1999电镀金刚石长丝锯制造的实验研究
金刚石线锯质量检验

金刚石线锯质量检验周波;毛剑波【摘要】为检验金刚石线锯的质量,以显微图像分析为基础,采用数学三维建模的方法,共选择5个线锯样品,对其表面的磨粒出刃高度、磨粒出刃率、磨粒面积比、线锯丝径、包络丝径、磨粒堆积直径等参数进行量化分析.结果表明:分析结果能很好地反映产品质量的变化,对于线锯产品质量检验与控制,具有非常有效的指导作用.%To inspect the quality of diamond wire saw,mathematics three-dimensional modeling method is proposed based on the microscopic image analysis to quantitatively analyze parameters such as protrusion height,protrusion rate and area ratio of the grits,and diameters of wire,saw and grits.Five samples are chosen to compare and analyze.Results show that this method could reflect the change of the product quality well,which is an effective guidance for wire saw product quality inspection and control.【期刊名称】《金刚石与磨料磨具工程》【年(卷),期】2017(037)002【总页数】5页(P73-77)【关键词】金刚石线锯;显微图像分析;数学三维建模;量化分析【作者】周波;毛剑波【作者单位】郑州建斌电子科技有限公司,郑州450007;超硬材料磨具国家重点实验室,郑州450001;西安隆基硅材料股份有限公司,西安710100【正文语种】中文【中图分类】TQ164;TG74电镀金刚石线锯是以电镀金属为结合剂,通过电沉积,把金刚石磨料固结在芯线上而制成的一种线状切割工具[1],是近几年新发展起来的一种高新技术产品,广泛用于太阳能硅片、LED、半导体、宝石、光学玻璃等贵重材料以及精密器件的切割,具有切割效率高、精度高、环保节能等显著优点[2]。
电镀金刚砂工艺毕业设计

1.前言1.1 课题的提出如今随着科学技术的飞速发展,单一的金属材料不足以满足某些特殊需求,而复合材料的兴起可以满足许多特殊的性能及功能,在现代科学技术中发挥着重要的作用;复合镀层是国内外近十几年来高速发展起来的材料科学的新兴材料;复合电镀是提高金属材料表面机械性能的重要方法之一1,复合电镀就是把一种或多;,越、23尼龙、聚四氟乙烯、氟化石墨和云母微粉等一些有机物质;一般来讲,凡是能电沉积出镀层或能得到化学镀镀层的金属或合金都可以作为形成复合镀层的基质金属;目前较常使用的基质金属有:铜、镍、铬、铁、锌、锡、金、银等;复合电镀最大的优点是可以通过选用具有不同性质的一种或多种微粒,通过电沉积而形成具有各种所需性能的复合镀层,这些不溶性的微粉均匀地弥散在镀层中,赋予镀层以各种功能1.2 课题研究的意义由于复合镀层由基质金属盒分散微粒两相组成,因此复合镀层兼具各组成的优点;以镍为基质金属,以金刚石微粒为分散相,通过电沉积得到的复合镀层具有高的硬度和良好的耐磨性,广泛的用在刀具,磨具中;在镍-金刚石复合镀中,由于金刚石微粒具有特有的表面性能和磁性,在电沉积过程中极易发生粒子团聚和沉降现象,不仅影响其在镀层中的均匀分布和粒子、3、金刚石微粉等;基质金属有镍、铜、钴、铬和一些合金等; SiC、WC、TiC、SiN2这一类复合镀层不仅具有良好的耐磨性,同时也具有良好的抗高温能力,所以也有人称之为“金属陶瓷复合镀层”;比如,镍基复合镀层的耐磨性比钝镍镀层高70%,因此可以用于汽车或飞机发动机的汽缸壁、汽缸喷嘴或活塞环上;在这方面,武汉材保所、南京航空学院、啥尔滨工大、天津大学、武汉一个部队的工厂等许多单位做了大量工作;为了比较镍-碳化硅复合镀层和镀铬层的耐磨性能,国外有人用泰伯磨损试验机进行试验,所得结果表明:这种复合镀层的磨损量仅为铬层的1/2.因此,早在1966年就在西德成功利用与转子发动机缸体型面上,以及部分冲压模具上;金刚石硬度极高,它与镍等基质金属组成的复合镀层,可用于工具,模具的精加工,宝石加工,牙科医疗器械等;例如:武汉材料研究保护所在七十年代末开展了镍-钴合金与金刚石复合电镀工艺的研究并用于轴窝磨头上,八十年代初期,天津大学,武汉部队712厂研制的镍一金刚石复合镀层曾用于切,磨削工具及滚轴上;武汉地质学院研究的镍一结果表明:镍基聚四氟乙烯复合镀层的磨损量为双镍+铬镀层的1/3-1/8 氟化石墨复合镀层,即使是在高温、高压、高速的摩擦状态下,仍能保持良好的减摩性能;它的摩擦系数并不随温度的变化而显著改变;这一类的复合镀层可用于无法添加液体润滑油的特殊条件下的摩擦件上,如高空、高真空条件下卫星、航天飞机,或是高温条件下等;随着表面镀层摩擦剥落,固体润滑剂能自动补加进去起到润滑作用,因此这一类镀层叫“自润滑减摩复合镀层;武汉材保所和天津大学在这方面都做了很多的工作;国外从七十年代开始,就研究了氟化石墨与金属镍、铜、铅的共沉积以及这类复合镀层的摩擦磨损性能;这类复合镀层有很好的抗擦伤性能,可用于汽缸型面、发动机内壁、活塞环、活塞杆,轴承以及其他机器的滑动部件上;日本还在水平连铸机结晶器内壁上电镀镍-氟化石墨复合镀层以提高结晶器的使用寿命;电镀这种复合镀层的结晶器的拉坯阻力比电镀铬层下降1/4.