传输专题设计(频分复用)
频分复用两路通信电路的设计

1 软件基础1.1Multisim软件简介Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。
凭借Multisim,您可以立即创建具有完整组件库的电路图,并利用工业标准SPICE模拟器模仿电路行为。
借助专业的高级SPICE 分析和虚拟仪器,您能在设计流程中提早对电路设计进行的迅速验证,从而缩短建模循环。
与NI LabVIEW和SignalExpress软件的集成,完善了具有强大技术的设计流程,从而能够比较具有模拟数据的实现建模测量。
随着计算机技术飞速发展,电路设计可以通过计算机辅助分析和仿真技术来完成。
计算机仿真在教学中的应用,代替了大包大揽的试验电路,大大减轻验证阶段的工作量;其强大的实时交互性、信息的集成性和生动直观性,为电子专业教学创设了良好的平台,并能保存仿真中产生的各种数据,为整机检测提供参考数据,还可保存大量的单元电路、元器件的模型参数。
采用仿真软件能满足整个设计及验证过程的自动化。
Multisim软件是一个专门用于电子线路仿真与设计的 EDA 工具软件。
作为 Windows 下运行的个人桌面电子设计工具, Multisim 是一个完整的集成化设计环境。
它的主要优势为:(1)通过直观的电路图捕捉环境, 轻松设计电路(2)通过交互式SPICE仿真, 迅速了解电路行为(3)借助高级电路分析, 理解基本设计特征(4)通过一个工具链, 无缝地集成电路设计和虚拟测试(5)通过改进、整合设计流程, 减少建模错误并缩短上市时间1.2 Multisim的特点(1)直观的图形界面整个操作界面就像一个电子实验工作台,绘制电路所需的元器件和仿真所需的测试仪器均可直接拖放到屏幕上,轻点鼠标可用导线将它们连接起来,软件仪器的控制面板和操作方式都与实物相似,测量数据、波形和特性曲线如同在真实仪器上看到的一样。
(2)丰富的元器件库Multisim大大扩充了EWB的元器件库,包括基本元件、半导体器件、运算放大器、TTL和CMOS数字IC、DAC、ADC及其他各种部件,且用户可通过元件编辑器自行创建或修改所需元件模型,还可通过liT公司网站或其代理商获得元件模型的扩充和更新服务。
频分复用 传输介质

频分复用传输介质频分复用,简称FDM,是一种通信技术,它将多个信号同步传输在一个传输介质上。
常见的应用场景包括广播电视领域、电话通信领域以及数据传输领域。
下面就围绕“频分复用传输介质”这个主题来分步骤阐述。
一、频分复用介绍频分复用是指将不同频率的信号混合到一个宽带信道中传输,以实现多个信号同时传输的目的。
多个信号在传输介质上的宽带进行传输,不会相互干扰。
例如,当我们在听广播电台时,不同的电台使用不同的频率进行广播,我们可以接收到它们同时的信号,而不会出现干扰的情况。
二、传输介质传输介质是指多个信号进行传输的物质载体,常见的传输介质包括空气、电线、光纤等。
在不同的传输介质上使用频分复用技术,会产生不同的优缺点和适用范围。
1、空气传输介质空气传输介质是指将信号通过空气介质传输,广播电视领域广泛使用此类传输介质。
使用空气介质传输数据的好处是传输距离远,传输带宽大,但是也存在着受天气影响较为明显、信号传输距离受到限制等缺点。
2、电线传输介质电线传输介质是指将信号通过电线介质传输,电话通信领域广泛使用此类传输介质。
使用电线介质传输数据的好处是传输速度较快、受天气影响较小、传输距离较远等等优点。
但是也存在着噪声较大、信号损耗程度较高、传输带宽有限等缺点。
3、光纤传输介质光纤传输介质是指将信号通过光纤介质传输,在数据传输领域得到了广泛应用。
使用光纤传输介质进行数据传输的好处是传输速度极快、信号损耗程度较小、带宽较大等优点。
但是,使用光纤传输介质的成本较高,且维护起来比较复杂。
三、结语频分复用技术在多个领域得到了广泛的应用,通过在不同的传输介质上使用频分复用技术,可以实现多个信号的同时传输,提高了传输效率,降低了传输成本。
不同的传输介质具有不同的优缺点,在选择传输介质时,需要综合考虑信号传输的距离、速度、成本和维护等因素。
频分复用《通信原理》

频分复用
1.频分复用的定义
频分复用是将用于传输信道的总带宽划分成若干个子信道,每个子信道传输一路信号。
2.频分复用的原理
