北航有限元分析与应用试题库
有限元分析与应用详细例题

试题1:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;2)分别采用不同数量的三节点常应变单元计算;3)当选常应变三角单元时,分别采用不同划分方案计算。
一.问题描述及数学建模无限长的刚性地基上的三角形大坝受齐顶的水压作用可看作一个平面问题,简化为平面三角形受力问题,把无限长的地基看着平面三角形的底边受固定支座约束的作用,受力面的受力简化为受均布载荷的作用。
二.建模及计算过程1. 分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算下面简述三节点常应变单元有限元建模过程(其他类型的建模过程类似):进入ANSYS【开始】→【程序】→ANSYS →ANSYS Product Launcher →change the working directory →Job Name: shiti1→Run设置计算类型ANSYS Main Menu: Preferences →select Structural → OK选择单元类型单元是三节点常应变单元,可以用4节点退化表示。
ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4 node 42 →OK (back to Element Types window)→Options… →select K3: Plane Strain →OK→Close (the Element Type window)定义材料参数材料为钢,可查找钢的参数并在有限元中定义,其中弹性模量E=210Gpa,泊松比v=。
ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural→Linear→Elastic→Isotropic→input EX:, PRXY:→ OK生成几何模型生成特征点ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS→依次输入四个点的坐标:input:1(0,0),2(3,0),3(6,0),4(3,5),5(0,10),6(0,5)→OK生成坝体截面ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS →依次连接1,2,6;2,3,4;2,4,6;4,5,6这三个特征点→OK网格划分ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool→(Size Controls) Global: Set →input NDIV: 1→OK →(back to the mesh tool window)Mesh: Areas, Shape: Tri, Free →Mesh →Pick All (in Picking Menu) → Close( the Mesh Tool window)模型施加约束分别给下底边和竖直的纵边施加x和y方向的约束ANSYS Main Menu: Solution→Define Loads →Apply→Structural →Displacement→ On lines→选择底边→OK→select:ALL DOF → OK给斜边施加x方向的分布载荷ANSYS 命令菜单栏: Parameters→Functions →Define/Edit→1) 在下方的下拉列表框内选择x ,作为设置的变量;2) 在Result窗口中出现{X},写入所施加的载荷函数:1000*{X};3) File>Save(文件扩展名:func) →返回:Parameters→Functions →Read from file:将需要的.func文件打开,任给一个参数名,它表示随之将施加的载荷→OK →ANSYS Main Menu: Solution →Define Loads →Apply→Structural →Pressure →On Lines →拾取斜边;OK →在下拉列表框中,选择:Existing table (来自用户定义的变量)→OK →选择需要的载荷参数名→OK分析计算ANSYS Main Menu: Solution →Solve →Current LS→OK(to close the solve Current Load Step window) →OK结果显示确定当前数据为最后时间步的数据ANSYS Main Menu: General Postproc →Read Result→Last Set查看在外力作用下的变形ANSYS Main Menu: General Postproc →Plot Results→Deformed Shape→select Def + Undeformed→OK查看节点位移分布情况Contour Plot→Nodal Solu…→select: DOF solution→Displacement vctor sum→Def + Undeformed→OK查看节点应力分布情况Contour Plot→Nodal Solu…→select: Stress→XY shear stress→ Def + Undeformed→OK退出系统ANSYS Utility Menu: File→ Exi t…→ Save Everything→OK 三.