阿里大数据架构

合集下载

阿里大数据架构

阿里大数据架构

阿里大数据架构阿里大数据架构1.引言本文档旨在介绍阿里大数据架构的设计和部署。

阿里大数据架构是基于云计算和大数据技术的解决方案,用于处理海量数据和实时分析。

本文将从整体架构设计、数据存储、数据处理和数据分析等方面进行详细说明。

2.整体架构设计2.1 架构目标2.2 架构图示2.3 架构组件说明3.数据存储3.1 数据库选择与设计3.2 存储系统配置和部署3.3 数据备份与恢复策略4.数据处理4.1 数据采集与清洗4.2 数据传输与转换4.3 数据分区与分片4.4 数据压缩与解压缩5.数据分析5.1 数据建模与查询5.2 数据可视化与报表5.3 数据挖掘与机器学习5.4 数据安全与权限控制附件:附件1、架构图示附件2、数据库设计文档附件3、数据处理脚本示例附件4、数据分析报告样例法律名词及注释:1.云计算:指将计算资源通过互联网通过按需共享的方式提供给用户,并根据用户的实际需求进行弹性分配和管理的一种计算模式。

云计算具备资源池化、按需供给、分布式部署、灵活扩展等特点。

2.大数据:大数据是指以传统数据处理软件无法处理的数据规模、数据类型、数据速度和数据处理能力为特征的数据集合。

大数据一般具备“4V”特点,即数据量大(Volume)、数据类型多样(Variety)、数据流速快(Velocity)和数据价值高(Value)。

3.数据备份与恢复策略:指为保护数据安全和防止数据丢失,采取的数据备份与恢复措施。

常用的策略包括定期备份、增量备份、冷备份、热备份等。

4.数据采集与清洗:指将原始数据从不同来源收集到数据平台,并对数据进行清洗和预处理,以保证数据质量和可用性。

5.数据传输与转换:指将数据从一个系统或存储介质转移到另一个系统或存储介质,并在转移过程中对数据进行格式转换和结构调整,以适应目标系统的需求。

6.数据建模与查询:指对原始数据进行数据模型设计和数据查询操作,以实现数据分析和业务需求。

7.数据可视化与报表:指通过图表、图形和报表等方式将数据可视化展示,并向用户提供直观和容易理解的数据报告。

阿里数据仓库解决方案

阿里数据仓库解决方案

阿里数据仓库解决方案阿里数据仓库是由阿里巴巴集团自主研发的一套大数据存储与分析解决方案。

随着互联网的发展和大数据的迅猛增长,越来越多的企业开始意识到数据对于业务决策的重要性。

阿里数据仓库作为一种高效、可靠的数据存储和分析平台,为用户提供了全面、深入的数据洞察。

一、架构设计1. 数据采集与存储:阿里数据仓库采用分布式架构,包含数据采集、数据清洗和数据存储三个模块。

其中,数据采集模块负责从各种数据源(如数据库、日志、文件)中获取数据,并对数据进行初步处理。

数据清洗模块用于对采集到的数据进行清洗、转换和去重等操作,确保数据质量。

数据存储模块则将清洗后的数据按照一定的规则进行存储,以便后续的数据分析和挖掘。

2. 数据分析与挖掘:在数据存储模块中,阿里数据仓库提供了多种存储引擎和分区方式,以满足不同用户的数据分析需求。

用户可以通过SQL语言进行数据查询和分析,也可以使用Hadoop的MapReduce框架进行复杂的数据挖掘和计算。

此外,阿里数据仓库还支持实时数据分析,用户可以通过实时流处理技术对不断产生的数据进行实时处理和分析。

3. 数据可视化与应用:阿里数据仓库提供了强大的数据可视化和应用开发功能,用户可以通过简单的拖拽操作,创建丰富多样的数据报表和仪表盘。

同时,阿里数据仓库还支持多种数据应用开发框架,用户可以基于数据仓库构建自己的数据分析应用和业务应用。

二、核心特性1. 高可用性:阿里数据仓库采用分布式架构和容错技术,确保系统在硬件故障、网络故障等情况下仍然可用。