(1)将信道的带宽分成多个相互不重叠的频段,每路信号占据其中一个子通道;
(2)各路之间留有未被使用的频带(防护频带)进行分隔,防止信号重叠;
(3)在接收端,采用适当的带通滤波器将多路信号分开,恢复出所需要的信号。
3.频分复用的实现
频分复用系统实现框图
图5-28 频分复用系统实现框图
4.频分复用的特点
(1)优点
①信道利用率高,技术成熟;
②可有效减少多径及频率选择性信道造成接收端误码率上升的影响;
③接收端可利用简单一阶均衡器补偿信道传输的失真。
(2)缺点
①设备复杂,滤波器难以制作;
②在复用和传输过程中,调制、解调等过程会不同程度地引入非线性失真,而产生各路信号的相互干扰;
③传送与接收端需要精确的同步;
④对于多普勒效应频率漂移敏感。
5.频分复用的应用
频分复用是模拟系统中最主要的一种复用方式,特别是在有线、微波通信系统及卫星通信系统内广泛应用。
频分复用、时分复用和码分复用

频分复⽤、时分复⽤和码分复⽤频分复⽤(FDM):按频率划分的不同信道,⽤户分到⼀定的频带后,在通信过程中⾃始⾄终都占⽤这个频带,可见频分复⽤的所有⽤户在同样的时间占⽤不同的带宽资源(带宽指频率带)时分复⽤(TDM):按时间划分成不同的信道,每⼀个时分复⽤的⽤户在每⼀个TDM帧中占⽤固定序列号的间隙,可见时分复⽤的所有⽤户是在不同时间占⽤同样的频带宽度码分复⽤(CMD):更常⽤的是码分多址(CMDA),每⼀个⽤户可以在同样的时间使⽤同样的频带进⾏通信,由于各⽤户使⽤经过特殊挑选的不同码型,因此各⽤户之间不会造成⼲扰。
码分复⽤最初⽤于军事通信,因为这种系统发送的信号有很强的抗⼲扰能⼒,其频谱类似于⽩噪声,不易被敌⼈发现,后来才⼴泛的使⽤在民⽤的移动通信中,它的优越性在于可以提⾼通信的话⾳质量和数据传输的可靠性,减少⼲扰对通信的影响,增⼤通信系统的容量,,降低⼿机的平均发射功率等,其⼯作原理如下:在CDMA中,每⼀个⽐特时间在划分为m个短的间隔,称为码⽚(chip),通常m的值为64或128,为了⽅便说明,取m为81. 使⽤CDMA的每⼀个站被指派⼀个唯⼀的m bit码⽚序列,⼀个站如果要发送⽐特1,则发送它⾃⼰的m bit码⽚序列,如果要发送0,则发送该码⽚序列的⼆进制反码,按照惯例将码⽚中的0写成-1,将1写成+12. CDMA给每⼀个站分配的码⽚序列不仅必须各不相同,并且还必须互相正交,⽤数学公式表⽰,令向量S表⽰站S的码⽚向量,再令T表⽰其他任何站的码⽚向量。
两个不同站的码⽚序列正交,就是向量S和T的规格化内积都是S * T = 03. 任何⼀个码⽚向量和该码⽚向量⾃⼰的规格化内积都是S * S = 14. 任何⼀个码⽚向量和该码⽚的反码的向量的规格化内积都是-1所有其他站的信号都被过滤,⽽只剩下S站发送的信号。
当S站发送⽐特1时,在X站计算内积结果为+1;当S站发送⽐特0时,内积结果为-1;当S站不发送时,内积结果为0,S与X正交。
简述频分复用与时分复用的工作原理、特点和应用场景

简述频分复用与时分复用的工作原理、特点和应用场景频分复用和时分复用是传输技术中常用的两种方式,它们的工作原理、特点和应用场景都有所不同。
本文将从这三个方面详细介绍这两种技术。
一、频分复用的工作原理、特点和应用场景1. 工作原理频分复用是一种将多个信号通过不同的频率进行分离传输的技术。
它的原理是将多路信号分别调制到不同的载波频率上,然后再将这些频率合并成为一个宽带信号进行传输。
在接收端,再将这个宽带信号分离成多个不同频率的信号,最后进行解调还原原始信号。
2. 特点频分复用的特点是可以在同一条传输线路上传输多路信号,从而提高了传输效率和带宽利用率。
此外,频分复用还可以实现不同传输速率和协议的兼容性,使得不同类型的数据可以在同一条线路上传输。
3. 应用场景频分复用在通信领域有着广泛的应用,例如:(1)电视信号的传输:在有线电视网络中,频分复用技术可以将多个电视信号合并在一起,从而提高了电视信号的传输效率。
(2)移动通信:在移动通信网络中,频分复用技术可以将多个用户的信号合并在一起,从而提高了网络的容量和覆盖范围。
(3)卫星通信:在卫星通信中,频分复用技术可以将多个用户的信号合并在一起,从而提高了卫星的传输效率和带宽利用率。
二、时分复用的工作原理、特点和应用场景1. 工作原理时分复用是一种将多个信号通过不同的时间片进行分离传输的技术。