武汉材保3所在七十年代末、八十年代初开始研究镍基氟化石墨及铜基氟化-该1.3.4 能够形成热扩散合金的复合镀层这种工艺是首先将金属微粉与金属共沉积,得到复合镀层,然后,进行热处理,得到新组成的合金镀层;例如电镀不锈钢时,铬的沉积比较困难,如果把铬粉按一定比例悬浮于Ni-Fe合金镀液中,使Cr与Ni—Fe共沉积,形成复合镀层;然后将复合镀层进行热处理,最后得到不锈钢镀层;天津大学曾对这种镀层进行过研究;使用同样的方法可以得到Cr-W 10%、Cr-Mo5%合金镀层.1.3.5 其他特殊功能的复合镀层这方面的应用也很多,如抗电蚀功能的金基或银基复合镀层;我们知道,金银都是良好的导电材料,常用作电接触元件的表面镀层;但是纯金、纯银镀层耐磨、耐电蚀性差,而且易粘连;现在研制出的Au-WC、Au—Sic、Ag—WC、Ag一石墨、Ag-La2O3、Ag—MoS2等许多复合镀层不仅具有良好的导电性、较低的接触电阻,而且硬度适中,耐磨、减摩性能好,抗电蚀能力强;因此可以用很薄的复合镀层来代替整体的纯银材料而广泛用于低压电器和家用电器产品上;天津大学研制的,2.复合电镀镍-金刚石的工艺评述2.1 复合电镀镍-金刚石的工艺流程镀液配置→镀前处理→电镀→镀后处理→热处理→性能测试2.1.1 各种镀液配方特点pH子水中溶解,然后依次加入到上述溶液中,并不断搅拌;3 将计量的金刚石微粉加入适量去离子水中,搅拌,然后加入适量的分散剂,超声5min后,加入到前面配制的电镀液中,再超声lOmin,去离子水调整镀液至规定体积;复合电镀镍-铁-金刚石镀液组成5镀液成分浓度NiSO4·7H2O 200g/lNiCl 2·6H 2O 60g/lFeSO 4·7H 2O 30g/lNa 3C 6H 6O 7·2H 2O 30g/lH 3BO 3 40g/lC 6H 4COSO 2NH 3g/l791光亮剂 3ml/lC 12H 25SO 4Na 0.2g/l温度 30-65℃PH 3.0-5.5溶液超声频率 40-100KHz2.1.3 镀前处理基体的镀前处理:机械打磨→抛光→化学除油→弱酸活化→电镀金刚石粉的预处理:丙酮浸泡→去离子水洗→稀硝酸浸泡→去离子水洗→稀氢氧化钠浸泡→去离子水冲洗至PH值约为7→浸泡在镀液中待用2.1.4 电镀过程7电镀中用WYJ-3B型晶体管直流双路稳压电源提供电压,串接100mA直流电表:~,,1)结合力测定镀件经400℃保温1 h,水冷处理后,观察镀层是否碎裂,然后用冲击法作破坏性实验,观察金刚石微粒是否脱落;2)金刚石微粒含量测定用称量法测定金刚石微粒含量.镀前在1/10000 g天平上称出经冲洗烘干后基体镀件的重量,镀后再称出镀件的重量,得到镀层和金刚石微粒的重量.用1∶4的硝酸溶液38%的浓硝酸与水的体积比加热溶解镀层,残留金刚石微粒经冲洗、过滤、烘干等处理后,称出量瓶、滤纸、金刚石微粒总重量,按下式计算镀层内金刚石微粒含量;W t = W2-W1/W×100%式中:Wt——镀层内金刚石微粒质量百分比;W——镀层质量;W1——量瓶、滤纸质量;下:d=M2-M1×104/p×A其中 d—镀层的厚度,μm;M1—镀件电沉积前的重量,g;M2—镀件电沉积后的重量,g;P—镀层的平均密度,g/cm3;A—镀件的被镀表面积,cm2;5)镀层显微硬度的测定采用HX-1000型显微硬度计测定镀层的显微硬度,加载载荷为100g,加载时间为15s,物镜放大倍率为40倍,每个试样测量5个不同部位的点,结果取其平均值8;利用仪器所附带的金刚石压头加一定负荷,在被测试样表面压出压痕,通过光学放大测出压痕的对角线长度,经计算或查表求的被测试样表面镀层的硬度;计算公式如下:HV=2sinα/2/d2=1854.4p/d2微D减少;在D= 3A/dm2时,虽然微粒含量最大,但此时镀层表面出现细密麻坑,表面平整性变差,结合力减弱;综合考虑,电流密度为2-2.5A/dm2为宜;2.2.2 温度对微粒含量的影响镀液温度与镀层微粒含量的关系如图.