ()2x y +=,正确;(3)同(2),x y x ax b +=++,可知当1a =±时,都满足,“δ和”最小的点有无数个,故错误;(4)可设椭圆参数方程为,,x y θθ=⎧⎪⎨⎪⎩cos x y θθ∴+=,. 故选:B.【点睛】本题的解题关键是认真读题,理解新定义“δ和”,再通过数形结合和函数最值的研究逐一判断即突破难点.9.(2022秋·四川成都·高二成都外国语学校校考期中)若椭圆或双曲线上存在点P ,使得点P 到两个焦点12,F F 的距离之比为2:1,且存在12PF F △,则称此椭圆或双曲线存在“Ω点”,下列曲线中存在“Ω点”的是( )A .2213632x y +=B .2211615x y +=C .22154x y −=D .22115y x −=【答案】C【分析】求出满足条件1221PF PF =时的1PF 和2PF ,再求出12F F ,验证1PF ,2PF ,12F F能否是三角形的三边长,即可得. 【详解】1221PF PF =,则122PF PF =,若是椭圆,则12232PF PF PF a +==,223a PF =,143a PF =, 若是双曲线,则1222PF PF PF a −==,14PF a =,A 中椭圆,6,2a c ==,24PF =,18PF =,124F F =,不存在12PF F △;B 中椭圆,4,1a c ==,183PF =,1163PF =,122F F =,不存在12PF F △C中双曲线,3a c ==,双曲线上点到到右焦点距离的最小值是233ac a −=<,2PF =1PF =126F F =,构成12PF F △,存在“Ω点”,D 中双曲线,1a =,4c =,22PF =,14PF =,128F F =,不存在12PF F △ 故选:C .【点睛】本题考查新定义“Ω点”,解题方法是弱化条件,求出满足部分条件的P 点具有的性质,验证是否满足另外的条件:构成三角形.从而完成求解.10.(2022秋·广西钦州·高二校考阶段练习)已知椭圆22:14x C y +=的焦点为1F 、2F ,若点P 在椭圆上,且满足212PO PF PF =⋅(其中O 为坐标原点),则称点P 为“★”点.下列结论正确的是( ) A .椭圆C 上的所有点都是“★”点 B .椭圆C 上仅有有限个点是“★”点 C .椭圆C 上的所有点都不是“★”点D .椭圆C 上有无穷多个点(但不是所有的点)是“★”点 【答案】B【分析】设点(),P x y ,由212PO PF PF =⋅得出关于x 、y 的等式,由2214xy =−,求出方程的解,即可得出结论.【详解】设点(),P x y ,则2214x y =−,()1F、)2F ,122PF x ===+,21442222PF PF ⎛⎫=−=−+=− ⎪ ⎪⎝⎭,由212PO PF PF =⋅,得222222x y ⎛⎫⎛⎫+=+− ⎪⎪ ⎪⎪⎝⎭⎝⎭,即22331444x x +=−,解得x =2y =±, 所以,椭圆C 上有且只有4个点是“★”点. 故选:B.【点睛】本题考查椭圆中的新定义,考查椭圆方程的应用,考查化归与转化思想的应用,属于中等题. 11.(2019秋·北京·高二北京市第十三中学校考期中)已知两定点()1,0M −,()1,0N ,若直线上存在点P ,使||||4PM PN +=,则该直线为“A 型直线”,给出下列直线,其中是“A 型直线”的是( ) ①1y x =+;②2y =;③3y x =−+;④23y x =−+ A .①③ B .①②C .③④D .①④【答案】D【分析】易得点P 在以M 、N 为焦点的椭圆22143x y +=上,“A 型直线”和椭圆有公共点,逐个选项联立方程由判别式验证即可.【详解】两定点()1,0M −,()1,0N ,||||4PM PN +=, P ∴在以M 、N 为焦点的椭圆上,且22,1,3a c b ===,故椭圆的方程为22143x y +=,满足题意的“A 型直线”和椭圆有公共点,联立1y x =+和22143x y+=,消y 整理可得27880x x −−=,故0∆>,即直线与椭圆有公共点,即为“A 型直线”,联立2y =和22143x y+=,显然无交点,故不是“A 型直线”,联立3y x =−+和22143x y +=,消y 整理可得2724240x x −+=,故Δ0<,故不是“A 型直线”,联立23y x =−+和22143x y +=消y 整理可得21948240x x −+=,故0∆>,即直线与椭圆有公共点,即为“A 型直线”, 故选:D【点睛】本题考查了椭圆的定义以及椭圆的标准方程,此题属于圆锥曲线的新定义题目,同时考查了直线与椭圆位置关系的判断,属于中等题.12.(2017春·吉林·高一统考期末)已知平面上一点M (5,0),若直线上存在点P 使|PM |≤4,则称该直线为“ 切割型直线” , 下列直线中是“ 切割型直线” 的是( ) ①1y x =+;②2y =;③43y x =;④21y x =+. A .①③ B .①②C .②③D .③④【答案】C【分析】根据已知条件,利用点到直线的距离公式进行计算.【详解】对于①,点M 到直线y =x +1的距离14d ==,故不存在点P 使|PM |≤4,故①不是;对于②,点M 到直线y =2的距离d 2=2<4,故存在点P 使|PM |≤4,故②是; 对于③,直线方程为4x -3y =0,点M 到直线4x -3y =0的距离3543045d ⨯−⨯== ,故存在点P 使|PM |≤4,故③是;对于④,点M 到直线y =2x +1的距离44d =,故不存在点P 使|PM |≤4,故④不是. 综上可知符合条件的有②③.故A ,B ,D 错误. 故选:C.二、多选题13.(2022秋·福建厦门·高三厦门双十中学校考阶段练习)2021年3月30日,小米正式开始启用具备“超椭圆”数学之美的新logo .设计师的灵感来源于曲线C :||1n nx y +=.其中星形线E :22331x y =+常用于超轻材料的设计.则下列关于星形线说法正确的是( ) A .E 关于y 轴对称B .E 上的点到x 轴、y 轴的距离之积不超过18C .E 上的点到原点距离的最小值为14D .曲线E 所围成图形的面积小于2 【答案】ABD【分析】A 由(,)x y 、(,)x y −均在曲线上即可判断;B 应用基本不等式2233x y ≥+即可判断;C 由22223333()()x y x y +=+,结合立方和公式及B 的结论即可判断;D 根据2233x y +与||||x y +图形的位置关系判断.【详解】若(,)x y 在星形线E 上,则(,)x y −也在E 上,故E 关于y 轴对称,A 正确;由12233312||x y xy =≥=+,则1||8xy ≤当且仅当||||x y =时等号成立,B 正确;由222222222233233333333()1()())3()31([(])4x y x y x y x y xy xy +=+=+=−+−≥,当且仅当||||x y =时等号成立,故E 上的点到原点距离的最小值为12,C 错误;曲线E 过(1,0)±,(0,1)±,由2233||||1x y x y ++≥=,则2233x y +在||||x y +所围成的区域内部,而||||1x y +=所围成的面积为2,故曲线E 所围成图形的面积小于2,D 正确. 故选:ABD【点睛】关键点点睛:应用基本不等式有2233x y ≥+由22223333()()x y x y +=+及立方和公式求两点距离,利用2233x y +与||||x y +图形的位置判断面积大小.14.(2022·全国·高三专题练习)已知曲线C 的方程为0(),F x y =,集合{}(,)|() 0,T x y F x y ==,若对于任意的11(,)x y T ∈,都存在22(,)x y T ∈,使得12120x x y y +=成立,则称曲线C 为Σ曲线.