它的原理是将多个信号在时间上分割成为若干个时隙,然后将这些时隙组成一个宽带信号进行传输。
在接收端,再将这个宽带信号分离成多个不同时间片的信号,最后进行解调还原原始信号。
2. 特点时分复用的特点是可以在同一条传输线路上传输多路信号,从而提高了传输效率和带宽利用率。
此外,时分复用还可以实现不同传输速率和协议的兼容性,使得不同类型的数据可以在同一条线路上传输。
3. 应用场景时分复用在通信领域也有着广泛的应用,例如:(1)电话网络:在电话网络中,时分复用技术可以将多个电话信号合并在一起,从而提高了电话网络的容量和效率。
毕业设计113频分复用、霍夫曼编码、网络流量、Web Server、DSK语音、同步与定时和串行通信系统设计

摘要摘要综合课题毕业设计包括8个设计课题:频分复用、霍夫曼编码、网络流量、Web Server、DSK语音、同步与定时和串行通信。
传输专题要求理解通信各个环节的电路以及功率和带宽的计算,然后利用Protel绘制出各个单元电路,例如振荡电路、调制电路、分频电路等等。
霍夫曼编码是在充分理解了霍夫曼编码的原理之后编写一个软件来实现霍夫曼编码的功能,并分析压缩率。
网络流量课题的设计目的是通过从不同的角度对数据进行分析,得到结论,然后利用网络知识解释分析流量变化原因。
Web Server专题要求了解嵌入式系统开发环境,通过服务器端程序的编写了解基本的动态网站的设计方法。
DSK语音设计要求理解DSK语音在工程实现上的方法。
根据设计要求,给出一种语音编解码的实现方案,基于TI公司提供的TMS320VC5416 DSK给出实现结果;通过本实验体会并初步学会DSP技术的实现方法及开发流程。
同步与定时专题要求设计AD9959的外围电路,然后设计一个软件来控制AD9959使之输出我们需要的频率。
串行通信专题要求进一步了解串行通信的基本原理;掌握串行接口芯片的工作原理和编程方法。
关键词:频分复用,霍夫曼编码,网络流量,Web Server,DSK语音,同步与定时,串行通信ⅠABSTRACTAbstractThis diploma design contains eight projects: FDM, Huffman code, Network flux, Web server, DSK voice process, DDS and Serial communicate.FDM project requires deep understanding of the process of communication, then design some important parts of the circuit.In Huffman code project, I design a software which help us to make Huffman code come true.Network flux project let us analyze the flux between two nets.Web server project’s aim is make us know the basic method of how to design a website based on C/S.DSK voice process offers a solution to transmit voice through DSP’ process.In DDS design we design circuit for AD9959, and then we use VB to write a program to control the AD9959 to generate the frequency we desire.Keywords: FDM, Huffman code, Network flux, Web server, DSK voice process, DDS and Serial communicateⅡ目录第一章传输专题(频分复用) (1)1.1设计原理 (1)1.2系统的带宽和功率计算 (2)1.2.1功率计算 (2)1.2.2带宽计算 (2)1.3单元电路设计 (3)1.3.1振荡电路 (3)1.3.2同向输入放大器 (4)1.3.3加法器 (4)1.3.4 调制电路 (5)1.3.5 滤波器 (5)1.3.7 四—二转换器电路 (6)1.3.8 频率合成器 (7)1.4系统总电路图 (8)1.5总结和体会 (12)第二章霍夫曼编码 (13)2.1设计目的与要求 (13)2.2设计原理 (13)2.3设计过程 (14)2.3.1霍夫曼编码的软件流程 (15)2.3.2 设计结果 (15)2.4设计结果分析 (16)2.4.1生成测试文件 (16)2.4.2随机文件读取 (17)2.4总结 (19)第三章网络流量监测及分析 (21)3.1 设计背景和目的 (21)3.2 设计要求 (21)3.3监测及分析的原理 (22)Ⅲ3.3.1监测的原理 (22)3.3.2监测软件Sniffer (22)3.4 方法与过程 (22)3.5数据包分析 (23)3.6全天数据总流量变化图 (27)3.7流量分析 (27)3.7.1 网络进出流量分析 (27)3.7.3 TCP和UDP流量分析 (28)3.7.4 FTP流量分析 (29)3.8安全漏洞 (29)3.9结论与体会 (30)第四章WEB SERVER (31)4.1设计目的 (31)4.2设计环境 (31)4.2.1硬件环境 (31)4.2.2软件环境 (32)4.2.2.1 Linux系统 (32)4.2.2.2虚拟机 (32)4.3基本操作 (32)4.5HTTP协议简介 (33)4.5.1 报文 (33)4.5.2 请求报文 (34)4.5.3 响应报文 (34)4.5.4 首部 (35)4.6TCP通信流程 (36)4.7 程序功能实现 (37)4.7.1功能实现设计思想 (37)4.7.2程序中相关代码解释 (38)4.8程序最终效果 (41)4.9总结 (42)第五章 DSK语音 (43)Ⅳ目录5.1设计目的 (43)5.2设计环境 (43)5.2.1硬件设备 (43)5.2.2软件 (44)5.3设计原理 (45)5.3.1DSK语音编解码原理: (45)5.3.2PCM3002的结构框图如下图: (45)5.4设计步骤 (45)5.4.1PCM3002C ODEC API介绍 (45)5.4.2为设计好的方案画各部分的流程图。
《频分多路复用》课件

PART 05
总结与展望
REPORTING
频分多路复用的总结
频分多路复用是一种利用频率划分信 道,将多个信号调制到不同频率载波 上,实现并行传输的通信技术。
频分多路复用的应用场景广泛,包括 广播、电视、卫星通信道利用 率高、抗干扰能力强、频带资源丰富 等。
随着技术的发展,将出现更高效的调制方式,进 一步提高频分多路复用的传输速率和频谱利用率 。
与其他技术的融合
未来,频分多路复用将与其他通信技术如MIMO 、协同通信等融合,以提供更可靠、高速的数据 传输服务。
PART 04
频分多路复用的实际应用 案例
REPORTING
频分多路复用在通信网络中的应用
《频分多路复用》 PPT课件
REPORTING
• 频分多路复用概述 • 频分多路复用的技术实现 • 频分多路复用的优势与挑战 • 频分多路复用的实际应用案例 • 总结与展望
目录
PART 01
频分多路复用概述
REPORTING
定义与特点
定义
频分多路复用是一种利用不同的 频率通道传输多个信号的通信技 术。
频分多路复用在广播电台中的应用
广播节目的频分多路复用
在广播电台中,频分多路复用技术用于将多个不同的广播节 目调制到不同的频段上,然后通过一个共同的载波进行传输 。这样可以让多个节目在同一时间共享同一频段,提高了频 谱利用率。
广告和音乐的插播
在广播节目中,广告和音乐通常会被安排在不同的频段上进 行插播,以避免干扰主要节目的播放。频分多路复用技术使 得这些插播内容可以在不影响主节目质量的情况下进行传输 。
频分多路复用在雷达系统中的应用
雷达信号的频分多路复用
在雷达系统中,频分多路复用技术用于将多个不同的雷达信号调制到不同的频段 上,以提高雷达的探测能力和分辨率。通过将不同的目标反射的回波信号解调到 不同的频段上,可以实现多目标跟踪和识别。
频分复用及应用实例

频分复用及应用实例
频分复用
频分复用(FDM,Frequency Division Multiplexing)就是将用于传输信道的总带宽划分成若干个子频带(或称子信道),每一个子信道传输1路信号。
频分复用要求总频率宽度大于各个子信道频率之和,同时为了保证各子信道中所传输的信号互不干扰,应在各子信道之间设立隔离带,这样就保证了各路信号互不干扰(条件之一)。