此外,阿里数据仓库还具备自动化的故障恢复和负载均衡机制,提高系统的可用性和稳定性。

2. 高性能:阿里数据仓库在数据存储和分析方面进行了优化,采用了列式存储和压缩算法,提高了系统的存储密度和数据访问速度。

同时,阿里数据仓库还支持并发查询和并行计算,提高系统的处理能力和响应速度。

3. 数据安全:阿里数据仓库采用多层次的数据安全策略,包括数据加密、访问控制和审计跟踪等功能,确保用户的数据得到有效的保护。

阿里巴巴大数据之路——数据技术篇

阿里巴巴大数据之路——数据技术篇

阿⾥巴巴⼤数据之路——数据技术篇⼀、整体架构 从下⾄上依次分为数据采集层、数据计算层、数据服务层、数据应⽤层 数据采集层:以DataX为代表的数据同步⼯具和同步中⼼ 数据计算层:以MaxComputer为代表的离线数据存储和计算平台 数据服务层:以RDS为代表的数据库服务(接⼝或者视图形式的数据服务) 数据应⽤层:包含流量分析平台等数据应⽤⼯具⼆、数据采集(离线数据同步) 数据采集主要分为⽇志采集和数据库采集。

⽇志采集暂略(参考书籍原⽂)。

我们主要运⽤的是数据库采集(数据库同步)。

通常情况下,我们需要规定原业务系统表增加两个字段:创建时间、更新时间(或者⾄少⼀个字段:更新时间) 数据同步主要可以分为三⼤类:直连同步、数据⽂件同步、数据库⽇志解析同步 1.直连同步 通过规范好的接⼝和动态连接库的⽅式直接连接业务库,例如通过ODBC/JDBC进⾏直连 当然直接连接业务库的话会对业务库产⽣较⼤压⼒,如果有主备策略可以从备库进⾏抽取,此⽅式不适合直接从业务库到数仓的情景 2.数据⽂件同步 从源系统⽣成数据⽂本⽂件,利⽤FTP等传输⽅式传输⾄⽬标系统,完成数据的同步 为了防⽌丢包等情况,⼀般会附加⼀个校验⽂件,校验⽂件包含数据量、⽂件⼤⼩等信息 为了安全起见还可以加密压缩传输,到⽬标库再解压解密,提⾼安全性 3.数据库⽇志同步 主流数据库都⽀持⽇志⽂件进⾏数据恢复(⽇志信息丰富,格式稳定),例如Oracle的归档⽇志 (数据库相关⽇志介绍,参考:) 4.阿⾥数据仓库同步⽅式 1)批量数据同步 要实现各种各样数据源与数仓的数据同步,需要实现数据的统⼀,统⼀的⽅式是将所有数据类型都转化为中间状态,也就是字符串类型。

以此来实现数据格式的统⼀。

产品——阿⾥DataX:多⽅向⾼⾃由度异构数据交换服务产品,产品解决的主要问题:实现跨平台的、跨数据库、不同系统之间的数据同步及交互。

产品简介: 开源地址: 更多的介绍将会通过新开随笔进⾏介绍!(当然还有其他主流的数据同步⼯具例如kettle等!) 2)实时数据同步 实时数据同步强调的是实时性,基本原理是通过数据库的⽇志(MySQL的bin-log,Oracle的归档⽇志等)实现数据的增量同步传输。

分享一份阿里架构师 651 多个技术分支的脑图

分享一份阿里架构师 651 多个技术分支的脑图

分享一份阿里架构师651 多个技术分支的脑图
经常有大数据工程师问我,自己想往大数据架构师方向发展,问我应该怎么努力!
其实,蹲上架构师的坑需要的是更高层次的开发构架设计能力。

这时候,架构师技术能力的强弱、素质的高低直接关乎了软件项目的成败!所以,架构师要对开发技术非常非常了解,脑海中要有一个体系!
多一点真诚,少一点套路!这里直接送给大家超全的大数据架构师技术体系地图!快速让大家对大数据架构师需要掌握的技术有所认识。

共651 个分支,展开后非常详细!
除了大纲,再给大家提供一些硬货视频吧!
总之,要想成为一名合格的大数据架构师,掌握以上技术是必须的!大数据技术在各个行业内应用广泛,总体来看,数据对于各大公司来讲,是非常有价值的,市场对于大数据人才需求也是十分旺盛。