结果分析三节点常应变单元(6个节点,4个单元)几何模型图变形图,节点位移图,节点应力图,节点应变图六节点常应变单元(6个节点,4个单元)几何模型图变形图,节点位移图,节点应力图,节点应变图分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算结果比较单元划分方案变形大小应力大小应变大小值的比较分析三节点三角形单元DMX:SMX:DMX:SMN:2778SMX:8749DMX:SMN:SMX:1.最大变形值小;2.最大应力值小;3.最大应变值小。
北航有限元第3讲弹性问题有限元方法2

构造位移函数: 对u,v分别利用节点条件:
对于一般四边形,逆矩阵的表达式比较复杂。
N—单元形状函数矩阵 qe —单元节点位移矩阵
特例:4节点矩形单元
矩形单元的重心坐标
对于一般的四边形单元,在总体坐标系下构造 位移插值函数,则计算形状函数矩阵、单元刚 度矩阵及等效节点载荷列阵时十分冗繁;而对 于矩形单元,相应的计算要简单的多。
单元集成:系统的总势能 变分处理:系统的平衡方程(组) 应用位移边界条件求出节点位移 由节点位移求出单元的应变、应力
Step 1. 几何离散——采用3节点三角形单元
体力:重力(密度 )
ห้องสมุดไป่ตู้
整体节点 位移列阵
整体等效节 点力列阵
厚度:t p
表面力
单位体积力
Step 2. 单元分析——构造单元位移函数
矩形单元明显的缺点是不能很好的符合曲线边 界,因此可以采用矩形单元和三角形单元混合 使用。更为一般的方法是通过等参变换将局部 自然坐标系内的规格化矩形单元变换为总体坐 标系内的任意四边形单元(包括高次曲边四边 形单元)。
三维问题的有限元求解过程
• 离散时采用体单元:四面体或六面体 • 求解步骤和平面问题完全一样 • 单元分析的时候将二维扩充到三维
准则1:完备性—包含常应变项和刚体位移项
➢ 如果在势能泛函中所出现的位移函数的最 高阶导数是m阶,则选取的位移函数至少是 m阶完全多项式。
准则2:协调性—相邻单元公共边界保持位移连
续
➢ 如果在势能泛函中所出现的位移函数的最 高阶导数是m阶,则位移函数在单元交界面 上必须具有直至(m-1)阶的连续导数,即Cm1连续性。
Step 3. 单元分析——单元势能
有限元期末复习题资料

1、弹性力学与材料力学主要不同在于:研究方法。
2、利用Ansys 进行结构分析时,结果文件是什么文件:jobname.rst文件。
3、在Ansys单元库中,Plane42属于结构实体单元。
4、在一个分析中可能有多个材料特性组,Ansys通过独特的( C )来识别每个材料的特性组。
A. 特性B. 说明C. 参考号D. 方法5、载荷包括所有边界条件以及外部或者内部的作用效应,下列不属于Ansys载荷的是( D )。
A. DOF约束B. 力C. 体载荷D. 应力【解析】:应力是结果,不是条件。
6、( B )什么要求面或者体有规则的形状,即必须满足一定的准则。
A. 自由网格B. 映射网格C. Sweep网格D. 其他7、什么样的载荷独立于有限元网格,即可以改变单元网格而不影响施加的载荷( C )。
A. 阶跃载荷B. 有限元模型载荷C. 实体模型载荷D. 斜坡载荷8、有限元法首先把求解出的解是( D ),单元应变和应力都可以由它来求得。
A. 节点坐标B. 节点自由度C. 节点载荷D.节点位移9、下列不属于Ansys产品当中求解联立方程的方法是( C )。
A. 稀疏矩阵直接解法B. 直接解法C. 变分法D. 雅可比共轭梯度法10、下列不属于/post1显示的图形类别的是( B )。
A. 等直线图B. 灰度图C. 形状变形图D. 矢量图11、对二维桁架进行强度校核时,选择的单元类型是( C )。
A. plane82B. Beam3C. Link2DSPrlD. Shell63δ时,12、δ为板的厚度,b为长度的最小值,当满足8/1<<-b1/80-5/1/1/100这样的板属于( B )。
A. 薄膜B. 薄板C. 厚板D. 壳13、下列哪个布尔运算的结果是由每个初始输入的图元的共同部分形成的新图元( A )A. 交运算B. 加运算C. 减运算D. 分割14、在整个有限元分析过程中,离散化是分解的基础。