频分复用技术的特点是所有子信道传输的信号以并行的方式工作,每一路信号传输时可不考虑传输时延,因而频分复用技术取得了非常广泛的应用。
频分复用技术除传统意义上的频分复用(FDM)外,还有一种是正交频分复用(OFDM)。
频分复用及应用实例
一、频分复用
概念:多路复用是将若干路彼此无关的消息信号合并在一起,在一个信道中进行传输。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子科技大学通信学院97《综合课程设计实验报告》传输专题设计(频分复用)一、设计名称传输专题设计(频分复用)二、设计目的通过本次课程设计,掌握频分复用的原理,学习简单复用系统的设计方法,并学习对通信系统中的典型部件电路进行方案设计、分析制作与调试。
三、设计原理数据通信系统或计算机网络系统中,传输媒体的带宽或容量往往超过传输单一信号的需求,为了有效地利用通信线路,希望一个信道同时传输多路信号,这就是多路复用技术。
采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输,在远距离传输时可大大节省电缆的安装和维护费用。
频分多路复用FDM (Frequency Division Multiplexing)和时分多路复用TDM (Time Di-vision Multiplexing)是两种最常用的多路复用技术。
在通信系统中,信道所能提供的带宽通常比传送一路信号所需的带宽宽得多。
如果一个信道只传送一路信号是非常浪费的,为了能够充分利用信道的带宽,就可以采用频分复用的方法。
在频分复用系统中,信道的可用频带被分成若干个互不交叠的频段,每路信号用其中一个频段传输,因而可以用滤波器将它们分别滤出来,然后分别解调接收。
按频率分割信号的方法叫频分复用,按时间分割信号的方法叫时分复用。
在频分复用中,信道的可用频带被分割成若干互不交叠的频段,每路信号占据其中一个频段,因而可以用适当的滤波器把它们分割开来,分别解调接收。
多路复用原理框图如图一:图一:多路复用原理框图四、设计指标设计一个频分复用调制系统,将12路语音信号调制到电缆上进行传输,其传输技术指标如下:(一)语音信号频带:300Hz~3400Hz。
(二)电缆传输频带:60KHz~156KHz。
(三)传输中满载条件下信号功率不低于总功率的90%。
(四)电缆传输端阻抗600Ω,电缆上信号总功率(传输频带内的最大功率)不大于1mW。
(五)语音通信接口采用4线制全双工。
(六)音频端接口阻抗600Ω,标称输入输出功率为0.1mW。
(七)滤波器指标:规一化过渡带1%,特征阻抗600Ω,通带衰耗1dB,阻带衰耗40dB(功率衰耗),截止频率(设计者定)。
(八)系统电源:直流24V单电源。
五、设计思路和过程(一)频分复用的优点:信道复用率高,分路方便,因此,频分多路复用是目前模拟通信中常采用的一种复用方式,特别是在有线和微波通信系统中应用十分广泛。
(二)频分复用中的主要问题:串扰,即各路信号之间的相互干扰。
引起串扰的主要原因是滤波器特性不够理想和信道中的非线性特性造成的已调信号频谱的展宽。
调制非线性所造成的串扰可以部分地由发送带通滤波器消除,因而在频分多路复用系统中对系统线性的要求很高。
(三)频分复用系统原理框图图二:系统发送端发送信号()s t的频谱包含各个信道系统接收端图二:频分复用系统原理框图(四) 设计说明在多路载波电话中采用单边带调制频分复用,主要是为了最大限度地节省传输频带。
通信中每路电话信号限带于3003400Hz -,单边带调制后其带宽与调制信号相同也为3003400Hz -。
为了在邻路已调信号间留有保护频带,以便滤波器有可实现的过渡带,通常每路话音信号取4KHz 作为标准频带。
由题目所给,电缆传输频带60156KHz KHz ,带宽96KHz 。
由于是全双工,96KHz 的带宽正好可容纳24路信号,即A B →,12路;B A →,12路。
它们在一个信道上传输,这样就充分利用了信道资源。
采用滤波法获得各个独立的通信信道内容。
理想滤波特性是不可能做到的,实际滤波器从通带到阻带总有一个过渡带.我们的调制信号是3003400Hz -,由于最低频率为300Hz ,因此允许过渡带为600Hz ,实现滤波器的难易与过渡带相对于载频的归一化值有关,过渡带的归一化值愈小,分割上、下边带的滤波器就愈难实现。
