各种排序算法总结(C语言版)
C语言数组的五种简单排序,选择法排序,冒泡法排序、交换法排序、插入法排序、折半法排序

C语⾔数组的五种简单排序,选择法排序,冒泡法排序、交换法排序、插⼊法排序、折半法排序⽂章⽬录1、选择法排序选择法排序是指每次选择索要排序的数组中的最⼩值(这⾥是由⼩到⼤排序,如果是由⼤到⼩排序则需要选择最⼤值)的数组元素,将这些数组元素的值与前⾯没有进⾏排序的数组元素值进⾏互换代码实现需要注意的是:声明⼀个数组和两个整形变量,数组⽤于存储输⼊的数字,⽽整形变量⽤于存储最⼩的数组元素的数值与该元素的位置,在我的代码中实现为a[] temp position。
代码具体如下#include<stdio.h>int main(){int m,n,k;printf("please input the length of the array:");scanf("%d",&k);int a[k];int temp;int position;printf("please input the number of the array:\n");for(m=0;m<k;m++){printf("a[%d]=",m+1);scanf("%d",&a[m]);}/*从⼩到⼤排序*/for(m=0;m<k-1;m++){temp=a[m]; //设置当前的值为最⼩值position=m; //记录当前的位置for(n=m+1;n<k;n++){if(a[n]<temp){temp=a[n]; //如果找到⽐当前的还要⼩的数值,则更换最⼩的数值与位置position=n;}}a[position]=a[m];a[m]=temp;}for(m=0;m<k;m++){printf("%d\t",a[m]);}return 0;}结果如下2、冒泡法排序冒泡法排序就是值在排序时,每次⽐较数组中相邻的两个数组元素的值,将⽐较⼩的(从⼩到⼤排序算法,如果是从⼤到⼩排序算法就是将较⼤的数排在较⼩的数前⾯)排在⽐较⼤的前⾯在代码实现的过程中:声明⼀个数组与⼀个整型变量,数组⽤于存放数据元素,整型变量⽤于交换时作为中间变量。
C语言经典算法大全

C语言经典算法大全1.冒泡排序算法冒泡排序是一种简单但低效的排序算法,它通过多次遍历列表,比较相邻元素并交换位置,直到整个列表有序。
冒泡排序的时间复杂度为O(n^2)。
```void bubbleSort(int arr[], int n)for (int i = 0; i < n-1; i++)for (int j = 0; j < n-i-1; j++)if (arr[j] > arr[j+1])//交换元素int temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;}}}```2.选择排序算法选择排序是一种简单但高效的排序算法,它通过多次遍历列表,找到最小元素并将其放置在正确的位置上。
选择排序的时间复杂度也为O(n^2)。
```void selectionSort(int arr[], int n)int minIndex, temp;for (int i = 0; i < n-1; i++)minIndex = i;for (int j = i+1; j < n; j++)if (arr[j] < arr[minIndex])minIndex = j;}}//交换元素temp = arr[i];arr[i] = arr[minIndex];arr[minIndex] = temp;}```3.插入排序算法插入排序是一种简单但高效的排序算法,它通过将未排序的元素插入到已排序的列表中,逐步构建排序好的列表。
插入排序的时间复杂度为O(n^2)。
```void insertionSort(int arr[], int n)int i, key, j;for (i = 1; i < n; i++)key = arr[i];j=i-1;while (j >= 0 && arr[j] > key)arr[j + 1] = arr[j];j=j-1;}arr[j + 1] = key;}```4.快速排序算法快速排序是一种高效的排序算法,它通过选择一个主元,将列表分割为两个子列表,其中一个子列表的所有元素都小于主元,另一个子列表的所有元素都大于主元。
C语言--常见排序算法

49
2 j 49
08
0
25* 3 49 25
16 4
21
5
08
25
25*
16
21
i k 49
j 25* 25
08
25
25*
16
21
算法实例:
1.1.5 选择排序
49 2
08 0
25 1 i
25* 3
16 4 k
21 5 j 21 16
k 指示当前序列中最小者
算法实现:
08 5 temp
16 21 25 25* 49 08 0 1 2 3 4 5
算法实现:
1.1.3 直接插入排序
void InsertSort (int r[ ], int n ) { // 假设关键字为整型,放在向量r[]中 int i, j, temp; for (i = 1;i< n;i++ ) { temp = r[i]; for(j = i;j>0;j- -) {//从后向前顺序比较,并依次后移 if ( temp < r[j-1] ) r[j] = r[j-1]; else break; } r[j] = temp; } }
输入n 个数给a[1] 到 a[n]
for j=1 to n-1
for i=1 to n-j
真 a[i]>a[i+1]
a[i]a[i+1]
输出a[1] 到 a[n]