只要你一直努力,年薪百万只是小目标!如果大家想深耕在这个行业,蹲上大数据架构师的坑,给大家推荐一门非常非常专业的课程——《大数据架构师》。

这门课程深度剖析了各个基础技术的源码(ZooKeeper、Hive、Spark、Flink、Hadoop等),对这些基础技术知识动态的排列组合,形成大数据全局架构观,并深入讲述大数据全局架构设计的方方面面,打造真正满足企业万亿级海量数据规模的数据中台,赋能前台业务。

同时,在企业万亿级真实项目落地环节,采用高性能、高可用、高扩展的架构设计原则,技术上更是融合了企业级主流的离线架构和实时架构,带领大家构建PB级的大数据中台,真正落地“企业千亿级的数据仓库中台”,实现“企业级数据中心平台”,搞定“企业千亿级广告统一数据流智能分析平台”,掌握“企业级Hadoop平台全方位二次源码开发”,让学员面对企业各种海量复杂业务场景,给出优雅的大数据架构设计方案,从而真正成为企业级大数据架构师!。

阿里集团大数据建设OneData体系

阿里集团大数据建设OneData体系

层次结构

据 化
表数据分布 情况
表关联使用 情况
CDM核心架构
汇总事实表 明细事实表 明细维表
维度
Star Scheme
指标
规范化
设计方法-DWD模型设计
识别业务过 程
选择事实表 的类型
确定粒度及 选定维度
添加度量
冗余维度
流量 维度冗余事实表带来的好处与弊端 DWD层关联相关数据和组合相似数据的原则 DWD层事实宽表垂直划分和水平切割
定位
OneData体系架构
名词术语(一)
名词
解释
数据域
数据域是业务板块中有一定规模且相对独立的数据业务范围。 面向业务分析,将业务过程或者维度进行抽象的集合。 为保障整个体系的生命力,数据域是需要抽象提炼、并且长期维护 和更新的,但不轻易变动。在划分数据域时,既能涵盖当前所有的 业务需求,又能在新业务进入时无影响的被包含进已有的数据域和 扩展新的数据域。
逻辑结构 业务板块
核心架构
举例 电商业务
数据域
交易域
业务过程
维度
支付
订单
修饰类型
时间 周期
修饰词
原子指标
最近1天
支付方式 花呗
支付金额 pay_amt
派生指标
度量 属性
最近1天通过花呗 支付的支付金额 pay_amt_1d_009
支付金额 pay_amt
订单ID 创建时间
……
1.数据域:是指一个或多个业务过程或者维度的集合 2.原子指标:基于某一业务过程下的度量。例如:支付+金额=支付金额; 3.派生指标=原子指标+时间修饰+其他修饰词+原子指标;属性是用来刻画某个实体对象维度的数据形态;事实叫做度量,如购买数量 4.修饰:指针对原子指标的业务场景限定抽象。例如:最近N天

《阿里大数据架构》课件

《阿里大数据架构》课件

2
阿里云实时计算引擎
阿里云实时计算引擎是一种实时数据分析和计算平台,提供实时数据处理和实时 智能服务。
3
TensorFlow在阿里的应用
阿里巴巴广泛使用TensorFlow进行机器学习和深度学习,在智能推荐和图像识 别等领域取得了重要成果。
大数据平台管理
阿里巴巴大数据 平台管理的架构
阿里巴巴建立了一套完善 的大数据平台管理架构, 实现了数据的集中管理和 资源的统一调度。
Storm流式计算引擎
Storm是一种分布式的实时流 式计算引擎,用于处理和分析 高速数据流。
Flink在流处理中的应用
阿里巴巴使用Flink进行实时流 处理,通过流计算实现业务实 时监控和分析。
实时智能架构
1
实时智能分析的概念和应用场景
实时智能分析是基于实时数据进行智能挖掘和分析,用于实时推荐、智能广告等 应用。
2 阿里巴巴大数据安全架构设计
阿里巴巴通过建立严格的安全架构和流程,确保数据在收集、存储和处理过程中的安全。
3 阿里云数据加密解决方案
阿里云提供多种数据加密解决方案,保护数据的机密性和完整性,防止数据泄露和篡改。
流处理架构
流处理的定义和应用场景
流处理是一种实时处理数据的 方式,广泛应用于实时推荐、 欺诈检测和实时分析等场景。
数据的写入和读取。
阿里云OSS存储
阿里云对象存储(OSS)是一种安全 可靠、高扩展性的云存储服务,用于 存储和管理大规模的非结构化数据。
HBase列式数据库
HBase是一种分布式、可扩展的列式 数据库,用于存储和查询大规模结构 化数据。
数据安全
1 数据安全的重要性
在大数据时代,数据安全是保护个人隐私和企业利益的关键,需要采取有效的安全措施。