下列方程所表示的曲线中,是Σ曲线的有( )A .22143x y +=B .221x y −=C .22y x =D .1y x =+ 【答案】AC【分析】问题转化为11(,)P x y T ∈,存在22(,)Q x y T ∈,使得OP OQ ⊥,根据这一条件逐一判断即可.【详解】A :22143x y +=的图象既关于x 轴对称,也关于y 轴对称,且图象是封闭图形.所以对于任意的点11(,)P x y T ∈,存在着点Q (x 2,y 2)使得OP OQ ⊥,所以满足;B :221x y −=的图象是双曲线,且双曲线的渐近线斜率为±1,所以渐近线将平面分为四个夹角为90°的区域,当P ,Q 在双曲线同一支上,此时90POQ ∠<︒,当P ,Q 不在双曲线同一支上,此时90POQ ∠>︒,所以90,POQ OP OQ ∠≠︒⊥不满足;C :22y x =的图象是焦点在x 轴上的抛物线,且关于x 轴对称,设P 为抛物线上一点,过O 点作OP 的垂线,则垂线一定与抛物线交于Q 点,所以90,POQ ∠=︒,所以OP OQ ⊥D :取P (0,1),若OP OQ ⊥,则有20y =显然不成立,所以此时OP OQ ⊥不成立, 故选:AC【点睛】关键点睛:运用圆锥曲线的性质是解题的关键.15.(2021秋·河北保定·高二顺平县中学校考阶段练习)在平面内,若曲线C 上存在点P ,使点P 到点()3,0A ,()3,0B −的距离之和为10,则称曲线C 为“有用曲线”,以下曲线是“有用曲线”的是( )A .5x y +=B .229x y +=C .221259x y +=D .216x y =【答案】ACD【分析】利用有用曲线的定义逐项判断即可. 【详解】解:设点P 的坐标为(),x y ,因为点P 到点()3,0A ,()3,0B −的距离之和为10,由椭圆的定义可得点P 的轨迹方程为:2212516x y +=,对A ,由22512516x y x y +=⎧⎪⎨+=⎪⎩整理得2412502250x x −+=2Δ250441225256000=−⨯⨯=>因此曲线5x y +=上存在点P 满足条件,所以5x y +=是“有用曲线”,故A 正确;对B ,因为曲线229x y +=在曲线2212516x y +=的内部,无交点,所以229x y +=不是“有用曲线”,故B 错误;对C ,曲线221259x y +=与2212516x y +=有交点()5,0与()5,0−,所以221259x y +=是“有用曲线”,故C 正确;对D ,曲线216x y =与2212516x y +=也有交点,所以216x y =是“有用曲线",故D 正确. 故选:ACD.【点睛】关键点睛:本题利用所给曲线的定义进行判断,关键是由题意得出点P 满足的方程,所给选项中的曲线只要与点P 满足的方程有交点即符合题意.16.(2021秋·辽宁·高二辽宁实验中学校考期中)双纽线也称伯努利双纽线,是指定线段AB 长度为2a ,动点M 满足2MA MB a ⋅=,那么M 的轨迹称为双纽线.已知曲线1C =为双纽线,下列选项判断正确的是( ) A .曲线C 过点()0,0B.曲线C上的点的纵坐标的取值范围是⎡⎣ C .曲线C 关于x 轴对称D .P 为曲线C 上的动点,,A B 的坐标为()0,1和()0,1−,则PAB 面积的最大值为2【答案】ABC【分析】将点()0,0代入曲线C 方程可知A 正确;1y ≥−1y ≥+可求得211y −≤,进而求得y 的范围,知B 正确;设曲线C 上的点(),x y 关于x 轴的对称点(),x y −代入曲线C 方程可知C 正确; 由1sin 2PABSPA PB θ=⋅知当PA PB ⊥时,PAB 面积最大,验证可知曲线C 上存在点P 使得PA PB ⊥,可知()max 12PAB S=,D 错误. 【详解】对于A ,将()0,0代入曲线C 方程,知方程成立,∴曲线C 过点()0,0,A 正确; 对于B ,(21x y y +≥=−(当且仅当0x =时取等号),1y =+(当且仅当0x =时取等号), 2111y y y ≥−⋅+=−(当且仅当0x=时取等号),即211y −≤,2111y ∴−≤−≤,解得:y ≤即曲线C 上的点的纵坐标的取值范围是⎡⎣,B 正确;对于C ,设曲线C 上任一点为(),x y ,则其关于x 轴对称的点为(),x y −, 1==,即点(),x y −也在曲线C 上,∴曲线C 关于x 轴对称,C 正确; 对于D ,设APB θ∠=,则1sin 2PABSPA PB θ=⋅, P 为曲线C 上的点,1PA PB ∴⋅=,1sin 2PABSθ∴=, 则当sin 1θ=,即PA PB ⊥时,()max 12PABS=, 当PA PB ⊥时,设()00,P x y ,则220011x y ⎧+==,解得:0012x y ⎧=⎪⎪⎨⎪=⎪⎩ 即曲线C 上存在点P ,使得PA PB ⊥,()max 12PAB S ∴=,D 错误. 故选:ABC.17.(2021秋·江苏南通·具有严格的比例性、艺术性,和谐性,蕴含着丰富的美学价值.这一比值能够引起人们的美感,是建筑和艺术中最理想的比例.我们把离心率e =的椭圆称为“黄金椭圆”,则以下说法正确的是( ) A .椭圆2212x =是“黄金椭圆” B .若椭圆22221(0)x y a b a b+=>>的右焦点为(),0F c ,且满足2b ac =,则该椭圆为“黄金椭圆”C .设椭圆22221(0)x y a b a b +=>>的左焦点为F ,上顶点为B ,右顶点为A ,若90ABF ∠=︒,则该椭圆为“黄金椭圆”D .设椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是1F ,2F ,若21211=⋅F F AF F B ,则该椭圆为“黄金椭圆” 【答案】ABC【分析】定义离心率12e =的椭圆称为“黄金椭圆”,根据各命题中的椭圆方程,由题设及c e a =、222a b c =+列方程求椭圆离心率即可确定是否为“黄金椭圆”【详解】对于A :由题意得21a =,22b =,故e ==2212x =是“黄金椭圆”,故A 正确; 对于B :2b ac =,即22a c ac −=,故210e e +−=,解得e =e =(舍去),故该椭圆是“黄金椭圆”, 故B 正确;对于C :由90ABF ∠=︒得22222()+=+++a c a b b c ,化简可知210e e +−=,解得12e =或e =(舍去),故该椭圆是“黄金椭圆”, 故C 正确;对于D :由21211=⋅F F AF F B ,得2(2)()()=−+c a c a c ,则e =(负值舍去),故该椭圆不是“黄金椭圆”, 故D 错误. 故选:ABC三、填空题18.(2023春·北京·高三北京市陈经纶中学校考开学考试)卵圆是常见的一类曲线,已知一个卵圆C 的方程为:()221224x y x x +=>−+,O 为坐标原点,点(1,0)A ,点P 为卵圆上任意一点,则下列说法中正确的是________.①卵圆C 关于x 轴对称②卵圆上不存在两点关于直线12x =对称 ③线段PO 长度的取值范围是[1,2] ④OAP △的面积最大值为1 【答案】①③④【分析】利用点(),x y 和(),x y −均满足方程,即可判断①;设()00,x y 和()001,x y −都在卵圆C 上,再解()22000200012411124x y x x y x ⎧+=⎪+⎪⎨−⎪+=⎪−+⎩即可判断②;利用两点间的距离公式表示2OP ,然后利用导数研究其最值,即可判断③;利用三角形的面积公式表示出OAP S △,然后利用导数研究其最值,即可判断④. 