在T=45℃时,镀层微,粒含量在9%左右,低于45℃时虽然微粒含量高,镀层的平整性和结合力变差;当T>45℃时微粒含量随温度的增加而减少;这种现象是热运动与微粒悬浮性能的反应;当温度升高,离子运动加剧,离子的剧烈运动将使阴极对微粒的吸附能力降低,不利于粒子的共沉积;另外,温度升高,镀液粘度下降,悬浮力变差,微粒快速下降到镀槽底部;实验中发现,当T<45℃时,微粒悬浮时间为3-4分钟;T为50-60℃时,微粒悬浮时间为1-2分钟,当温度超过65℃时,悬浮时间为l分钟,75℃时为30秒左右;镀液内悬浮的微粒减少,阴极表面可吸附的微粒少,从而使镀层内微粒含量降低;、也相应的增大,当金刚石浓度达到40g/L时镀层中金刚石的复合质量为57.24%-继续增加镀液中金刚石的浓度,镀层中金刚石的复合量基本保持不变9;这是因为镀液中金刚石颗粒浓度越大,即颗粒的悬浮量越高,在单位时间内通过搅拌被输送到阴极表面的颗粒数量也越多,被沉积在镀层中的几率也越大;在搅拌速度适当的情况下,随着金刚石颗粒在镀液内浓度的增加,复合鍍层中金刚石颗粒的复合量也会相应地增大,直到达到一个极限值;当金刚石颗粒浓度超过50g/L时,一方面由于镀液中颗粒浓度较大,颗粒团聚或相互聚集的倾向增大,颗粒的自沉淀现象严重,实际悬浮的分散颗粒量下降,镀槽底部会有部分颗粒沉淀下来;另一方面,根据有关共沉积理论10,在电镀过程中,均匀悬浮在镀液中的微粒首先被离子吸附,然后通过搅拌作用被传输到阴极表面,在分散双电层的紧密层外侧形成一层密度和覆盖率较高但较为松散的吸附层,此步为弱吸附,可逆过程;随后微粒在强的界面电场力作用下进入紧密层发生电化学强吸附,随着微粒表面吸附的金属离子被还原,该微粒才会被沉积的金属埋入,此步为不可逆过程;若分散微粒浓度越大,在阴极表面产生弱吸附的微粒数越多,但鍍液中的微粒对其冲刷作用也增有,镀处微粒之间的排斥作用小吸附在阴极表面的金刚石微粒多,从而沉积在镀层中金刚石的含量就高;分散剂的量较高时,金刚石表面分散剂吸附量增大,颗粒之间由于排斥作用和空间位阻作用较大,降低了悬浮液的流动性,不利于镍金属和金刚石粒子的共沉积12;分散剂的添加量对镀层显微硬度的影响趋势也与此一致,先升高后降低;当分散剂的添加量为10%时,虽然镀层金刚石的复合量不是最高但镀层的显微硬度最高,这是因为分散剂的量较高,金刚石颗粒在镀层中分散的非常均匀,这种分布状态直接影响到鍍层的显微硬度;分散剂的添加量对镀层厚度的影响不显著,厚度基本保持在16.3μm左右;2.3.3 电流密度的影响随着电流密度的增大,镀层中金刚石含量呈直线下降趋势;这是因为阴极电流密度的提高,意味着基质金属镍沉积速度加快,这时,基质镍金属沉积速度会远大于金刚石颗粒被输送到阴极表面并被嵌入复合镀层中的速度,这样就会导致镀会,,;,度为20rpm时复合镀层中金刚石复合质量和镀层硬度都达到最大值,分别为54.92%和935HV;当继续增大搅拌速度时,沉积在鍍层中的微粒急剧减少14;出现这种规律的原因在于:搅拌速度低,不能使金刚石微粒充分悬浮在鍍液中,镀液中有效利用金刚石颗粒量较少,也不利于金刚石微粒和镍离子传输到阴极表面,反应速率慢,使金刚石微粒的复合量和镍的沉积速率减少;搅拌速度慢慢增大,金刚石颗粒在镀液中悬浮性变好且有利于金刚石的传输,颗粒吸附并沉积在阴极的概率也增大;搅拌速度过大,镀液与微粒都处于剧烈运动之中,微粒和镀液对阴极表面频冲击过大,不仅使微粒在阴极表面难于吸附,而且会把已吸附的微粒冲刷下来重新落入镀液中,不利于镍与金刚石的共沉积,故复合量降低;复合镀层的硬度随金刚石含量的增加而增大,所以镀层的硬度与镀层中金刚石的复合量的变化趋势基本上呈现出一致性;搅拌速度对复合镀层的厚度影响很小,镀层的厚度始终保持在16.5μm左右;2.3.5 镀覆时间的影响,时,℃到达阴极表面的微粒增加,使镀层中金刚石含量增加,在40℃时金刚石的复合质量达到最大值51.82%;当温度大于40℃时,镀层中金刚石复合量随着温度的增加而减少;因为温度继续升高,金属离子运动加剧,使阴极对微粒的吸附能力降低,不利于微粒的共沉积;此外,温度升高,镀液黏度会下降,悬浮力变差,微粒很快沉降到镀槽底部,使得镀层中金刚石的复合量降低15;镀层的显微硬度在45°C时达到最大值1093HV,温度继续增大,镀层的硬度反而降低,因为温度继续升高加快了离子在阴极附近的运动速率,减少了因离子的扩散速度带来的浓差极化,从而使得镍沉积的结晶变粗,又由于金刚石复合量的降低,最终导致复合镀层的显微硬度降低;当温度超过55°C,镀液的挥发严重,影响有效成分在阴极的沉积;温度对镀层的厚度影响不大,但随着温度的升高镀层厚度稍微增加;2.3.7 PH值的影响由于H+或0H—离子能够改变微粒的电荷性质,并且阴极析出的氢气影响微pH从;镀液pH值对复合镀层的厚度影响不大,但pH值过高时,由于溶液中产生了不溶性的氢氧化镍沉淀,导致主盐浓度降低,因此,镀层厚度有所降低;2.3.8 溶液超声频率的影响溶液超声处理是在复合电镀前对电镀溶液施加超声波,超声波对金刚石颗粒表面的活化,可以使颗粒均匀的悬浮于溶液中并且提高颗粒与基质金属之间的结合力;溶液超声频率主要影响金刚石颗粒在镀层中的分布状态,进而影响鍍层硬度和鍍层中金刚石的复合量;随着超声频率的增大,金刚石的复合量明显增大,金刚石颗粒在镀层中的分布越来越均匀,镀层的显微硬度也随着增大;当超声频率为40KHZ和80KHZ时,镀层中金刚石的复合量几乎相等,但是超声频率为80KHZ时金刚石颗粒在镀层中分布更均匀;当超声频率继续增大到lOOKHz时,颗粒虽然均匀分布于复合镀层中,但镀层中金刚石的复合量和硬度都显著降低了;因此,电鍍前对镀层显微硬度影响主次顺序为:金刚石浓度〉搅拌速度〉溶液超声频率〉分散剂的量〉电流密度;对镀层中金刚石的质量含量影响主次顺序为:搅拌速度〉金刚石浓度〉溶液超声频率〉分散剂的量〉电流密度;2.5 