读呗:一张图解密阿里巴巴大数据系统体系架构

读呗:一张图解密阿里巴巴大数据系统体系架构

读呗:一张图解密阿里巴巴大数据系统体系架构iwangshang / AliData / 2017-06-21摘要:阿里巴巴集团内,数据工程师每天要面对百万级规模的离线数据处理工作,他们是怎样做的?文 / AliData2014年,马云提出,“人类正从IT时代走向DT时代”。

如果说在IT时代是以自我控制、自我管理为主,那么到了DT(Data Technology)时代,则是以服务大众、激发生产力为主。

以互联网(或者物联网)、云计算、大数据和人工智能为代表的新技术革命正在渗透至各行各业,悄悄地改变着我们的生活。

在DT时代,人们比以往任何时候更能收集到更丰富的数据。

IDC 的报告显示:预计到2020年,全球数据总量将超过40ZB(相当于40万亿GB),这一数据量是2011年的22倍!正在呈“爆炸式”增长的数据,其潜在的巨大价值有待发掘。

数据作为一种新的能源,正在发生聚变,变革着我们的生产和生活,催生了当下大数据行业发展热火朝天的盛景。

但是如果不能对这些数据进行有序、有结构地分类组织和存储,如果不能有效利用并发掘它,继而产生价值,那么它同时也成为一场“灾难”。

无序、无结构的数据犹如堆积如山的垃圾,给企业带来的是令人咋舌的高额成本。

在阿里巴巴集团内,我们面临的现实情况是:集团数据存储达到EB级别,部分单张表每天的数据记录数高达几千亿条;在2016年“双11购物狂欢节”的24小时中,支付金额达到了1207亿元人民币,支付峰值高达12万笔/秒,下单峰值达17.5万笔/秒,媒体直播大屏处理的总数据量高达百亿且所有数据都需要做到实时、准确地对外披露……这些给数据采集、存储和计算都带来了极大的挑战。

在阿里内部,数据工程师每天要面对百万级规模的离线数据处理工作。

阿里大数据井喷式的爆发,加大了数据模型、数据研发、数据质量和运维保障工作的难度。

同时,日益丰富的业态,也带来了各种各样、纷繁复杂的数据需求。

如何有效地满足来自员工、商家、合作伙伴等多样化的需求,提高他们对数据使用的满意度,是数据服务和数据产品需要面对的挑战。

阿里云计算与大数据

阿里云计算与大数据

阿里云计算与大数据章节一、引言
1.1 本文档的目的与范围
1.2 读者对象
1.3 文档参考资料
章节二、阿里云计算概述
2.1 阿里云计算的定义
2.2 阿里云计算的优势
2.3 阿里云计算的应用场景
章节三、阿里云大数据平台介绍
3.1 阿里云大数据平台的定义
3.2 阿里云大数据平台的组成部分
3.3 阿里云大数据平台的特性
章节四、阿里云计算与大数据技术架构4.1 阿里云计算与大数据的整体技术架构4.2 阿里云计算与大数据的核心技术组件
4.3 阿里云计算与大数据的架构设计原则章节五、阿里云大数据产品与服务
5.1 阿里云数据计算与处理产品
5.2 阿里云数据存储与管理产品
5.3 阿里云数据智能分析产品
5.4 阿里云数据安全与隐私保护服务
章节六、阿里云计算与大数据应用案例6.1 电商行业的大数据应用案例
6.2 金融行业的大数据应用案例
6.3 制造业的大数据应用案例
6.4 其他行业的大数据应用案例
章节七、阿里云计算与大数据的发展趋势7.1 云计算与大数据产业的现状
7.2 阿里云计算与大数据的发展趋势预测7.3 阿里云计算与大数据的挑战与机遇本文档涉及附件:
附件一、阿里云计算与大数据平台架构图
附件二、阿里云大数据产品与服务详细介绍文档
附件三、阿里云计算与大数据应用案例汇总
本文所涉及的法律名词及注释:
1、云计算:指通过互联网提供一种共享的、可按需访问的计算
资源服务模式。