【详解】对于①,设(),x y 是卵圆C 上的任意一个点,因为()222212424y x x y x x −+=+=++,所以点(),x y −也在卵圆C 上,又点(),x y 和点(),x y −关于x 轴对称, 所以卵圆C 关于x 轴对称,故①正确;对于②,设()00,x y 在卵圆C 上,()00,x y 关于直线12x =对称的点()001,x y −也在卵圆C 上, 则()2200200012411124x y x x y x ⎧+=⎪+⎪⎨−⎪+=⎪−+⎩,解得0010x y =−⎧⎨=⎩或0020x y =⎧⎨=⎩, 所以卵圆上存在()()1,0,2,0−两点关于直线12x =对称,故②错误; 对于③,由22124x y x +=+,得22124x y x =−+, 所以212x x ≤+,又2x >−,所以12x −≤≤,设点()[],,1,2P x y x ∈−,则2322222241422x x x OP x y x x x ⎛⎫−=+=+−=+ ⎪++⎝⎭, 令()[]()3224,1,22x x f x x x −=+∈−+,则()()()[]()2224,1,22x x x f x x x +−'=∈−+,令()0f x '=,则0x =或1−±,当10x −<<或12x −+<<时,()0f x ¢>,当01x <<−()0f x '<,所以函数()f x 在()()1,0,1−−上递增,在(0,1−上递减,又()()(()11,04,12624f f f f −==−=−=,且261−>,所以()()min max 1,4f x f x ==,即[]21,4OP ∈,所以[]1,2OP ∈,故③正确; 对于④,点()[],,1,2P x y x ∈−,1122OAPSOA y =⋅=⨯= 令()2,122x g x x x =−≤≤+,则()()()24,122x x g x x x +'=−≤≤+, 当10x −<<时,()0g x '<,当02x <<时,()0g x '>, 所以()g x 在()1,0−上递减,在()0,2上递增, 所以()()min 00g x g ==,此时OAP △的面积取得最大值1,故④正确. 故答案为:①③④.【点睛】关键点点睛:本题考查了圆锥曲线的新定义问题,解决此类问题的关键在于理解新定义的本质,把新情境下的概念、法则、运算化归到常规的数学背景中,运用相关的数学公式、定理、性质进行解答. 19.(2023·高二课时练习)在平面直角坐标系中,()1,0A −,()10B ,,若在曲线C 上存在一点P ,使得∠APB 为钝角,则称曲线上存在“钝点”,下列曲线中,有“钝点”的曲线为______.(填序号)①24x y =;②22132x y +=;③221x y −=;④()()22224x y −+−=;⑤344x y +=.【答案】①④⑤【分析】根据曲线上存在“钝点”的定义,依次判断各曲线是否存在“钝点”即可.【详解】设点P 的坐标为(),x y , 若∠APB 为钝角,则1cos 0APB −<∠<, 所以0PA PB ⋅<,且,,A P B 不共线, 所以()()()()110x x y y −−−+−−<,且0y ≠, 化简可得221,0x y y +<≠,反之若221,0x y y +<≠,则∠APB 为钝角, 对于曲线24x y =,取曲线上的点11,216E ⎛⎫⎪⎝⎭,因为221111,021616⎛⎫⎛⎫+<≠ ⎪ ⎪⎝⎭⎝⎭,所以AEB ∠为钝角,故曲线24x y =为有“钝点”的曲线;对于曲线22132x y +=,若曲线上的点()11,F x y 为“钝点”,则2211132x y +=,221111,0x y y +<≠,所以21113x <−,矛盾所以曲线22132x y +=不是有“钝点”的曲线;对于曲线221x y −=,若曲线上点()22,G x y 为“钝点”,则22221x y −=,222221,0x y y +<≠,所以220y <,矛盾 所以曲线221x y −=不是有“钝点”的曲线;对于曲线()()22224x y −+−=,取曲线上的点(2M ,因为((2222121,20+=−<≠,所以AMB ∠为钝角,故曲线()()22224x y −+−=为有“钝点”的曲线; 对于曲线344x y +=,取曲线上的点()21,32N, 因为222111,0322⎛⎫⎛⎫+<≠ ⎪ ⎪⎝⎭⎝⎭,所以ANB ∠为钝角,故曲线344x y +=为有“钝点”的曲线. 所以曲线①④⑤为有“钝点”的曲线. 故答案为:①④⑤.20.(2023秋·广东茂名·高二统考期末)法国数学家蒙日(),17461818Monge −发现:双曲线()2222:10x y a b a bΓ=>>−的两条互相垂直切线的交点P 的轨迹方程为:2222x y a b +=−,这个圆被称为蒙日圆.若某双曲线()22210x y a a −=>对应的蒙日圆方程为223x y +=,则=a ___________.【答案】2【分析】根据题意写出双曲线()22210x y a a −=>对应的蒙日圆方程,可得出关于a 的等式,即可求得正数a 的值.【详解】由双曲线()22210x y a a−=>的方程可得21b =,由蒙日圆的定义可得双曲线()22210x y a a −=>对应的蒙日圆方程223x y +=,所以223a b −=,即213a −=,可得2a =. 故答案为:2.21.(2023·全国·高三专题练习)一条抛物线把平面划分为二个区域,如果一个平面图形完全落在抛物线含有焦点的区域内,我们就称此平面图形被该抛物线覆盖.那么下列命题中,正确的是___________.(填写序号) (1)任意一个多边形所围区域总能被某一条抛物线覆盖; (2)与抛物线对称轴不平行、不共线的射线不能被该抛物线覆盖;(3 (4)任意有限多条抛物线都不能覆盖整个平面. 【答案】(1)(2)(4)【分析】由平面图形被该抛物线覆盖的定义逐项分析判断即可【详解】解:由抛物线的图像和性质可知,由于任意一个多边形所围区域沿着抛物线顶点出发向抛物线对称轴所在直线平移,总能把有限的区域放入抛物线内部,所以(1)正确;由于过抛物线内部一点的直线(不平行于轴)与抛物线都有两个交点,故抛物线无法覆盖一条直线,也不能覆盖与轴不平行、不共线的射线,所以(2)正确;由于锐角是由两条不平行的射线组成,故抛物线不能覆盖任何一个锐角,所以(3)错误;取一条直线,使它不平行于任一抛物线的对称轴,根据抛物线的图像和性质可知直线上的点不能被完全覆盖,如图,因为一条直线若被抛物线覆盖,它必须是抛物线的对称轴,所以任意有限多条抛物线都不能覆盖整个平面,所以(4)正确故答案为:(1)(2)(4)【点睛】关键点点睛:此题考查新定义,考查抛物线的性质的应用,解题的关键是对新定义的正确理解,属于中档题22.(2023·全国·高三专题练习)定义:点P 为曲线L 外的一点,,A B 为L 上的两个动点,则APB ∠取最大值时,APB ∠叫点P 对曲线L 的张角.已知点P 为抛物线2:4C y x =上的动点,设P 对圆22:(3)1M x y −+=的张角为θ,则cos θ的最小值为___________. 【答案】34【分析】先根据新定义,利用二倍角公式判断PM 最小时cos θ最小,再设2,4a P a ⎛⎫⎪⎝⎭,利用距离公式,结合二次函数最值的求法求得PM 最小值,即得结果.【详解】解:如图,2cos cos cos 212sin APB APM APM θ∠∠∠===−,要使cos θ最小,则1sin AM APM PMPM∠==最大,即需PM 最小.设2,4a P a ⎛⎫ ⎪⎝⎭,则PM =∴当24a =,即2a =±时,min ||PM =1sin APM PM ∠==, 此时(1,2)P 或(1,2)−,22min 3(cos )12sin 124APM θ∠=−=−⨯=.故答案为:34.