目前复合电镀镍-金刚石的最佳工艺条件下所得镀层数据复合镀层平均厚度值 16.18μm复合镀层平均显微硬度 1927HV复合镀层中金刚石的平均复合量 63.13%2.6 复合电镀镍-金刚石工艺的常见故障及处理方法除针孔大多是气体在镀件表面停留而造成的,可以使用润湿剂和强搅拌来减小它的影响;除此之外,造成针孔的原因还有:表面润湿剂少、阴极电流密度过大等;1)表面润湿剂少电镀过程中阴极有氢气析出,如果镀液pH值过低、阴极移动过缓、润湿剂的质量浓度不足都会使氢气吸附在镀件表面,阻碍镀层金属的沉积,而在镀层表面形成针孔、麻点;由于润湿剂在电镀过程中被不断消耗,故应经常补充;2)阴极电流密度过大针孔、麻点如出现在镀件的凸出部分面向阳极,则表明阴极电流密度过大,调低阴极电流密度即可避免;2.6.3 镀层表面粗糙粗糙是由于溶液中的微粒在电镀过程中留置在镀层中而形成的;镀层粗糙的主要原因:主盐的质量浓度过高;它也是镀液不稳定因素之一;当阳极面积过大,在,,不仅降低阴极效率,而且使工件表面产生大量氢气,部分氢气泡附在工件表面,影响金属沉积,容易造成镀层花斑;所以,应该严格控制氯化物和硼酸的质量浓度,将其控制在所需范围内;2)前处理不良前处理不良会引起花斑,除油不净是主要因素;另外还有其它的一些因素,如:待镀工件有变色氧化现象;工件经酸洗、化学除油后放置时间长而氧化变色;用手接触工件容易有人体的油脂分泌物;经前处理后的工件在空气中放置一段时间再镀也要发花等;因此,一定要严格控制前处理的每一个环节,工件除油后不得接触其它污染源,前处理完毕后应尽快实施电镀,以减少镀层发花的可能性;3.复合电镀镍-金刚石的性能评述3.1 镀层性能测定方法181 镀层的表面形貌及成分分析镍-金刚石复合镀层的表面形貌和镀层中各元素百分含量是采用日立S-3400N扫描电子显微镜及其附属EDS能谱仪来进行分析;2 镀层的组织结构分析镍-金刚石复合镀层的组织结构是采用日本理学3015升;镀为5g·L-1、20 g·L-1、 30 g·L-1、 40 g·L-1、50g·L-1和60g·L-1时电镀lOmin制备的镍-金刚石复合镀层的表面形貌从图可以看出,随着镀液中金刚石浓度由5 g·L-1;1增大到50 g·L-1时,通过搅拌作用单位时间内被输送到阴极表面的微粒数量增多,微粒被沉积在鍍层中的几率也增大,所以镀层表面的金刚石的分布量明显增多;观察图a到d可见复合镀层的表面平整,无裂纹和孔洞现象;当金刚石浓度超过50 g·L-1而继续增大时,镀层中金刚石分布不均匀且会出现扎堆现象如图f所示;另外,随着金刚石浓度的增大,复合镀层表面粗糙度和脆性都有所增加;由此可知,在复合电沉积过程中,镀液中金刚石粉末的浓度必须适宜,并不是越大越好;2)电流密度对镀层表面形貌的影响下图是电流密度分别是3A ·dm-2、5.5A ·dm-2 、8 A ·dm-2 、10 A ·dm-2 、13 A ·dm-2 和15.5 A ·dm-2 时电镀10min制备的镍-金刚石复合镀层的表面形貌;从图可以看出随着电流密度的增加,镀层中金刚石的复合量先增加后减少;在低电流区,增加电流密度就会使镍金属沉积速率加快,对共沉积的金刚石粉末包裹性变好,使其更牢固的镶嵌在镀层中;电流密度继续增大,镍的沉积速率远远大于金刚石颗粒的共沉积速率,导致镀层中颗粒的含量减少;由f可以看出,当电流密度为15.5 A ·dm-2时,镀层表面平整但金刚石的复合量非常低;但是如果电流密度太大,会使镍金属晶体生长太快,金属颗粒粗大且镀层易剥落.3.3 镀层的结合力分析金,,体结合力良好;3.4 镀层的硬度分析镀层的硬度采用HX-1000显微硬度仪测定21,如图为镀层经硬度检测之后相应的压痕图,所得硬度值如表所示;从图可知,镀层压痕呈菱形,镍-金刚石复合镀层硬度压痕的对角线远小于纯镍镀层的;结合表可知,镍-金刚石复合镀层的硬度值为1861HV,而纯镍镀层的硬度值只有195HV,复合镀层的硬度值远远高于纯镍的硬度值,说明均勾、弥散的分布在镀层中的金刚石颗粒起到了弥散强化作用22;因为这些硬质颗粒主要沉积在基质金属晶界以及晶体结构不完整处,与镀层金属结合紧密,对晶粒之间的滑移起到了很大的阻碍作用,有效阻碍了镀层内为错移动,从而使金属获得了有效强化;镀层硬度值样品号纯镍HV 镍-金刚石镀层HV1 200 19572 177 20393 210 1589平均值195 18613.5 