2、大数据:指处理传统技术无法处理的大规模、高速增长的各
类数据的技术和工具。

3、数据隐私保护:指保护个人数据不被未经授权的收集、存储、处理、传输和使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

WebMacro pojo jdbc Perl
未来 星际时代?
2001 石器时代
2002 中世纪
2005 工业革命
1999 史前
1999-史前时代
• • • • Perl,CGI…… Mysql Apache 服务器在美国,56KModem,远程开发、测 试、部署
史前-石器时代原因
• Java服务器使用线程性能比cgi技术使用进程 好 • Java相比Perl,可维护性好,开发效率高 • Java开始在国内流行
架构考虑的方向
业务 划分
系统 细分
应用 优化
业务划分(总体架构)
总体架构
– 分解:按不同的业务领域、用户群来分解业务 复杂性 – 分配:将业务需求分配到各个公司、部门、系 销售后台 运营后台 网站前台 合作部门 统、服务 用户登录 Offer审批 –会员管理 系统/服务可独立部署和维护,它们之间多采用 搜索引擎 用户前台 分布式交互
•避免宕机 •集群化 •服务化 •备份切换 •维护时间有限 •新产品发布 •在线发布 •叠加式发布 •用户透明过渡
业 务1
业 务2
业 务3
架构设计理念
• 架构是平衡的艺术
– 不要把简单问题复杂化,也不要把复杂问题简 更少硬件 -质量指标- 更多用户 单化 可用性 更少人力
更多数据 更多功能 更少故障
网站产品的生命周期
用户需 求分析 产品需 求整理
用户需求分 析
团队再细分
•商业策划 •市场策划
•产品设计
产品需求分 •网站运营 析
•架构师
架构团队
运营团 队运作
架构团 队设计
开发团队
•程序员 •项目经理 •用户体验
质量团队
•测试 •流程控制
质量团 队质检
开发团 队实施
运营团队
•产品运营 •客户服务
高可用性
• 系统架构需要考虑哪些业务要求和质量指 标?
安全性 性能 稳定性 可维护性
架构的考虑要点
分解
• 业务 • 应用 • 数据
合并
• 联动的业务 • 高藕合的数据
持续发展
• 插件式扩展能力 • 弱藕合,易于剥离 • 局部可优化调整 • 可测试
稳定性
• 高可用性 • 负载均衡 • 线性扩展 • 可被监控
中文站/国际站应用部署图
网站镜像部署图(国际站) 中供用户 网站运营
海外卖家
用户请求处理
Apache Jboss Database
Load Balance (F5, Alteon)
Apache
Jboss
Search Engine
Cache Apache
Jboss
Storage
Apache
Static Resource
会员审批 跟单管理 类目运营 用户后台 阿里旺旺
旺铺、广告
财务管理 数据采集分析 社区、论坛 支付宝
业务划分(总体架构)
业务 体系 运营 体系
会员体系
系统架构
系统架构
– 分解:按不同的技术层次来分解技术复杂性 – 分配:将技术需求分配到各个中间件、容器、 框架、工具组件 表现层 业务逻辑层 数据访问层 工具 – 容器/框架通过特定的技术模式来透明或半透明 安全 WebX iBatis IOC (Spring) 地解决技术问题
系统架构概述
Yes, We KAO 更强,更高,更持久
课程目标和内容
• • • • 了解什么是架构 了解Alibaba网站架构的历史 掌握Alibaba网站架构的现状 掌握网站架构设计的理念
什么是架构?
• 架构规定了软件的高层划分及各部分间的 交互
– 架构不是软件,但架构决策体现于软件平台和 框架之中 –
offer
offer
member
member
transaction
transaction
数据挖掘
•行为数据的采集 •追踪埋点 •异步收集 •采集数据的分析 •数据仓库 •分析引擎 •运营团队决策 •风险行为的控制 •CTU系统 •安全团队
bid
offer repost new offer
单击此处编辑版标题样式 角色专业化细分
• 表现层使用WebX和Service 框架
– Velocity模板技术 – 自有服务框架及多种公共服务:Form Service, Template Service,Mail Service,Rundata Service, Upload Service等 – 通过command模式和biz层交互 – 无状态Web应用,基于cookie实现session,获取 线性扩展性
2001底-石器时代-www系统
• 开始使用Java • 模板技术采用WebMacro • 中间层采用Servlet技术,使用POJO封装业 务逻辑和数据访问