【点睛】关键点点睛:本题的解题关键在于理解新定义,将cos θ的最小值问题转化为线段PM 最小问题,结合二次函数求最值即突破难点.23.(2022·全国·高二专题练习)在平面直角坐标系xOy 中,点M 不与原点О重合,称射线OM 与224x y +=的交点N 为点M 的“中心投影点”,曲线2213x y −=上所有点的“中心投影点”构成的曲线长度是_______【答案】83π 【解析】可作出对应曲线的图象,结合图形,求出题中“中心投影点”构成的曲线长度对应圆中的圆心角,从而求出其“中心投影点”构成的曲线的长度.【详解】曲线2213x y −=的渐近线方程为:y = ,设渐近线与圆224x y +=的交点分别为,,,A C B D ,如下图则曲线2213x y −=上所有点的“中心投影点”构成的曲线为圆弧,AB CD由题意6AOx π∠=,所以23AOB π∠=所以24233AB ππ=⨯=,则83AB CD π+= 故答案为:83π24.(2020·浙江·高二期末)把椭圆C 的短轴和焦点连线段中较长者、较短者分别作为椭圆C '的长轴、短轴,使椭圆C 变换成椭圆C ',称之为椭圆的一次“压缩”.按上述定义把椭圆(0,1,2,)i C i =Λ“压缩”成椭圆1i C +,得到一系列椭圆123,,C C C ,…当短轴长与焦距相等时终止“压缩”.经研究发现,某个椭圆0C 经过(3)n n ≥次“压缩”后能终止,则椭圆2n C −的离心率可能是①2,②5中的______.(填写所有正确结论的序号) 【答案】①②【解析】分类讨论,确定压缩数为2n −时,半长轴、半短轴、半焦距,利用离心率公式,即可求得结论. 【详解】解:依题意,若原椭圆,短轴>焦距,则压缩数为n 时,半长轴为a ,半短轴为c ,半焦距为c所以压缩数为n 1−a ,半焦距为c ;压缩数为2n −a ∵压缩数为n 时,22222a c c c =+=∴2n C −的离心率==同理,若原椭圆,短轴<焦距,则压缩数为n 时,半长轴为a ,半短轴为c ,半焦距为c所以压缩数为n 1−c ,半焦距为a ;压缩数为2n −c ∵压缩数为n 时,22222a c c c =+=∴2n C −的离心率== 故答案为:①②.【点睛】本题考查新定义,考查学生的计算能力,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.25.(2018·北京·高二统考期末)已知两定点(2,0),(2,0)M N −,若直线上存在点P ,使得||||6PM PN +=,则该直线为“T 型直线”.给出下列直线,其中是“T 型直线”的是___________. ①2y x =+ ②3y = ③3y x =−+ ④132y x =+ 【答案】①③【分析】根据椭圆的定义将“T 型直线”的判定问题转化为直线与椭圆是否有公共点的问题.【详解】由椭圆的定义可知,点P 的轨迹是以,M N 为焦点的椭圆,其方程为22195x y +=,对于①中,直线2y x =+代入椭圆的方程22195x y +=,整理得2143690x x +−=,则236414(9)0∆=−⨯⨯−>,所以2y x =+是“T 型直线”;对于②中,把3y =代入22195x y +=,则29195x +=,此时无解,所以3y =不是“T 型直线”;对于③中,把直线3y x =−+代入椭圆的方程22195x y +=,整理得21454360x x −+=,则254414360∆=−⨯⨯>,所以3y x =−+是“T 型直线”;对于④中,把直线132y x =−+代入椭圆的方程22195x y +=,整理得2291081440x x −+=,可得Δ0<,所以132y x =−+不是“T 型直线”,故答案为:①③.26.(2017·河南漯河·漯河高中校考三模)平面直角坐标系中,(1,0)A −,(1,0)B ,若曲线C 上存在一点P ,使0PA PB ⋅<,则称曲线C 为“合作曲线”,有下列曲线①2212x y +=;②21y x =+;③2221y x −=;④2231x y +=;⑤24x y +=,其中“合作曲线”是__________.(填写所有满足条件的序号) 【答案】①③④【分析】设点(,)P x y ,曲线C 为“合作曲线”⇔存在点(,)x y 使得221x y +<.解出即可判断出结论. 【详解】解:设点(,)P x y ,曲线C 上存在一点P ,使0PA PB ⋅<,∴合作曲线⇔存在点(,)x y 使得221x y +<.①由2212x y +=,则满足存在点(,)x y 使得221x y +<,曲线C 上存在一点P 满足221x y +<,故1为合作曲线; ②令2(,1)P x x +,则222(1)1x x ++<,化为4230x x +<,此时无解,即不满足221x y +<,故2不为合作曲线;③由2221y x −=,可得a =,1b =,则曲线C 上存在一点P 满足221x y +<,故3为合作曲线;④由2231x y +=,可得:1a =,b =,则曲线C 上存在一点P 满足221x y +<,故4为合作曲线; ⑤因为直线圆心到直线24x y +=的距离1d =>,故曲线C 上不存在一点P 满足221x y +<,故5不为合作曲线;综上可得:“合作曲线”是①③④.故答案为:①③④27.(2016·河北衡水·统考一模)如图,将平面直角坐标系中的纵轴绕原点O 顺时针旋转30︒后,构成一个斜坐标平面xOy .在此斜坐标平面xOy 中,点(),P x y 的坐标定义如下:过点P 作两坐标轴的平分线,分别交两轴于,M N 两点,则M 在Ox 轴上表示的数为x ,N 在Oy 轴上表示的数为y .那么以原点O 为圆心的单位圆在此斜坐标系下的方程为___________.【答案】2210x y xy ++−=【分析】过点P 作 ,PA x PB y ⊥⊥, 设(,)P x y 在直角坐标下的坐标为 ()11,P x y , 因为30,BON ON y ∠==,所以 1,2OB y BN y ==,即111,2y y x x y ==+, 因为()11,P x y 在单位圆上,所以22111x y +=,即221122y x y ⎛⎫⎛⎫++= ⎪ ⎪ ⎪⎝⎭⎝⎭, 整理得2210x y xy ++−=.考点:圆的一般方程.【方法点晴】本题主要考查了与直角坐标有关的新定义的运算问题,对于新定义试题,要紧紧围绕新定义,根据新定义作出合理的运算与变换,同时着重考查了转化与化归的思想方法的应用,属于中档试题,本题的解答中,设出(,)P x y 在直角坐标下的坐标为11(,)P x y ',建立两个点之间的变换关系,代入单位圆的方程,即可曲解轨迹方程,其中正确得到两点之间的变换关系是解答的关键.28.(2022·全国·高三专题练习)称离心率为e =22221(0,0)x y a b a b −=>>为黄金双曲线.如图是双曲线22221(0,0,x y a b c a b −=>>=的图象,给出以下几个说法:①双曲线221=x 是黄金双曲线; ②若2b ac =,则该双曲线是黄金双曲线;③若F 1,F 2为左右焦点,A 1,A 2为左右顶点,B 1(0,b ),B 2(0,-b )且∠F 1B 1A 2=90°,则该双曲线是黄金双曲线; ④若MN 经过右焦点F 2且MN ⊥F 1F 2,∠MON =90°,则该双曲线是黄金双曲线. 其中正确命题的序号为____________【答案】①②③④【分析】根据双曲线方程求离心率,或由已知条件及双曲线参数关系构造齐次方程求离心率,结合黄金双曲线的定义判断正确命题.【详解】①:双曲线的标准方程为221x =,则2221,a b c ===,故c e a ===,满足; ②:由2222010b ac c ac a e e =⇒−−=⇒−−=,可得e =e =(舍),故满足; ③:由11290F B A ∠=︒,则222112112B F A B F A +=,所以()()222222()c b a b a c b ac +++=+⇒=,由②可得。