过渡带相对于载频的归一化值计算方法如下式:L Cf f η= L f 为滤波器的过渡带,C f 为载波频率,η为过渡带相对于载频的归一化值。
如: 600L f Hz =,60C f KHz =,则: 0.01η=,即: 1%,刚好满足所给指标。
发送端根据课题给出条件,采用二次调制。
第一次用12KHz ,16KHz ,20KHz 调制形成前群。
按最高载频计算,36003%2010η==⨯ 第二次用84KHz ,96KHz ,108KHz ,120KHz 调制,按最高载频120KHz 计算,33241020%12010η⨯==⨯ 二次调制方案: 在发送端,将12路语音信号(频率4KHz ),分为四组,每组的3路信号分别用12KHz ,16KHz ,20KHz 的载频进行调制,取上边带,把3路信号加在一起,合成一个前群,前群的频率为1224KHz KHz 。
在一端,将四个前群分别用84KHz ,96KHz ,108KHz ,120KHz 载频进行调制,取下边带,从而将四个前群调制到了60108KHz KHz 的频带上。
在另一端,形成前群的方法相同。
将四个前群分别132KHz ,144KHz ,156KHz ,168KHz 的载频进行调制,取下边带,基群调制到108156KHz KHz 的频段上。
A B →调制示意图如下,图三(B A →与之相似):原理示意图频带示意图图三:A B调制示意图●接收端首先,用带通滤波器(BPF)来区分各路信号的频谱。
然后,通过各自的相干解调器解调,再经低通滤波后输出,便可恢复各路的调制信号。
(如图二所示)●功率问题首先,对于发送端来讲,由于采用两次调制方式,每次调制电压信号幅度衰减为原来的12,这样经过两次调制,电压信号幅度衰减为原来信号的14。
再则,于二四线转换电路中,电压信号又将损失12。
于是发送端总的电压幅度变为18,即信号功率变为原有的164。
音频输入信号功率为0.1mW,要求传输中满载条件下信号功率不低于总功率的90%,且电缆上信号总功率不大于1mW,每路信号分的0.924mW,于是有功率放大倍数A:0.90.124;2464 5.Power Voltage Power A A A =÷=== 因此发送端应当将信号电压放大为原信号的5倍。
然后,对于接收端,采用一次解调方式损失12。
再则,于二四线转换电路中,电压信号又损失12。
于是接收端总的电压幅度变为14,既信号功率变为原有的116。
于是有功率放大倍数A : 0.90.143;24167.Power Voltage Power A A A =÷=⨯== 因此接收端应当将信号电压放大为原信号的7倍。
六、 系统总体设计框图(一) 系统总体设计框图,图四:图四:系统总体设计框图(二) 发送端调制框图,图五:图五:发送端调制框图(三)接收端解调框图,图六:图六:接收端解调框图七、 系统单元电路设计(一) 频率生成器作为基准的60kHz 方波是由一个555电路产生的,采用了晶体振荡器,如图七。
12121210.7(2);2C R R f R R q R R +=+=+q 为占空比,f 为输出频率。
根据以上公式,选取1R ,2R ,C 构成频率发生器。
图七:产生60KHz方波图八:利用4022产生12KHz和4KHz方波图九:利用4046合成64KHz 方波(二) 加法器采用同相加法器构成。
123111213////;(1)(1)(1)1p s s s f p f p f p s s s R R R R R R R R R R R R R R R R =+=+=+= 因此1R =300。
图十:实现三路加法的加法器123451112131415////////;(1)(1)(1)(1)(1)1p s s s s s f p f p f p f p f p s s s s s R R R R R R R R R R R R R R R R R R R R R R R R R R =+=+=+=+=+= 因此1R =150。
图十一:实现五路加法的加法器(三) 四二线转换器由于语音信号是收和发同时存在(收二线,发二线),所以是四线,而传输线是二线,这就需要进行四—二线转换。
在将二次群信号送入电缆传输时,为了使发送方不至于收到自己发出的信号,采用混合线圈。