– 使用BizObj对象封装基本业务逻辑和数据访问 方法 – 其它业务对象继承BizObj方法,实现自己的业 务逻辑和数据访问方法
• 使用JDBC访问数据库 • Servlet容器使用resin,Web服务器使用
容错
Velocity SOA (Pampus) CMP 管理监控 日志 Spring MVC EJB JMS Build
系统细分
资源 系统
BOPS 系统 网站应 用系统
应用优化
局部调优(数据存取)
– 分解:按数据的位置、读写、计算特性等分解数据存取复杂性 – 分配:将数据分配到各个数据库、索引库、存储系统、Cache – 不同的存储技术适合于不同的数据存取需求 存储系统
delegate
Façade
商业逻辑层 使用SLSB实现的业务逻辑对象Controlers
数据访问层
CMP进行单条记录的增加删除,DAO对象查找
数据存储
搜索引擎
Oracle数据库
LDAP
中世纪-工业革命原因
• • • • • Turbine的发展缓慢 EJB配置复杂,可维护性差 重量级框架,业务侵入高 高度容器依赖,可测试性差 CMP性能差,导致DAO和CMP并存
石器时代-中世纪原因
• 表现层仅仅使用模板技术,缺乏MVC框架, 导致大量的servlet配置
• 业务逻辑层和数据访问层耦合,可维护性 和可扩展性差 • 受到EJB风潮的影响
2002底-中世纪
• 表现层采用WebX
– 模板技术Velocity – 在Turbine基础上开发了自己的服务框架和一系 列公共服务 – 通过一个delegate对象访问业务逻辑层
数据访问层
基于Spring以及DAO设计模式的数据访问框架
数据存储
搜索引擎
Oracle数据库
LDAP
演化还在继续…
• 数据库成为瓶颈 -> 分布式数据库 • 应用耦合严重 -> SOA • Pampas平台
网站的现在
• • • • • • 中文站会员数超过2000万 中文站Offer已经超过1.5亿 中文站每天的用户PV已经超过1.6亿 中文站每天新发Offer超过100万 中文站每天重发Offer超过1500万 国际站略少,但是增长迅猛
节约 硬件成本 成本 人力成本 架构的优劣决定了业务应用系统的实施能力和 质量成本 发展空间 更多用户 更多数据 更多功能
– 技术搭台,业务唱戏 架构搭台,应用唱戏
• 架构永远在随着业务的发展而变迁– 拥抱变 提高 化! 收益
B2B架构演化过程
Velocity Ejb WebX Spring SOA OPEN API 云计算 ……
Process
Response
• 响应(水平)
– 处理性能的维持
Process
Response
单击此处编辑版标题样式 业务变更
专业化细分之前
• list • detail • company • personal • no support
专业化细分之后
• Clothing • Retail • Loan • Trust Pass • Special Market • alipay • paypal
互联网的挑战
• • • • • 流量随着用户量而增加 业务的变更频繁 用户行为的收集 产品角色的细分及调整 7 X 24的高可用性
单击此处编辑版标题样式 流量激增
处理用户请求 应对的挑战 • 并发(垂直)
Respst Request
Process
– 用户数量的增加 – 使用资源的增加
• 局部应用优化
– 分布式文件系统 – 优化数据同步系统 – 读写分离
总结
• 架构随着业务发展不断演进 • 架构发展要有方向有节奏
Q&A
2001底-石器时代(续)
基于pojo的Biz层 CompanyObj
表现层 基于WebMacro的模板技术
业务逻辑方法 数据访问方法
业务层
基于POJO的biz层
BizObj
业务逻辑方法 数据访问方法
数据存储
Oracle数据库
LDAP
OfferObj MemberObj
业务逻辑方法
数据访问方法 业务逻辑方法 数据访问方法
2005-工业革命
• 业务逻辑层使用Alibaba Service框架,并且 引入spring 框架
– Spring容器和Alibaba Service框架无缝集成
2005-工业革命(续)
表现层 基于Webx以及Service框架的Web层框架 分布式
Session
商业逻辑层
基于Spring以及Service框架的biz层框架 分布式 Cache
• 业务逻辑层使用EJB(SLSB,CMP,DAO等)
– 通过一个façade对象供表现层delegate访问 – Façade对象访问多个SLSB实现的controller对象 实现业务逻辑 – 使用CMP实现单条记录的增加和删除
相关文档
最新文档