镀层的耐蚀性分析1)镀层在酸性介质中的耐蚀性将镍-金刚石复合镀层和纯镍镀层浸入质量分数为5%H2S04溶液中,待电位稳定后,在开路电位下测得镀层的交流阻抗谱图和Tafel曲线,结果分别为图3.5.1和图3.5.2所示;由图3.5.1可知,两种镀层的交流阻抗均呈半圆形,在谱图的高频区出现的半圆均是由腐蚀反应电阻和双电层电容形成的,在低频区出现的弧线表现为电感的特性23;其原因可能是在镀层的表面会生成镍氧化膜,在测镀层的交流阻抗时这些氧化膜覆盖在阳极上形成了保护膜,抑制了金属向H2SO4溶液中溶解;镍-金刚石复合镀层的半圆直径大于纯镍镀层,说明镍-金刚石复合镀层在5%H2S04溶液中的耐蚀性大于纯镍镀层;图3.5.1 镀层在5%wH2S04溶液中的交流阻抗谱图3.5.2 镀层在5 %wH2S04溶液中的Tafel曲线2)镀层在中性介质中的耐蚀性能在开路电位下,测得镍-金刚石复合镀层在质量分数为5%NaCl溶液中的交流阻抗谱图和Tafel曲线,结果分别为图3.5.3和图3.5.4所示;从图3.5.3可知,在5%NaCl溶液中,镍-金刚石复合镀层和纯镍镀层均表现出单一容抗弧,形状为规则的半圆,但镍-金刚石复合镀层的阻抗谱图的半径大于纯镍镀层,说明在5%NaCl溶液中,镍-金刚石复合镀层的耐蚀性优于纯镍镀层24;图3.5.3 镀层在5%wNaCl溶液中的交流阻抗谱图3.5.4 镀层在5 %wH2S04溶液中的Tafel曲线3)镀层在碱性介质中的耐蚀性能在开路电位下,测定镍-金刚石复合镀层和纯镍镀层在5 %NaOH溶液中的交流阻抗谱图和和Tafel曲线,结果分别为图3.5.5和图3.5.5所示;从图3.5.5可知,两种镀层的交流阻抗曲线均出现了两个容抗弧;其中,在高频容抗弧对应着阳极表面上覆盖的镍氧化膜的迟豫过程,而低频容抗弧着阳极表面处发生的电荷传递过程25,说明腐蚀现象发生;镍-金刚石复合鍍层的阻抗谱图直径大于纯镍镀层,说明镍-金刚石复合镀层在5 %wNaOH溶液中的耐蚀性优于纯镍镀层;图3.5.5 镀层在5%wNaOH溶液中的交流阻抗谱图3.5.6 镀层在5 %wNaOH溶液中的Tafel曲线两种镀层在碱性介质中的耐蚀性都最差,总体来说,金刚石微粒的加入使镍镀层的耐蚀性提高;总结本文综合叙述了复合电镀镍-金刚石的发展历史以及我国在该领域的发展状况;通过电沉积工艺制备的镍-金刚石复合镀层,硬度高,金刚石超细粉与镍的结合度好,耐磨,耐腐蚀性强,在减摩机械部件、金刚石刀具、磨具上应用十分广泛;本文也对能够影响复合镀层以及电镀过程的因素进行了系统性的归纳总结,使读者能够清晰的了解什么因素能够使镀层产生影响,让读者知道怎么做能得到-参考文献1张辽远,姜洪涛.电镀金刚石工艺的研究J.沈阳工业学院学报,2002,212:43-462杨先佳.我国复合电镀技术的现状及其发展前景D.武汉材料保护研究所:33-353唐致远,郭鹤桐.复合电镀在国内的应用J.Electroplating&Pollution Control,1991,116:14-164王永秀.镍-金刚石复合镀层的制备及其性能的研究D.广东:广东工业大学,2012:38-405王敏.复合电镀Ni-Fe-金刚石工艺J.电镀与精饰,2008,303:28-292O319胡如南.电镀手册K.北京:国防工业出版社,1979.20李云东,江辉,李根生等.电镀金刚石工具中新型镀层的研究J.材料保护,2002, 3512:31-32.21余焜,施智祥.银基金刚石复合镀层的性能研究J.功能材料,2001, 322: 169-171.22方莉俐,张兵临,姚宁,等.电铸金刚石-镍复合膜微观应力分析J.金刚石与磨料磨具工程,2005, 5: 34-37.23王立平,高燕,薛群基等.纳米金刚石对电沉积镍基复合镀层微观结构及抗磨性能的影响J.摩擦学报.2004, 246: 488-492.24王森林,曹学功.镍-金刚石复合电镀的研究J.华侨大学学报自然科学版,1998,。
金刚石表面真空镀镍的工艺分析

金刚石表面真空镀镍的工艺分析摘要:为对金刚石表面真空镀镍影响因素探索,本文采用多种工艺对金刚石进行表面真空镀镍。
实验数据表示,使用真空镀镍方法,金刚石强度没有受到影响,而且镀层与金刚石紧密结合,具有较强耐酸腐蚀性,金刚石表面构成耐腐蚀性较强的形成镍层,可以作为电镀金刚石线原材料使用。
旨在拓宽未来金刚石应用范围,为我国经济发展提供工业基础。
关键词:金刚石;真空镀镍;工艺前言:目前电镀金刚石普遍使用化学镀镍磷合金,但是化学镀会受到自身复杂步骤影响,难以有效控制金刚石镀镍效果。
而且在化学镀中还使用对环境造成严重污染的重金属辅助作业,无法实现金刚石镀镍长远发展。
而金刚石真空镀镍在真空环境下,借助活性剂,将金属粉末附着在金刚石表面,从而形成金属层。
因为操作方法简单,生产过程大大降低环境污染,成本较低,目前正在成为金刚石表面镀镍的重要研究对象。
1实验材料本文采用市面常见单晶3型料金刚石微粉作为试验材料,中心粒径与峰宽分别为7.513微米、3.228微米,并使用纯度99.5%的200目雾化镍粉作为真空镀镍材料。
将乙酸镍、乳酸等分析纯试剂混合后充分研磨,最后加入金刚石微粉混合。
其中,镍粉、乙酸镍等作为金刚石表面真空镀镍的镍源供给,而作为络合剂的乳酸则负责缩短镍元素在金刚石覆镀效果,加入氧化铝则是避免金刚石在镀镍过程中,出现板结现象,影响镀镍效果[1]。