有限元试题及答案

有限元试题及答案 有限元试题及答案 一 判断题(20分)(×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置(√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元(×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案(×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好(×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 (√)10一维变带宽存储通常比二维等带宽存储更节省存储量。
二、填空(20分)1.平面应力问题与薄板弯曲问题的弹性体几何形状都是 薄板 ,但前者受力特点是: 平行于板面且沿厚度均布载荷作用 ,变形发生在板面内;后者受力特点是: 垂直于板面 的力的作用,板将变成有弯有扭的曲面。
2.平面应力问题与平面应变问题都具有三个独立的应力分量: σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。
3.位移模式需反映 刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。
4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。
5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。
6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。
等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。
7.有限单元法首先求出的解是 节点位移 ,单元应力可由它求得,其计算公式为{}{}[][]eD B σδ=。
北航有限元分析与应用第一讲

A() (k ) (k )Q 0 x x y y
• 边界条件:
内
B() { k q 0 q上 n
0 上
数值计算方法分类
特点
差分法
优缺点
离散求解域;差分代替微分; 要求规则边界,几何 解代数方程组 形状复杂时精度低
1-5 有限单元法的形成与发展
数学家们则发展了微分方程的近似解法,包括有限差分方法,变 分原理和加权余量法。 在 1963 年 前 后 , 经 过 J.F.Besseling, R.J.Melosh, R.E.Jones, R.H.Gallaher, T.H.Pian(卞学磺)等许多人的工作,认识到有限元法 就是变分原理中Ritz近似法的一种变形,发展了用各种不同变分原理 导出的有限元计算公式。 1965 年 O.C.Zienkiewicz 和 Y.K.Cheung (张佑启)发现只要能写成 变分形式的所有场问题,都可以用与固体力学有限元法的相同步骤 求解。 1969年B.A.Szabo和G.C.Lee指出可以用加权余量法特别是 Galerkin 法,导出标准的有限元过程来求解非结构问题。
v1 2 Fy12 u
①
1 2
2
X2 ②
①
1
3
Fy22 Fx12
• 节点1沿x方向的位 1 u 移 1 1、其余节点位 F 移全为0时轴向压力v 为: EA EA cos 1
1 1
2
2
②
Fx22
1 y1
Fy23 u
1 1
(
l1
)l1
Fx11
l1
3
Fx23
实例1(单元分析)
• 节点1作用于单元1上的力,在x和y方向的分量分别为:
北航有限元分析与应用期末复习题答案

Ni ( x j , y j ) =
N i ( xm , ym ) =
即 另外
Ni + N j + N m =
N i ( x j , y j ) = δ ij
1 (ai + bi x + ci y + a j + b j x + c j y + am + bm x + cm y ) 2∆ 1 [(ai + a j + am ) + (bi + b j + bm ) x + (ci + c j + cm ) y ] = 2∆ 1 (2∆ + 0 ⋅ x + 0 ⋅ y ) = 1 = 2∆
时的等效结点载荷, 假设结点坐标已知, 单元厚度为 t。 解:设三角形面积坐标为 L1、L2、L3,则形函数:
y 5
2
(x2,y2) q 4
N1 = L1 (2 L1 − 1) 、N 2 = L2 (2 L2 − 1) 、N 3 = L3 (2 L3 − 1) N 4 = 4 L1 ⋅ L2 、 N 5 = 4 L2 ⋅ L3 、 N 6 = 4 L3 ⋅ L1
∂u ∂x 0 ∂v {ε } = = 0 y ∂ 0 ∂u ∂x + ∂y ∂x