高二数学抛物线试题答案及解析
高二数学抛物线试题答案及解析1.下图是利用计算机作图软件在直角坐标平面上绘制的一列抛物线和一列直线,在焦点为的抛物线列中,是首项和公比都为的等比数列,过作斜率2的直线与相交于和(在轴的上方,在轴的下方).证明:的斜率是定值;求、、、、所在直线的方程;记的面积为,证明:数列是等比数列,并求所有这些三角形的面积的和.【答案】(1);(2);(3).【解析】解题思路:(1)联立直线与抛物线方程,整理成关于,的方程,进而求出的斜率;(2)利用直线的点斜式方程写出直线方程即可;(3)联立直线与抛物线方程,求弦长与点到直线的距离,进而求三角形的面积.规律总结:锥曲线的问题一般都有这样的特点:第一小题是基本的求方程问题,一般简单的利用定义和性质即可;后面几个小题一般来说综合性较强,用到的内容较多,大多数需要整体把握问题并且一般来说计算量很大,学生遇到这种问题就很棘手,有放弃的想法,所以处理这类问题一定要有耐心..试题解析:(1)由已知得,抛物线焦点,抛物线方程为,直线的方程为于是,抛物线与直线在轴上方的交点的坐标满足则有而直线的斜率为,则解得又点在第一象限,则;直线方程为;由得则,而到直线的距离为,于是的面积,所以数列是以为首项,为公比的等比数列.由于,所以所有三角形面积和为.【考点】1.直线的方程;2.直线与抛物线的位置关系.2.抛物线()的焦点为,已知点,为抛物线上的两个动点,且满足.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为()A.B.1C.D.2【答案】A.【解析】设,连接AF、BF,由抛物线的定义知,,在梯形ABPQ中,;应用余弦定理得,配方得,又因为,所以,得到.所以,即的最大值为,故选A.【考点】抛物线的简单性质.3.已知抛物线.(1)若直线与抛物线相交于两点,求弦长;(2)已知△的三个顶点在抛物线上运动.若点在坐标原点,边过定点,点在上且,求点的轨迹方程.【答案】(1);(2)().【解析】(1)这是解析几何中的常规问题,注意设而不求思想方法的使用;(2)求轨迹方程的方法有:直接法、定义法、代入转移法、几何法、参数法等,这里使用的是直接法,直接法的步骤是:建系、设点、列式、坐标化、化简整理、最后是多退少补,特别要注意多退少补.试题解析:(1)由,消去整理得: 2分设,则,所以 6分(注:用其他方法也相应给分)(2)设点的坐标为,由边所在的方程过定点,8分所以, 即() 14分(注:没写扣1分)【考点】1.直线与抛物线;2.求轨迹方程.4.已知圆C:的圆心为抛物线的焦点,直线3x+4y+2=0与圆C相切,则该圆的方程为().A.B.C.D.【解析】因为抛物线的焦点为,即为圆C的圆心,又直线3x+4y+2=0与圆C相切,所以圆心到直线的距离即为半径,则有,故选C.【考点】点到直线的距离公式,圆的切线的性质,抛物线的焦点坐标公式,圆的标准方程.5.已知抛物线.命题p: 直线l1:与抛物线C有公共点.命题q: 直线l2:被抛物线C所截得的线段长大于2.若为假, 为真,求k的取值范围.【答案】或或.【解析】先求出p为真, ;q为真,得且.由为假, 为真可得:p,q一真一假.若p真q假, 则或;若q真p假, 则.综上可得结论.若p为真,联立C和l1的方程化简得.时,方程显然有解;时,由得且.综上 (4分)若q为真, 联立C和l2的方程化简得,时显然不成立;∴,由于l2是抛物线的焦点弦, 故,解得且.(8分)∵为真, 为假,∴p,q一真一假.若p真q假, 则或; 若q真p假, 则.综上或或. (12分)【考点】复合命题真假的判断;根与系数的关系;焦点弦问题.6.如图,,,为两个定点,是的一条切线,若过,两点的抛物线以直线为准线,则该抛物线的焦点的轨迹是( )A.圆B.双曲线C.椭圆D.抛物线【答案】C【解析】焦点到和的距离之和等于和分别到准线的距离和,而距离之和为和的中点到准线的距离的二倍是定值,结合椭圆的定义得焦点的轨迹方程是以和为焦点的椭圆.【考点】圆锥曲线的轨迹问题.7.抛物线的焦点坐标是( )A.B.C.D.【答案】B【解析】根据题意可知条件中表示的是焦点在y轴上抛物线,2p=4,p=2,而焦点坐标为,【考点】抛物线的焦点坐标.8.过抛物线的焦点作一条直线交抛物线于两点,若线段的中点的横坐标为,则等于 .【答案】【解析】设,又抛物线的准线方程为,焦点,则根据抛物线的定义可知,所以.【考点】1.抛物线的定义;2.直线与抛物线的位置关系.9.已知点A(3,2), 点P是抛物线y2=4x上的一个动点,F为抛物线的焦点,求的最小值及此时P点的坐标.【答案】4, (1,2).【解析】设点P在准线上的射影为D,由抛物线的定义把问题转化为求PA+PD的最小值,同时可推断出当D,P,A三点共线时PA+PD最小,答案可得.设点P在准线上的射影为D,记抛物线y2=2x的焦点为F(1,0),准线l是x= -1,由抛物线的定义知点P到焦点F的距离等于它到准线l的距离,即PF=PD ,因此PA +PF="PA+" PD AD="4," 即当D,P,M三点共线时PA+PD最小,此时P(1,2).【考点】抛物线的简单性质.10.若点的坐标为,是抛物线的焦点,点在抛物线上移动时,取得最小值的的坐标为()A.B.C.D.【答案】D【解析】点在抛物线内部,设点在抛物线准线上的投影为点,点在抛物线准线上的投影为点,则,因此当时,取最小值,所以的坐标为.【考点】抛物线定义的应用11.设为抛物线上的动弦,且, 则弦的中点到轴的最小距离为A.2B.C.1D.【答案】B【解析】设、,弦的中点到轴的距离最小,则弦过抛物线的焦点,由题意得准线为,∴,即,∴弦的中点到轴的最小距离.【考点】抛物线的定义、最值问题.12.一个酒杯的轴截面是抛物线的一部分,它的方程是.在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r的范围是( )A.0<r≤1B.0<r<1C.0<r≤2D.0<r<2【答案】A),抛物线上点(x,y),求得点到圆心距离平方的表达式,进而根【解析】设小球圆心(0,y≥0,进而求得r的范围.据若r2最小值在(0,0)时取到,则小球触及杯底,需1-y【考点】抛物线定义与性质.13.抛物线y2=4px(p>0)上一点M到焦点的距离为,则M到y轴距离为 ( )A.a-p B.a+p C.a-D.a+2p【答案】A【解析】根据抛物线的定义,点到准线的距离就是,因此它到轴距离为.【考点】抛物线的定义.14.点P是抛物线y2=4x上一动点,则点P到点(0,-1)的距离与到抛物线准线的距离之和的最小值是 .【答案】【解析】抛物线y2=4x的焦点,点P到准线的距离与点P到点F的距离相等,本题即求点P到点的距离与到点的距离之和的最小值,画图可知最小值即为点与点间的距离,最小值为.【考点】抛物线的定义.15.曲线C上任一点到定点(0,)的距离等于它到定直线的距离.(1)求曲线C的方程;(2)经过P(1,2)作两条不与坐标轴垂直的直线分别交曲线C于A、B两点,且⊥,设M是AB中点,问是否存在一定点和一定直线,使得M到这个定点的距离与它到定直线的距离相等.若存在,求出这个定点坐标和这条定直线的方程.若不存在,说明理由.【答案】(1)y=2x2;(2)M轨迹是抛物线,故存在一定点和一定直线,使得M到定点的距离等于它到定直线的距离。
高二数学几何选讲试题答案及解析