2金刚石表面真空镀镍的工艺分析2.1粒度与镀覆粘连检测化学与真空镀覆都会出现连晶现象,但是连晶会影响电镀金刚石线使用质量,所以要对金刚石表面镀覆厚度进行检验,确保薄厚均匀,连晶情况少。
本文使用电阻测试法,借助位度分析仪完成粒度分析,对比金刚石镀覆前后峰型、峰宽,判断在镀覆作业后存在多少连晶金刚石[2]。
经过实验后,可以发现在镍源含量增加,在进行镍元素镀覆后,金刚石粒度明显增加,出现明显粘连情况。
而在镍源含量固定的情况下,络合剂含量增加,镀覆后的金刚石粒度有效降低。
211287314_电镀金刚石线锯上砂装备设计和应用

平台研究[J].现代信息科技,2019,3(21):7-9.[5]祝永志,荆静.基于Python 语言的中文分词技术的研究[J].通信技术,2019,52(7):1612-1619.图6 对31省评分数据进行可视化呈现安徽北京福建甘肃广东广西贵州海南河北河南黑龙江湖北湖南吉林江苏江西辽宁内蒙古宁夏青海山东山西陕西上海四川天津西藏新疆云南浙江重庆客服响应及时性服务态度业务熟练度整体服务评价平均值=8.547平均值=8.792平均值=8.691平均值=8.871平均值=9.009回复内容清晰易懂体验省份: 上海业务熟练度: 9.421回复内容清晰易懂: 9.436客服响应及时性: 9.605整体服务评价: 9.351服务态度:9.677体验省份101010101055555000 引言20世纪90年代,金刚石线锯开始兴起,现已广泛应用于光伏、电子和蓝宝石等贵重超硬材料切割领域[1]。
早期的金刚线加工技术采用的是裸露的金属线和游离的磨料,在加工过程中将磨料加入金属线和加工件之间以产生切削作用。
为了进一步缩短加工时间和对超硬材料和难以加工的陶瓷进行加工,人们将金刚石微粉以一定的方式固定到金属线上,进而出现了固定金刚石线锯[2]。
金刚石线锯也称金刚线,是以钢丝为基础材料,以氨基磺酸镍为镀液主盐,在合适的电镀工艺下采用复合镀的方法在钢丝基体上沉积一层金属镍,同时在金属镍中包裹金刚石微粉颗粒而制得的一种超硬材料锯切工具[2-3]。
线锯切割具有能切割大尺寸薄片、加工表面质量高、锯缝损失少、挠曲变形小以及切割效率高等优点,在切割硬脆材料方面有广泛应用[1]。
电镀金刚石线锯广泛应用于光伏、电子和蓝宝石等贵重超硬材料切割领域,具有切割效率高、产品精度高、损耗小和工作环境清洁等优点,是一种新型节能环保产品[4-5]。
该文对金刚线生产线一种竖式上砂结构进行进深入研究,分析了其目前结构的不足,对上砂装备进行了全新设计,并在零件制作过程中严格控制加工精度。
衍射光学元件设计及金刚石单点车削技术的研究

衍射光学元件设计及金刚石单点车削技术的研究1. 引言1.1 概述本文旨在研究衍射光学元件设计及金刚石单点车削技术,并探讨它们在光学工程和制造领域的应用。
随着科学技术的不断发展,光学元件作为重要的光学器件,在各个领域得到了广泛应用。
然而,现有的光学元件设计仍存在一些限制和挑战,因此需要进一步研究改进其设计方法和性能。
另一方面,金刚石单点车削技术作为一种高精度、高效率的加工方法,已经被广泛应用于许多领域。
然而,在复杂形状或特殊要求的材料加工过程中仍存在一些难题,例如车刀选择和材料修整等问题。
因此,通过深入研究金刚石单点车削技术,并探索新的解决方案,可以提高其加工效果并拓展其应用范围。
1.2 文章结构本文共分为五个部分进行阐述。
首先是引言部分,概述了文章的目标、研究内容以及意义;接下来是衍射光学元件设计的部分,包括衍射原理、光学元件分类和设计考虑因素;然后是金刚石单点车削技术的研究部分,介绍了技术的背景及意义、工艺流程与原理以及金刚石车刀与材料选择分析;接着是实验设计与结果分析的部分,包括实验设计方法论、实验结果展示与描述以及结果分析与讨论;最后是结论与展望部分,总结了研究的结果并对存在问题和局限性进行了分析,并展望了未来的研究方向。
1.3 目的本文的主要目的是深入研究衍射光学元件设计及金刚石单点车削技术,并通过实验设计和结果分析来探索其应用效果和潜力。
通过系统地探讨衍射光学元件设计中的原理和因素,希望能够提供一种更全面、有效的设计方法。
同时,通过对金刚石单点车削技术进行详细研究和实践验证,旨在改进该技术在复杂材料加工中遇到的难题,并推动其应用范围的扩大。
通过本文的研究,希望能够为光学工程领域的研究者和从业人员提供有关衍射光学元件设计和金刚石单点车削技术的深入了解和参考。
同时,也期望通过本研究的成果,为未来相关领域的研究提供新的思路和发展方向。
2. 衍射光学元件设计:2.1 衍射原理:衍射是指光在通过一个细缝、孔洞或物体边缘时发生偏折、弯曲并产生干涉现象的现象。
金刚石颗粒增强金属基复合材料的制备及性能研究00107232913