混合线圈原理是一个平衡电桥,使本地发送的信号不能渗漏到本端的接收信号处而形成回波。
图十二:四二线和二丝线转换器(四) 功率放大器 由115fv R A R =+=可得发送端放大电路如下图十三:图十三:发送端放大电路 由117fv R A R =+=可得接收端放大电路如下图十四:图十四:接收端放大电路(五)调制电路图十五:调制电路图(balanced modulator)(六)解调电路图十六:解调电路图(product detector) 八、系统电路总图图十七:系统电路总图九、Matlab仿真a)M程序clc;clear;%%Fs=1000;%采样频率1000Kt=[0:10*Fs]/Fs;%观察时间%%%产生高斯白噪声Noise=wgn(1,length(t),-20);%%%产生仿真数据ch1=1*sin(2*pi*2*t+pi/4)+2*sin(2*pi*3*t+pi/2);%信道1(2K,3K)ch2=1*sin(2*pi*2.1*t+pi/4)+2*sin(2*pi*3.1*t+pi/2);%信道2(2.1K,3.1K)ch3=1*sin(2*pi*2.2*t+pi/4)+2*sin(2*pi*3.2*t+pi/2);%信道3(2.2K,3.2K)ch4=1*sin(2*pi*2.3*t+pi/4)+2*sin(2*pi*3.3*t+pi/2);%信道4(2.3K,3.3K)ch5=1*sin(2*pi*2.4*t+pi/4)+2*sin(2*pi*3.4*t+pi/2);%信道5(2.4K,3.4K)ch6=1*sin(2*pi*2.5*t+pi/4)+2*sin(2*pi*3.6*t+pi/2);%信道6(2.5K,3.6K)ch7=1*sin(2*pi*2.6*t+pi/4)+2*sin(2*pi*3.4*t+pi/2);%信道7(2.6K,3.4K)ch8=1*sin(2*pi*2.7*t+pi/4)+2*sin(2*pi*3.5*t+pi/2);%信道8(2.7K,3.5K)ch9=1*sin(2*pi*2.8*t+pi/4)+2*sin(2*pi*3.6*t+pi/2);%信道9(2.8K,3.6K)ch10=1*sin(2*pi*2.9*t+pi/4)+2*sin(2*pi*3.7*t+pi/2);%信道10(2.9K,3.7K)ch11=1*sin(2*pi*1.9*t+pi/4)+2*sin(2*pi*2.8*t+pi/2);%信道11(1.9K,2.8K)ch12=1*sin(2*pi*1.8*t+pi/4)+2*sin(2*pi*2.9*t+pi/2);%信道12(1.8K,2.9K)%%%前群调制,取各个信道信号上边带qianqun1=ssbmod(ch1,12,Fs,0,'upper')+ssbmod(ch2,16,Fs,0,'upper')+ssbmo d(ch3,20,Fs,0,'upper')+wgn(1,length(t),-20);qianqun2=ssbmod(ch4,12,Fs,0,'upper')+ssbmod(ch5,16,Fs,0,'upper')+ssbmo d(ch6,20,Fs,0,'upper')+wgn(1,length(t),-20);qianqun3=ssbmod(ch7,12,Fs,0,'upper')+ssbmod(ch8,16,Fs,0,'upper')+ssbmo d(ch9,20,Fs,0,'upper')+wgn(1,length(t),-20);qianqun4=ssbmod(ch10,12,Fs,0,'upper')+ssbmod(ch11,16,Fs,0,'upper')+ssb mod(ch12,20,Fs,0,'upper')+wgn(1,length(t),-20);%%%基群调制,取各个前群的下边带jiqun=ssbmod(qianqun1,84,Fs)+ssbmod(qianqun2,96,Fs)+ssbmod(qianqun3, 108,Fs)+ssbmod(qianqun4,120,Fs)+sin(2*pi*60*t)+wgn(1,length(t),-20);%%%通过信道channel=jiqun+wgn(1,length(t),-20);%%%带通滤波设计,实际应用中的标准频率来自插入的60Hz导频。