高二数学几何选讲试题答案及解析1.如图,已知⊙与⊙外切于点,是两圆的外公切线,,为切点,与的延长线相交于点,延长交⊙于点,点在延长线上.(1)求证:是直角三角形;(2)若,试判断与能否一定垂直?并说明理由.(3)在(2)的条件下,若,,求的值.【答案】(1)证明略;(2);(3)【解析】(1)从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线,平分两条切线的夹角;(2)判断三角形相似:一是平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似;二是如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似;三是如果两个三角形的两组对应边的比相等,并且相应的夹角相等, 那么这两个三角形相似;四是如果两个三角形的三组对应边的比相等,那么这两个三角形相似;五是对应角相等,对应边成比例的两个三角形叫做相似三角;(3)切割线定理:切割线定理,是圆幂定理的一种,从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.试题解析:解:(1)证明:过点作两圆公切线交于,由切线长定理得,∴为直角三角形 3分(2)证明:∵,∴,又,∴∽∴即. 6分(3)由切割线定理,,∴∴. 9分【考点】(1)切线长定理;(2)相似三角形的应用;(3)切割线定理的应用.2.如图,过圆内接四边形的顶点引圆的切线,为圆直径,若∠=,则∠=( )A.B.C.D.【答案】B【解析】连接OC,则,,;在中,,.考点:圆的切线.3.如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,DC是∠ACB的平分线交AE于点F,交AB于D点.(1)求∠ADF的度数;(2)AB=AC,求AC∶BC.【答案】(1) ∠ADF=45°; (2) AC∶BC=.【解析】(1)由弦切角与角平分线,三角形的外角可得∠ADF=∠AFD,BE为直径∠DAE=90°,则可得∠ADF=45°;(2)由△ACE∽△BCA得,在中可得比值.解(1)∵AC为圆O的切线,∴∠B=∠EAC,又知DC是∠ACB的平分线,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD,又因为BE为圆O的直径,∴∠DAE=90°,∴∠ADF= (180°-∠DAE)=45°. 5分(2)∵∠B=∠EAC,∠ACB=∠ACB,∴△ACE∽△BCA,∴,又∵AB=AC,∠ADF=45°,∴∠B=∠ACB=30°,∴在中,=tan∠B=tan 30°=. 10分【考点】弦切角,三角形的相似的性质与判定.4.如图,PAB、PCD是圆的两条割线,已知PA=6,AB=2,PC=CD.则PD=________.【答案】12【解析】∵,∴设PC=x,则CD=2x,PD=PC+CD= 3x,由割线定理可得,即,解得x=4或x=-4(舍去),∴PD=3x=12.【考点】割线定理.5.如图所示,在△ABC中,AH⊥BC于H,E是AB的中点,EF⊥BC于F,若HC=BH,则FC∶BF等于A.B.C.D.【答案】D【解析】由AH⊥BC,EF⊥BC知EF∥AH,又∵AE=EB,∴BF=FH,∴HC=BH=BF,∴FC=BF.6.如图所示,CD切⊙O于B,CO的延长线交⊙O于A,若∠C=36°,则∠ABD的度数是A.72°B.63°C.54°D.36°【答案】B【解析】连结OB.∵CD为⊙O的切线,∴∠OBC=90°.∵∠C=36°,∴∠BOC=54°.又∵∠BOC=2∠A,∴∠A=27°.∴∠ABD=∠A+∠C=27°+36°=63°.7.如图所示,⊙O是△ABC的内切圆,BC边上切点为D,AB=5,BC=7,AC=6,则BD=________.【答案】3【解析】设E、F分别为AC、AB边上的切点,设BD=x,则CD=CE=7-x,AF=AE=6-(7-x)=x-1,BF=x,∴x-1+x=AB=5,∴x=3.8.如图所示,四边形ABCD是⊙O的内接四边形,延长BC到E,若∠BCD∶∠ECD=3∶2,那么∠BOD等于A.120°B.136°C.144°D.150°【答案】C【解析】要求圆心角∠BOD的度数,需求圆周角∠A的度数,由圆的内接四边形的性质知:∠A=∠DCE,即求出∠ECD的度数.而∠BCD∶∠ECD=3∶2,可求出∠ECD=72°,即∠A=72°,故∠BOD=2∠A=144°.9.如图,AT切⊙O于T,若AT=6,AE=3,AD=4, DE=2,则BC等于A.3B.4C.6D.8【答案】C【解析】∵AT为⊙O的切线,∴AT2=AD·AC.∵AT=6,AD=4,∴AC=9.∵∠ADE=∠B,∠EAD=∠CAB,∴△EAD∽△CAB,即=,∴BC===6.10.如图所示,在△ABC中,AD⊥BC于D,下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3)=;(4)AB2=BD·BC.其中一定能够判定△ABC是直角三角形的共有A.3个 B.2个 C.1个 D.0个【答案】A【解析】 (1)不能判定△ABC为直角三角形,因为∠B+∠DAC=90°,而∠B+∠DAB=90°,∴∠BAD=∠DAC,∴∠B=∠C,不能判定∠BAD+∠DAC=90°;而(2)中∠B=∠DAC,∠C为公共角,∴△ABC∽△DAC,∵△DAC为直角三角形,∴△ABC为直角三角形;在(3)中,=可得△ACD∽△BAD,所以∠BAD=∠C,∠B=∠DAC,∴∠BAD+∠DAC=90°;而(4)中AB2=BD·BC,即=,∠B为公共角,∴△ABC∽△DBA,即△ABC为直角三角形.∴正确命题有3个.11.如图所示,在直角梯形ABCD中,AB=7,AD=2,BC=3.设边AB上的一点P,使得以P、A、D为顶点的三角形和以P、B、C为顶点的三角形相似,那么这样的点P有A.1个 B.2个C.3个 D.4个【答案】C【解析】设AP=x,则PB=7-x.(1)若△PAD∽△PBC,则=,即=,得x=<7,符合条件.(2)若△PAD∽△CBP,即=,x2-7x+6=0,解得x1=1,x2=6也符合条件,故满足条件的点P有3个.12.如图,若BE∥CF∥DG,AB∶BC∶CD=1∶2∶3,CF=12 cm,求BE,DG的长.【答案】4(cm) 24(cm)【解析】解∵BE∥CF,∴=,∵AB∶BC=1∶2,∴AE∶AF=1∶3.∵CF=12 cm,∴BE=12×=4(cm).∵CF∥DG,∴=.又∵AB∶BC∶CD=1∶2∶3,∴=.∴DG=·CF=24(cm).13.如图所示,AD切⊙O于点F,FB,FC为⊙O的两弦,请列出图中所有的弦切角________________________.【答案】∠AFB、∠AFC、∠DFC、∠DFB【解析】弦切角的三要素:(1)顶点在圆上,(2)一边与圆相交,(3)一边与圆相切.三要素缺一不可.14.如图所示,AC切⊙O于点A,∠BAC=25°,则∠B的度数为________.【答案】65°【解析】∵∠BAC=∠AOB,∴∠AOB=2×25°=50°,∴∠B=×(180°-50°)=65°.15.如图所示,已知四边形ABCD内接于⊙O,∠C=130°,AD是⊙O的直径,过B作⊙O的切线FE,求∠ABE的度数.【答案】140°【解析】解因为四边形ABCD为⊙O的内接四边形,∠C=130°,所以∠A=50°.连接OB,则∠ABO=50°,所以∠AOB=80°.又因为∠ABF=∠AOB=40°,所以∠ABE=180°-∠ABF=180°-40°=140°,即∠ABE=140°.16.如图所示,正方形ABCD内接于⊙O,⊙O的半径为4 cm,则过AB、BC中点的弦EF的长是________ cm.【答案】4【解析】利用圆内半径与弦的关系,并结合圆内接四边形的知识连接OB交EF于H,连接OE,则OH=2 cm,则HE==2cm,∴EF=4 cm.17.