金刚石颗粒增强金属基复合材料的制备及性能研究淦作腾北京科技大学金刚石颗粒增强金属基复合材料的制备及性能研究Study on preparation and properties of diamond particlesreinforced metal matrix composites研究生姓名:淦作腾指导教师姓名:何新波北京科技大学材料科学与工程学院北京100083,中国Master Degree Candidate: Gan ZuotengSupervisor: He XinboSchool of Materials Science and EngineeringUniversity of Science and Technology Beijing30 Xueyuan Road,Haidian DistrictBeijing 100083,P.R.CHINA分类号:____________密 级:______________ 公开 TB333UDC:____________ 单位代码:______________10008北京科技大学硕士学位论文论文题目:金刚石颗粒增强金属基复合材料的制备及性能研究作者:_________________________ 淦作腾指 导 教 师: 单位: 何新波 教授北京科技大学指导小组成员: 单位:任淑彬 讲师北京科技大学 单位:论文提交日期:2009年 12月 15日学位授予单位:北 京 科 技 大 学致谢值此论文完成之际,谨向我的导师何新波教授和任淑彬老师表示衷心的感谢和崇高的敬意。
二位老师在论文的选题、试验、结果分析及论文撰写过程中,付出了大量的心血和劳动。
老师们渊博的学识、严谨的治学作风、高瞻远瞩的学术思想、和蔼可亲的态度使学生受益匪浅,终生难忘。
特别感谢沈晓宇师姐在课题研究工作期间给予的热心指导。
同时,本课题组的曲选辉教授、秦明礼教授、尹海清副教授、李平副教授也给予我很大的指导和帮助,在此向他们表示衷心的感谢!感谢同课题组的王建忠、董应虎、梅敏、杨振亮、刘烨、李慧、贾宝瑞、张政敏、郭彩玉等同学对我实验工作的帮助!感谢所有关心和帮助过我的人!感谢百忙之中审阅本文的各位专家、教授!摘要本研究采用放电等离子烧结技术,制备了表面金属化的金刚石/铝、铜复合材料。
金刚石线切割技术简析
金刚石线切割技术简析技术简介以生产工艺划分,金刚石线可以分为电镀金刚石线和树脂金刚石线。
金刚石切割线是通过一定的方法,将金刚石镀覆在钢线上制成,通过金刚石切割机,金刚石切割线可以与物件间形成相对的磨削运动,从而实现切割的目的。
金刚石线是用复合电镀的方法将高硬,高耐磨性的金刚石微粉固结在钢丝基体上,而制成固结磨料金刚石锯线。
在切割过程中90%的抗拉强度来自钢丝线,因此钢丝线对金刚石线至关重要。
在自由磨料线锯切割过程中,研磨液由喷嘴直接喷到钢丝线与硅晶体上,由线网的钢丝线带动游离磨料对硅晶体进行切割。
与游离磨料不同,金刚石线将金刚石微分固结到钢丝线上,钢丝线往复移动对硅晶体进行切割。
图:金刚石线构成轴剖面图技术优势传统砂浆的利用钢丝的快速运动将含磨料的液体带入到工件切缝中,产生切削作用。
在切割过程中,碳化硅被冲刷下来,唯有持续进行滚动磨削,而减少切割效率。
碳化硅的硬度9.5(莫氏),而金刚石硬度在10(莫氏)。
金钢线切割线速度基本在15m/s,正常切割的砂浆线速度基本在9-11.5m/s。
而若金钢线再做突破的话,就应该是要更硬,同时兼有更好的自锐性(多晶金刚石),更稳定的固结方式,更快的线速度。
金刚石切割线相比传统工艺有三大优势:1)金刚石线切割漏损少,寿命长,切割速度快,切割效率高,提升产能;2)品质受控,单片成本低,金刚石线切割造成的损伤层小于砂浆线切割,有利于切割更薄的硅片;3)环保,金刚石线使用水基磨削液(主要是水),有利于改善作业环境,同时简化洗净等后道加工程序。
添加剂原理随着金刚石线切割技术的发展及单多晶竞争的日益激烈,多晶硅片将全部由砂浆线切割转变为金刚石线切割。
不过由于金刚石线切割多晶硅片的损伤层浅、线痕明显等问题,常规砂浆线的酸制绒难以在其表面刻蚀出有效的减反射绒面。
目前,针对金刚石线多晶硅片制绒的难题,主要解决办法包括:金刚石线直接添加剂法、干法黑硅(RIE)及湿法黑硅(MCCE)等,由于RIE和MCCE成本及工艺等原因,目前大多数企业以金刚石线直接添加剂法制备金刚石线切割多晶硅片的减反射绒面,当然由于添加剂法制备的电池转换效率低等因素,决定其只是金刚石线切割多晶硅片全面推广的一个过渡阶段。
试分析金刚石多线切割设备运用在SiC晶片加工中的研究
试分析金刚石多线切割设备运用在 SiC晶片加工中的研究摘要:针对金刚石多线切割设备的运行原理进行简单的介绍,并且使用直径为250微米的金刚石线进行现场切割工艺的实验。
收集实验的数据和实验的结果,分析不同的工艺参数,对晶体整体厚度偏差(TTV)产生的影响。
通过改变相关的工艺参数,整体提高碳化硅晶片加工的效果。
关键词:金刚石线;线切割;碳化硅碳化硅本身就具有热损耗低,抗辐射能力强以及高功率密度的特点,它与氮化镓的晶格适配率相对较小,所以在多种类型的半导体材料当中,碳化硅的应用范围相对较广,而且也属于最有前途的一种半导体衬底材料。
对碳化硅晶片进行切割,可运用多种不同类型的切割方案,最早的多线切割设备是由钢线和砂浆组成。
在进行切割的过程当中,工作人员需要将砂浆喷在钢线和加工的晶体之间。