0 {σ } = [ D]{ε } = 0 0
∴
∴ ∴
单元中不产生应力。
6
8、求图示二次三角形单元在 142 边作用有均布侧压 q
xi yi yj ym
2∆ = 1 x j 1 xm
根据行列式的性质:行列式的任一行(或列)的元素与其相应的代数余子式 乘积之和等于行列式的值,而任一行(或列)的元素与其他行(或列)的元素的 代数余子式乘积之和等于零。所以
有限元作业试题及答案.doc

2
答:一般选用三角形或四边形单元,在满足一定精度情况,
有限元划分网格的基本原则是:
1、拓朴正确性原则。即单元间是靠单元顶点、或单元边、或单元面连接
2、几何保形原则。即网格划分后,单元的集合为原结构近似
3、特性一致原则。即材料相同,厚度相同
4、单元形状优良原则。单元边、角相差尽可能小
c j二elcm= —a
Ni = l/a2 • a x = x/a
同理可得:Nj二y/a
有限元方法及应用试题
1
答:单元离散(划分、剖分)一单元分析一整体分析
有限元分析的主要步骤主要有:
A结构的离散化
B单元分析。选择位移函数、根据几何方程建立应变与位移的关系、根据物理方程建立应力
与位移的关系、根据虚功原理建立节点力与节点位移的关系(单元刚度方程)
C等效节点载荷计算
D整体分析,建立整体刚度方程
7、图示三角形ijni为等边三角形单元,边长为1,单位面积材料密度位P,集 中力F垂直作用于nij边的中点,集度为q的均布载荷垂直作用于im边。写出三 角形单元的节点载荷向量。
q:移到m, i点F:移到m, j点重力:移到m, I, j点
要证{8}=0
只需证,Nm = 0
Nm= 1/2A (am+bmx +cmy)
(d)平面三角形单元,29个节点,38个自由度
4、什么是等参数单元?。
如果坐标变换和位移插值采用相同的节点,并且单元的形状变换函数与位移插值的形函
数一样,则称这种变换为等参变换,这样的单元称为等参单元。
5பைடு நூலகம்
v(x, y)=
答:不能取这样的位移模式,因为在平面三节点三角形单元中,位移模式应该是呈线性的。
有限元方法理论及其应用考试题目及要求204

南京理工大学机械工程学院研究生研究型课程考试题目及要求课程名称:有限元方法理论及应用考试形式:□专题研究报告□论文□大作业□√综合考试考试题目:“有限元方法理论及应用”理论研讨及上机实验试题及要求:一、课程论文:弹性力学有限元位移法原理(30分)撰写一篇论文,对有限元位移法的原理作一般性概括和论述。
要求论文论及但不限于下列内容:1)弹性力学有限元位移法的基本思想和数学、力学基础;2)有限元法求解的原理和过程,推导计算列式;对基本概念和矩阵符号进行解释和讨论;3)等参单元的概念、原理和应用。
⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---------+----+---------λγγγγγγγγγγγγγγγγγγγγγ101101022220123121121321022220101101二、分析与计算(40分)1、图示两个结构和单元相似,单元方位相同的平面应力有限元模型,两模型的单元厚度和材料相同。
两个模型右端单元边上受均匀剪切面力。
对于下列2种情况,试根据有限元法和力学有关知识来分析论证两个模型求解后对应节点(节点1)的位移值和对应单元的应力值之间的关系:1)两个模型面力的合力相等;2)两个模型面力值相等。
(10分)对于(a )(b)刚度矩阵相等==)3()1(][][K K[]]][[][][)3(0000b 21)2(111111121)1(e B D B V K b c b c b c c c c b b A B x x c y y b y x y x y x A T m m j j i i m jim j i mji m j i mmj j ii=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-=-==:平面应力单元刚度矩阵应变矩阵解:21γ-Et结构总的刚度矩阵的组集:(5)外部载荷与约束力:对于第一种情况;(a )],,,,0,0,0,0,10,0,10,0[][6655Y X Y X R R R R Pt Pt N T--=(b) ],,,,0,0,0,0,10,0,10,0[][6655Y X Y X R R R R Pt Pt N T--=对于第二钟情况:(a) ],,,,0,0,0,0,10,0,10,0[][6655Y X Y X R R R R Pt Pt N T--=(b) ],,,,0,0,0,0,5,0,5,0[][6655Y X Y X R R R R Pt Pt N T--= (6)位移矩阵:有约束条件可知:(7)根据最小势能原理:][]][[N a K = 进行求解(8)位移和应力值的关系:]][][[][a