如图所示,在直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E为AB上的点,DE平分∠ADC,CE平分∠BCD,以AB为直径的圆与CD有怎样的位置关系?【答案】见解析【解析】解过E作EF⊥CD于F,∵DE平分∠ADC,CE平分∠BCD,∠A=∠B=90°,∴AE=EF=BE=AB.∴以AB为直径的圆的圆心为E,∴EF是圆心E到CD的距离,且EF=AB,∴以AB为直径的圆与边CD是相切关系.18.如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠D=30°.(1)求证:AD是⊙O的切线.(2)若AC=6,求AD的长.【答案】(1)见解析 (2) 6【解析】(1)证明如图,连接OA,∵sinB=,∴∠B=30°,∵∠AOC=2∠B,∴∠AOC=60°,∵∠D=30°,∴∠OAD=180°-∠D-∠AOD=90°,∴AD是⊙O的切线.(2)解∵OA=OC,∠AOC=60°,∴△AOC是等边三角形,∴OA=AC=6,∵∠OAD=90°,∠D=30°,∴AD=AO=6.19.圆内接平行四边形一定是A.正方形B.菱形C.等腰梯形D.矩形【答案】D【解析】由于圆内接四边形对角互补,平行四边形的对角相等,所以圆内接平行四边形的各角均为直角,故为矩形.20.若BE和CF是△ABC的边AC和AB边上的高,则________四点共圆.【答案】B、C、E、F【解析】由∠BEC=∠BFC=90°,知△BCE和△BCF共圆.21.如图所示,四边形ABCD为⊙O的内接四边形,已知∠BOD=60°,则∠BAD=________,∠BCD=________.【答案】30°150°【解析】由∠A=∠BOD=30°,∠BCD=180°-∠A=150°.22.如图所示,AB、CD都是圆的弦,且AB∥CD,F为圆上一点,延长FD、AB交于点E.求证:AE·AC=AF·DE.【答案】见解析【解析】证明连接BD,因为AB∥CD,所以BD=AC.因为A、B、D、F四点共圆,所以∠EBD=∠F.因为∠E为△EBD和△EFA的公共角,所以△EBD∽△EFA.所以=.所以=,即AE·AC=AF·DE.23.在Rt△ACB中,∠C=90°,CD⊥AB于D,若BD∶AD=1∶4,则tan∠BCD的值是A.B.C.D.2【答案】C【解析】如图所示,由射影定理得CD2=AD·BD,又∵BD∶AD=1∶4,令BD=x,则AD=4x (x>0).∴CD2=AD·BD=4x2,∴CD=2x,在Rt△CDB中,tan∠BCD===.24.如图所示,四边形ABCD是矩形,∠BEF=90°,①②③④这四个三角形能相似的是__________.【答案】①③【解析】因为四边形ABCD为矩形,所以∠A=∠D=90°.因为∠BEF=90°,所以∠1+∠2=90°.因为∠1+∠ABE=90°,所以∠ABE=∠2.又因为∠A=∠D=90°,所以△ABE∽△DEF.25.如图,在圆O中,直径AB与弦CD垂直,垂足为E,EF⊥DB,垂足为F,若AB=6,AE =1,则DF·DB=________.【答案】5【解析】连接AD,因为AB=6,AE=1,所以BE=5,所以DE2=AE·BE=1×5=5,在Rt△BDE中,有DE2=DF·DB=5.26.在Rt△ABC中,∠C=90°,a-b=1,tan A=,其中a、b分别是∠A和∠B的对边,则斜边上的高h=________.【答案】【解析】由tanA==和a-b=1,∴a=3,b=2,故c=,∴h==.27.如图,已知Rt△ABC的周长为48 cm,一锐角平分线分对边为3∶5两部分.(1)求直角三角形的三边长;(2)求两直角边在斜边上的射影的长.【答案】(1) 20 cm,12 cm,16 cm (2)cm, cm【解析】解 (1)如图,设CD =3x ,BD =5x ,则BC =8x ,过D 作DE ⊥AB ,由Rt △ADC ≌Rt △ADE 可知,DE =3x ,BE =4x ,∴AE +AC +12x =48,又AE =AC ,∴AC =24-6x ,AB =24-2x , ∴(24-6x)2+(8x)2=(24-2x)2,解得:x 1=0(舍去),x 2=2, ∴AB =20,AC =12,BC =16, ∴三边长分别为:20 cm,12 cm,16 cm.(2)作CF ⊥AB 于F 点,∴AC 2=AF·AB ,∴AF === (cm); 同理:BF === (cm).∴两直角边在斜边上的射影长分别为cm , cm.28. 如图所示,梯形ABCD 的对角线交于点O ,则下列四个结论: ①△AOB ∽△COD ;②△AOD ∽△ACB ; ③S △DOC ∶S △AOD =CD ∶AB ;④S △AOD =S △BOC .其中正确的个数为( ).A .1B .2C .3D .4【答案】C【解析】∵DC ∥AB ,∴△AOB ∽△COD ,①正确.由①知,=.利用三角形的面积公式可知S △DOC ∶S △AOD =OC ∶OA =CD ∶AB ,③正确.∵S △ADC =S △BCD ,∴S △ADC -S △COD =S △BCD -S △COD ,∴S △AOD =S △BOC ,④正确.故①③④都正确.29. 如图所示,在△ABC 中,M 在BC 上,N 在AM 上,CM =CN ,且=,下列结论中正确的是 ( ).A.△ABM∽△ACBB.△ANC∽△AMBC.△ANC∽△ACMD.△CMN∽△BCA【答案】B【解析】由CM=CN知∠CMN=∠CNM,∴∠AMB=∠ANC,又=,∴=,故△ABM∽△ACN.30.如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点F.求证:FD2=FB·FC.【答案】见解析【解析】证明∵E是Rt△ACD斜边AC的中点,∴DE=EA,∴∠A=∠2.又∵∠1=∠2,∠1=∠A.∵∠FDC=∠CDB+∠1=90°+∠1,∠FBD=∠ACB+∠A=90°+∠A,∵∠FDC=∠FBD.又∵∠F是公共角.∴△FBD∽△FDC,∴=,∴FD2=FB·FC.31.若=,则下列各式一定成立的是A.=B.=C.=D.=【答案】B【解析】=⇒ad=bc.=⇒ac=bd,∴A不正确.=⇒ad=bc,∴B正确.同理知C、D均不正确.32.如图所示,AD是△ABC的中线,E是CA边的三等分点,BE交AD于点F,则AF∶FD为A.2∶1B.3∶1C.4∶1D.5∶1【答案】C【解析】要求AF∶FD的比,需要添加平行线寻找与之相等的比.注意到D是BC的中点,可过D作DG∥AC交BE于G,则DG=EC,又AE=2EC,故AF∶FD=AE∶DG=2EC∶EC=4∶1.33.如图所示,在△ABC中,MN∥DE∥BC,若AE∶EC=7∶3,则DB∶AB的值为________.【答案】3∶10【解析】由AE∶EC=7∶3,有EC∶AC=3∶10.根据MN∥DE∥BC,可得DB∶AB=EC∶AC,即得DB∶AB=3∶10.34.如图所示,在△ABC中,AE∶EB=1∶3,BD∶DC=2∶1,AD与CE相交于F,求+的值.【答案】【解析】解过点D作DG∥AB交EC于G,则===,而=,即=,所以AE=DG,从而有AF=DF,EF=FG=CG,故+=+=+1=.35.如图所示,AB∥CD∥EF,且AO=OD=DF,BC=6,则BE等于().A.9B.10C.11D.12【答案】A【解析】过点O作一条与CD平行的直线,然后结合平行线等分线段定理即可解得BE=9.36.已知梯形的中位线长10 cm,一条对角线将中位线分成的两部分之差是3 cm,则该梯形中的较大的底是________ cm.【答案】13【解析】设梯形较大,较小的底分别为a,b,则有可得:a=13.37.如图,⊙的直径,是延长线上的一点,过点作⊙的切线,切点为,连接,若30°,.【答案】【解析】⊙的半径为3,则。
高二数学解析式试题答案及解析