这种切割的方式可以在一定程度上减少切割的时间,并且能够对硬度更高的蓝宝石或者其他类型的碳化硅材料进行切割,新的多线切割设备得到了不断的优化以及发展,这使得金刚石切割的效率得到明显的提升。
一、设备的控制过程及原理1.控制过程使用金刚石多线切割机进行碳化硅晶体的切割工作,在加工生产过程中,因为收放线轮和位于两者之间传动轮与切割线之间存在摩擦力,这样就形成了切割线的张力。
设备在运行期间,现场工作人员需要将线速控制在每分钟300米到580米之间。
金刚石线的张力则需要控制在15N到50N之间。
在进行现场切割工作一天,工作人员需要对收放线轮的力矩电机控制线的张力程度进行深入的了解,并且当线速控制为零时,反方向的速度也要控制为零,此时收放线轮的两个力矩电机就需要对金刚实现的张紧力产生维持作用,那么切割状态下的摇摆式共轭轴进给切割待切割晶体时,进给的速度可以在60~0.33mm/min之间。
共轭轴通过一个步进电机控制其绕中心固定轴来产生摇摆运动,摇摆速度可以设定为:不摇摆、低速(0.014 rad/s)、中速( 0.052 rad/s)、高速(0.105 rad/s)。
用金属模具热压金刚石圆锯片节块试验研究
粉 末 冶 金 技 术
Po wde ealu g c noo y r M t l r y Te h lg
Vo. 125.No. 3
J n.0 7 u 2 0
用 金 属模 具 热压 金 刚 石 圆锯 片 节 块 试 验 研 究 *
3 ( 林 特 邦 新 材 料 有 限公 司 , 西 桂 林 )桂 广
5 10 ) 4 0 4
摘
要 : 通 过对 不 同 热 压 工 艺 与 传 统 热 压 工 艺制 造 出 的 试 块 的 密 度 、 度 、 弯 强 度 及 金 刚 石 最 大 出 刃 高 度 硬 抗
对 比及 用 不 同热 压 工 艺 制 造 的锯 片锯 切 混 凝 土 、 岗 岩 板 试 验 的 研 究 表 明 : 于 本 试 验 胎 体 材 料 , 花 对 用低 温 、 高 压 热 压 工 艺 的金 刚石 最 大 出 刃 高度 比 用 传 统 热 压 工 艺 的 高 ; 温 、 低 高压 热 压 工 艺 制 造 出来 的 金 刚 石 锯 片 的 性 能 不 比用 传 统 热 压 工 艺制 造 出来 的 锯 片 的 性 能 差 ; 烧 结 温 度 可 降 低 5 ~ 10C, 将 能 充 分 发 挥 金 属 材 料 其 0 1* 这 抗 氧 化 性 强 , 温 强度 高 的 优 势 , 而使 金 属 材 料 能 应 用 于 制 作 金 刚 石 制 品 的热 压模 具 。 低 从 关 键 词 : 压 模 具 ; 属 材 料 ; 刚石 最 大 出 刃 高 度 热 金 金
S u y Olh tp e sn i mo d cr u a ld e me tu mg me a u d t d i o r s i g d a n ic l r b a e s g n s t lmo l
等离子体刻蚀金刚石膜的研究方法及现状
等离子体刻蚀金刚石膜的研究方法及现状作者:刘好,徐菲芬,徐楚峰,胡杨来源:《佛山陶瓷》2012年第08期摘要:等离子体刻蚀是金刚石膜的抛光、切割和图形化等加工过程中一项很重要的技术。
本文综述了国内外等离子体刻蚀金刚石膜的研究成果。
关键词:等离子体刻蚀;金刚石膜;进展1 引言化学气相沉积(CVD)金刚石膜拥有许多卓越的化学和物理性质,如良好的化学稳定性、高硬度、高弹性模量、高热导率、宽光谱透过范围、宽禁带宽度和极高的载流子迁移率等,因而在机械、微电子、通讯和国防工业中都有着广泛的应用[1]。
目前,工业合成的CVD金刚石膜一般是表面非常粗糙的圆片形多晶金刚石厚膜,因此需要经过抛光、刻蚀图形化、切割以及金属化和焊接等加工过程,才能实现其具体的工业应用。
例如,把金刚石膜用作刀具表面的超硬涂层时,需要先将所制备的金刚石膜进行抛光和切割,才能焊接到各种刀具上。
用作大功率集成电路的散热片和红外光学窗口时,抛光可以降低表面传热损失和光的漫反射。
而把金刚石膜用作微电子机械器件时,需要将其进行抛光和表面微刻蚀图形化。
低温等离子体微细加工手段是材料微纳加工的关键技术,它是微电子、光电子、微机械、微光学等制备技术的基础[2]。
特别是在超大规模集成电路制造工艺中,有近三分之一的工序是借助于等离子体加工完成的。
如等离子体薄膜沉积、等离子体刻蚀及等离子体去胶等,其中等离子体刻蚀成为最为关键的工艺流程之一,是实现超大规模集成电路生产中的微细图形高保真地从光刻模板转移到硅片和金刚石膜上不可替代的工艺[3]。
2 主要设备与研究方法等离子体刻蚀在金刚石膜的加工中可以起到很多方面的作用,是非常重要的基础技术之一。
例如,将金刚石膜用作微机械、微电子、微传感器和微光机电系统等方面的微纳尺度器件时,需要对所制备的CVD金刚石膜进行微加工以使其图形化。
除了采用离子源产生的离子束来研究微加工,如Kaufman离子源[4],目前主要采用等离子体来研究金刚石膜的刻蚀和微加工,所采用的刻蚀系统主要有射频感应偶合等离子体刻蚀和电子回旋共振等离子体刻蚀。