B D =σ )()(][2][a b B B = 对于第一种情况:节点1的位移:Tb T a v u v u )(1,1)(1,1][][=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----------------+----+--==2002220110110110112002222112312112131][][2)4()2(γγγγγγγγγγγγγγγγγγγγγγγEt K K ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----+-----+---+----+------+-----+--+------++------+--+-----+------+----+---+-----+------==γγγγγλγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγλγγγγγγγγγγγγγγγγγγγγγγγγγγγγγ3022110100000311********21310012000021130012000012026141110112001261222210011141261001210221221260012000120031210000120013210000011122300000102211031][][2)()(Et K K b a ],,,,,,,,,,,[][665544332211v u v u v u v u v u v u a T =0,0,0,06655====v u v u单元(1)的应力值:)()(][2][a b σσ= 对于第二种情况:节点1的位移:Tb T a v u v u )(1,1)(1,1][2][= 单元(1)的应力值: )()(][][a b σσ=2、证明3节点三角形单元满足协调性条件(相邻单元之间位移连续)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 证明3结点三角形单元的插值函数满足ij j i i y x N δ=),(,及1=++m j i N N N 。
2. 图示3三结点三角形单元,厚度为t ,弹性模量为E ,泊桑比ν=0。
试求:插
值函数矩阵N ,应变矩阵B ,应力矩阵S ,单位刚度矩阵K e。
3. 以平面问题常应变三角形单元为例,证明单元刚度矩阵的任何一行(或列)元
素的总和为零。
4. 试证明面积坐标与直角坐标满足下列转换关系。
m m j j i i l x l x l x x ++= m m j j i i l y l y l y y ++=
5. 写出题5图所示三角形单元的插值函数Ni ,Nj ,Nm 以及应变矩阵B 。
6. 题5图中单元在jm 边作用有线性分布的面载荷(x 方向),试求结点载荷问题。
7. 证明常应变三角形单元发生在刚体位移时,单元中将不产生应力。
8. 求图示二次三角形单元在1 4 2边作用有均布侧压g 时的等效结点载荷,假设
结点坐标已知,单元厚度为t 。
9. 验证用面积坐标给出二次(三角形)单元的插值函数的N 1~N 6满足∑==6
~11i i N
10. 二维单元在xy 坐标平面内平移到不同位置,单元刚度矩阵相同吗?在平面内旋
转时怎样?单元旋转180o 后单元刚度矩阵与原来的相同吗?单元作上述变化时,应力矩阵S 如阿变化?
11. 图中两个三角形单元组成平行四边形,已知单元○
1按局部编码i ,j ,m 的单元刚度矩阵K ○
1和应力矩阵S ○1为 K ○1=⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---------5.55.15.95.15.15.135.45.75.45.134012016626608 S ○1=⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-----5.15.05.15.102103000030300 按图中单元○
2的局部编码写出K ○2,S ○2。
12. 图示为二次四边形单元,试计算x N ∂∂1和y N ∂∂2在自然坐标为(1/2,1/2)的点
Q 的数值(因为单元的边是直线,可用4个结点定义单元的几何形状)。
13. 图示为一次三角形单元,试计算x N ∂∂4和y N ∂∂4在点P(1.5 ,2.0)的数值。
14. 垂直悬挂的等截面直杆受自重作用,截面积为A ,长度为l ,质量密度为ρ。
如图一维杆单元求解杆内的应力分布,问应采用多少结点的单元?在什么位置有限元结果可以达到解析解的精度?给出它们的数值。
15.有中心椭球孔的矩形板,两侧边受线性分布的侧压P,如图所示如何利用对称面条件减少求解的工作量,并画出计算模型,列出计算步骤。