高二数学解析式试题答案及解析1.如图所示,某人想制造一个支架,它由四根金属杆构成,其底端三点均匀地固定在半径为的圆上(圆在地面上),三点相异且共线,与地面垂直. 现要求点到地面的距离恰为,记用料总长为,设.(1)试将表示为的函数,并注明定义域;(2)当的正弦值是多少时,用料最省?【答案】(1),;(2).【解析】(1)由已知三点相异且共线,与地面垂直,且三点均匀地固定在半径为的圆上,所以是全等的直角三角形,从而有,进而可得,再由点到地面的距离恰为得;从而由可将L表示为的函数;其定义域由图形可知:,而当PH最短时角为最大,但由于三点相异,所以小于该最大值,从而求得其定义域;(2)用料最省,即L取得最小值;由(1)的函数利用导数方法来求使其取得最小值的的值:先求出L的导函数,再令其等于零求出对应的的值,再讨论函数的单调性就可确定的值.试题解析:(1)因与地面垂直,且,则是全等的直角三角形,又圆的半径为3,所以,, 3分又,所以, 6分若点重合,则,即,所以,从而,. 7分(2)由(1)知,所以,当时,, 11分令,,当时,;当时,;所以函数L在上单调递减,在上单调递增, 15分所以当,即时,L有最小值,此时用料最省. 16分【考点】1.函数的应用;2.函数最值.2.函数的部分图像如图所示,则函数的解析式为________________【答案】【解析】根据题意,由于函数的周期为,故可知w=2,将x=代入解析式中,可知函数值为4,那么振幅为2,可知4=,,故可知函数的解析式为。
【考点】三角函数的解析式点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,突出考查特值法与排除法的综合应用,考查分析与计算的能力,属于中档题.3.已知函数的图象在与轴交点处的切线方程是.(Ⅰ)求函数的解析式;(Ⅱ)设函数,若的极值存在,求实数的取值范围以及当取何值时函数分别取得极大和极小值.【答案】(1)(2)当时有极大值;当时有极小值【解析】解:(1)由已知,切点为,故有,即① 1分又 ,由已知, .得② 3分联立①②,解得,于是函数解析式为 5分(2) ,,令 6分当函数有极值时,方程必有实根,由,得 . 8分①当时, 有实根,在左右两侧均有,故函数无极值.②当时, 有两个实根, ,当变化时, 的变化情况如下表:11分故当时,函数有极值:当时有极大值;当时有极小值. 12分【考点】导数的运用点评:主要是考查了导数在研究函数中的运用,属于基础题。
2023北京重点校高二(上)期末数学汇编:平面解析几何章节综合
2023北京重点校高二(上)期末数学汇编平面解析几何章节综合1,2,半径x+.()21x+D.()21A.Q B.R C.SP−6.(2023秋·北京海淀·高二统考期末)经过点(1,0)A.310−−=B.x yC.330−−=D.xx y上,且120MF MF⋅=,则B.2北京朝阳·高二统考期末)已知B.231+45901201352023秋高二统考期末)如图是一个椭圆形拱桥,当水面在处时,在如图所示的截面里,桥洞与其倒影恰好构成一个椭圆.此时拱顶离水面,水面宽,那么当水位上升)A.33m B.33m2二、填空题16.(2023秋·北京东城·高二统考期末)已知点ABC的周长为21.(2023a则实数=22.(2023是__.23.(2023两点,求EBC的面积的最小值.>>的长轴长为0)b椭圆C 上.(1)求椭圆C 的方程;(2)过点(4,0)M 的直线l 椭圆C 交于()()1122,,,A x y B x y 两点,且120y y ≠.问:x 轴上是否存在点N 使得直线NA ,直线NB 与y 轴围成的三角形始终是底边在y 轴上的等腰三角形?若存在,求点N 的坐标;若不存在,说明理由. ______________;经过原点且斜率不为最大时,12PF PF ⋅=_____________1,2,半径)229−=;【详解】PF,则设火星半径为R,椭圆左焦点为1F,连接1则1222MF MF a −==①,因为120MF MF ⋅=,所以MF 由勾股定理得212MF MF +①②联立可得151MF =+所以12112F F MSMF MF ==故选:B D.0a >,∴的方程,再联立直线MN的最大值为圆心到点1,1为圆心,)(213−++135.图1(2)若P 不是直角顶点,如图2,则,满足PMN 是等腰直角三角形的非直角顶点个,图2故4t =时,使得MNP △是等腰直角三角形的点对④:04t <<时,(1)若P 为直角顶点,如图1,则|MN (2)若P 不是直角顶点,如图3,则个,图3故04t <<时,使得MNP △是等腰直角三角形的点故答案为:②③④.【点睛】椭圆的参数方程是x =故ABC的周长CC=1∴圆C和圆(2)当过∴可设所求切线方程为:∴圆心C到切线的距离的方程,联立直线与抛物线的方程,可知EBC的面积的距离与它到直线为准线的抛物线,所以EBC的面积(2−1616m m所以EBC的面积的最小值为(1)22 4xy+存在,(1,0N【分析】(1)根据椭圆的定义即可求解;【详解】(1)因为12PF F S =12PF F S=最大时,面积最大,则此时为短轴顶点.不妨设()0,1P .(1F −,所以(11,PF =−,(21,PF =−所以121PF PF ⋅=−⨯故答案为:22;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学解析几何练习题及答案解析几何是高中数学的重要内容之一,是数学中的一个分支,它主要研究几何图形的性质及其相互之间的关系。
对于高二学生来说,解析几何练习题的掌握与理解是非常关键的。
下面将介绍一些高二数学解析几何的典型练习题及其答案,希望能够帮助到广大学生。
练习题一:
已知点A(3,4),B(7,8),C(5,2),D(x,y)为AB的中点,求点D的坐标。
解答:
若D为AB的中点,则有以下关系:
x = (x1 + x2)/2
y = (y1 + y2)/2
带入坐标值可得:
x = (3 + 7)/2 = 5
y = (4 + 8)/2 = 6
因此,点D的坐标为(5,6)。
练习题二:
已知直线L过点A(2,3),B(5,7),求直线L的斜率和方程。
解答:
直线的斜率可以通过两点间的坐标差来计算,即:
斜率 k = (y2 - y1)/(x2 - x1)
带入坐标值可得:
k = (7 - 3)/(5 - 2) = 4/3
直线经过点A(2,3),可以得到直线的方程为:
y - y1 = k(x - x1)
y - 3 = (4/3)(x - 2)
3y - 9 = 4x - 8
4x - 3y = 1
因此,直线L的斜率为4/3,方程为4x - 3y = 1。
练习题三:
已知点A(3,4),B(7,8),C(5,2),判断三角形ABC是否为等腰三角形。
解答:
要判断三角形ABC是否为等腰三角形,需要比较两边的长度是否相等。
我们可以利用两点间的距离公式来计算各边的长度。
已知点A(3,4),B(7,8),C(5,2),则有:
AB的长度为:√[(x2 - x1)^2 + (y2 - y1)^2] = √[(7 - 3)^2 + (8 - 4)^2] = √32
AC的长度为:√[(x2 - x1)^2 + (y2 - y1)^2] = √[(5 - 3)^2 + (2 - 4)^2] = √8
BC的长度为:√[(x2 - x1)^2 + (y2 - y1)^2] = √[(5 - 7)^2 + (2 - 8)^2] = √36
因为√32≠√8≠√36,所以三角形ABC不是等腰三角形。
以上是高二数学解析几何的部分典型练习题及答案,通过对这些题目的学习和理解,可以更好地掌握解析几何的基本原理和计算方法。
希望广大学生能够通过多做练习题,加深对解析几何的理解和应用能力,为未来的学习打下坚实的基础。