main() { int a[11],i,j,t; printf("Input 10 numbers:\n"); for(i=1;i<11;i++) scanf("%d",&a[i]); printf("\n"); 假 for(j=1;j<=9;j++) for(i=1;i<=10-j;i++) if(a[i]>a[i+1]) {t=a[i]; a[i]=a[i+1]; a[i+1]=t;} printf("The sorted numbers:\n"); for(i=1;i<11;i++) printf("%d ",a[i]); }
c语言中排序的各种方法解析

c语言中排序的各种方法解析一、引言在计算机编程中,排序是一个重要的操作,它按照一定的顺序排列数据元素,使得数据元素按照从小到大的顺序排列。
在C语言中,有多种方法可以实现排序,包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。
这些排序算法都有各自的优缺点,适合不同的应用场景。
二、冒泡排序冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。
遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
算法步骤:1. 比较相邻的元素。
如果第一个比第二个大(升序),就交换它们两个。
2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。
这步做完后,最后的元素会是最大的数。
3. 针对所有的元素重复以上的步骤,除了最后一个。
4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
三、选择排序选择排序是一种简单直观的排序算法。
它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。
算法步骤:1. 在未排序序列中找到最小元素,存放到排序序列的起始位置。
2. 再从剩余未排序元素中继续寻找最小元素,然后放到已排序序列的末尾。
3. 以此类推,直到所有元素均排序完毕。
四、插入排序插入排序的工作方式是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
插入排序在实现上通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
五、快速排序快速排序使用了分治的原则,它在每一层划分都比前面方法有所改进和精进,当切分到两边的子序列长度都大于某个值时,或者一个大于一个小于这个值时再进行交换的操作来结束此层的递归过程。
这层的结果又成为下一层的两个子数组来处理,最后就得到递归式的最终结果。
各种排序算法代码(C语言版)

各种排序算法代码(C语⾔版)选择排序#include <stdio.h>/** 选择排序* 稳定性:不稳定* 时间复杂度:O(N^2)**/void select_sort(int a[], int l, int r){for (int m_v, m_idx, t, i = l; i < r; ++i) {m_v = a[i]; m_idx = i;for (int j = i + 1; j < r; ++j) {if (m_v > a[j]) {m_v = a[j];m_idx = j;}}t = a[i]; a[i] = a[m_idx]; a[m_idx] = t;}}int main(void){int a[100];int n; scanf("%d", &n);for (int i = 0; i < n; ++i) scanf("%d", &a[i]);select_sort(a, 0, n);for (int i = 0; i < n; ++i) printf("%d ", a[i]);return0;}冒泡排序#include <stdio.h>/** 冒泡排序* 稳定性:稳定void bubble_sort(int a[], int l, int r){for (int i = l; i < r; ++i) {for (int j = l; j < r - i - 1; ++j) {if (a[j] > a[j + 1]) {int tmp = a[j];a[j] = a[j + 1];a[j + 1] = tmp;}}}}int main(void){int a[100];int n; scanf("%d", &n);for (int i = 0; i < n; ++i) scanf("%d", &a[i]); bubble_sort(a, 0, n);for (int i = 0; i < n; ++i) printf("%d ", a[i]);return0;}插⼊排序#include <stdio.h>/** 插⼊排序* 稳定性:稳定* 时间复杂度: O(N^2)**/void insert_sort(int a[], int l, int r){for (int tmp, j, i = l + 1; i < r; ++i) {tmp = a[i], j = i - 1;while (j >= l && tmp < a[j]) a[j+1] = a[j--]; a[j+1] = tmp;}}int main(void){for (int i = 0; i < n; ++i) scanf("%d", &a[i]); insert_sort(a, 0, n);for (int i = 0; i < n; ++i) printf("%d ", a[i]);return0;}希尔排序#include <stdio.h>/** 希尔排序* 稳定性:不稳定* 时间复杂度:O(N*logN)**/void shell_insert_sort(int a[], int l, int r, int d) {for (int tmp, j, i = l + d; i < r; ++i) {tmp = a[i], j = i - d;while (j >= l && tmp < a[j]) {a[j + d] = a[j];j -= d;}a[j + d] = tmp;}}void shell_sort(int a[], int l, int r){int d = (r - l) / 2;while (d >= 1) {shell_insert_sort(a, l, r, d);d /= 2;}}int main(void){int a[100];int n; scanf("%d", &n);for (int i = 0; i < n; ++i) scanf("%d", &a[i]); shell_sort(a, 0, n);for (int i = 0; i < n; ++i) printf("%d ", a[i]);归并排序/** 归并排序* 稳定性:稳定* 时间复杂度:O(N*logN)**/void merge(int a[], int n, int b[], int m, int t[]) {int i, j, k;i = j = k = 0;while (i < n && j < m) {if (a[i] < b[j]) t[k++] = a[i++];else t[k++] = b[j++];}while (i < n) t[k++] = a[i++];while (j < m) t[k++] = b[j++];}void my_merge_sort(int a[], int l, int r, int t[]) {int mid = (l + r) >> 1;int n = r - l;int i;if (l + 1 < r) {my_merge_sort(a, l, mid, t);my_merge_sort(a, mid, r, t);merge(a+l, mid-l, a+mid, r-mid, t);for (i = 0; i < n; ++i) a[i + l] = t[i];}}void merge_sort(int a[], int l, int r){int *t = (int *)malloc((r-l) * sizeof (int));my_merge_sort(a, l, r, t);free(t);}堆排序* 堆排序* 稳定性:不稳定* 时间复杂度:O(N*logN)**/// big top pilevoid heap_adjust(int a[], int fa, int n){int cd = fa * 2 + 1;while (cd < n) {if (cd + 1 < n && a[cd] < a[cd + 1]) cd++;if (a[fa] >= a[cd]) break;int tmp = a[fa];a[fa] = a[cd];fa = cd;cd = fa * 2 + 1;a[fa] = tmp;}}void build_heap(int a[], int n){// ignore leap nodefor (int i = (n - 1) / 2; i >= 0; --i) {heap_adjust(a, i, n);}}void heap_sort(int a[], int l, int r){build_heap(a + l, r - l);for (int tmp, i = r - 1; i > l; --i) {tmp = a[i]; a[i] = a[0]; a[0] = tmp;heap_adjust(a + l, 0, i);}}int main(void){int a[100];int n; scanf("%d", &n);for (int i = 0; i < n; ++i) scanf("%d", &a[i]); heap_sort(a, 0, n);return0;}快速排序/** 快速排序* 稳定性:不稳定* 时间复杂度:O(N*logN)**/void quick_sort(int a[], int l, int r){if (l + 1 >= r) return ;int low = l, high = r;int key = a[l];while (low < high) {while (low < high && a[--high] >= key); a[low] = a[high];while (low < high && a[++low] < key); a[high] = a[low];}a[low] = key;quick_sort(a, l, low);quick_sort(a, low+1, r);}基数排序/** 基数排序* 稳定性:稳定* 时间复杂度:O(d(n+radix)) [d个关键码,关键码的取值范围为radix] **/int tmp[100000000];void radix_sort(int arr[], int beg, int ed){static int a[9] = {1, 10, 100, 1000, 10000, 100000, 1000000};int cnt[10]; // 0~9⼗个数字int digit = 0; // 最⼤位数for (int i = beg; i < ed; ++i)while (arr[i] / a[digit + 1] > 0) digit++;for (int idx = 0; idx <= digit; ++idx) {for (int i = 0; i < 10; ++i) cnt[i] = 0; // 桶计数清零for (int i = beg; i < ed; ++i) cnt[ arr[i]/a[idx]%10 ]++; // 统计每个数字出现的次数// 前缀和统计每个数字前⾯的数字个数这样就可以知道每个数字应该排在第⼏位了for (int i = 1; i < 10; ++i) cnt[i] += cnt[i - 1];for (int i = ed - 1; i >= beg; --i) tmp[ --cnt[arr[i]/a[idx]%10] ] = arr[i];for (int i = beg, j = 0; i < ed; ++i, ++j) arr[i] = tmp[j];}}测试性能int a[100000000];double test(void(*fun)(int*, int, int), int range){for (int i = 0; i < range; ++i) a[i] = rand();clock_t start = clock();fun(a, 0, range);clock_t finish = clock();//for (int i = 0; i < range; ++i) printf("%d\n", a[i]);return ((double)finish - start) / CLOCKS_PER_SEC;}int main(){srand((unsigned)time(NULL));printf(" 数据范围堆排序归并排序希尔排序快速排序插⼊排序冒泡排序选择排序基数排序\n");for (int range = 100; range <= 100000; range *= 10) {printf("%9d %8.3f %8.3f %8.3f %8.3f %8.3f %8.3f %8.3f\n", range, test(heap_sort, range), test(merge_sort, range), test(shell_sort, range), test(quick_sort, range), test(insert_sort, range), test(bubble_sort, range), test(select_sort, range), test(radix_sort, range));}for (int range = 1000000; range <= 10000000; range *= 10) {printf("%9d %8.3f %8.3f %8.3f %8.3f %8.3f\n", range, test(heap_sort, range), test(merge_sort, range), test(shell_sort, range),test(quick_sort, range), test(radix_sort, range));}return0;。
C语言常用算法总结

C语言常用算法总结1、冒泡排序算法:冒泡排序是一种简单的排序算法,它重复地遍历要排序的序列,一次比较两个相邻的元素如果他们的顺序错误就把他们交换过来。
时间复杂度为O(n^2)。
2、快速排序算法:快速排序是一种基于分治的排序算法,通过递归的方式将数组划分为两个子数组,然后对子数组进行排序最后将排好序的子数组合并起来。
时间复杂度为O(nlogn)。
3、插入排序算法:插入排序是一种简单直观的排序算法,通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描找到相应位置并插入。
时间复杂度为O(n^2)。
4、选择排序算法:选择排序是一种简单的排序算法,每次循环选择未排序部分的最小元素,并放置在已排序部分的末尾。
时间复杂度为O(n^2)。
5、归并排序算法:归并排序是一种稳定的排序算法,基于分治思想,将数组递归地分为两个子数组,将子数组排序后再进行合并最终得到有序的数组。
时间复杂度为O(nlogn)。
6、堆排序算法:堆排序是一种基于完全二叉堆的排序算法,通过构建最大堆或最小堆,然后依次将堆顶元素与末尾元素交换再调整堆,得到有序的数组。
时间复杂度为O(nlogn)。
7、二分查找算法:二分查找是一种在有序数组中查找目标元素的算法,每次将待查找范围缩小一半,直到找到目标元素或范围为空。
时间复杂度为O(logn)。
8、KMP算法:KMP算法是一种字符串匹配算法,通过利用模式字符串的自重复性,避免不必要的比较提高匹配效率。
时间复杂度为O(m+n),其中m为文本串长度,n为模式串长度。
9、动态规划算法:动态规划是一种通过将问题分解为子问题,并通过组合子问题的解来求解原问题的方法。
动态规划算法通常使用内存空间来存储中间结果,从而避免重复计算。
时间复杂度取决于问题规模。
10、贪心算法:贪心算法是一种通过选择局部最优解来构建全局最优解的算法并以此构建最终解。
时间复杂度取决于问题规模。
11、最短路径算法:最短路径算法用于求解图中两个节点之间的最短路径,常见的算法包括Dijkstra算法和Floyd-Warshall算法。
C语言八大排序算法

C语⾔⼋⼤排序算法C语⾔⼋⼤排序算法,附动图和详细代码解释!来源:C语⾔与程序设计、⽵⾬听闲等⼀前⾔如果说各种编程语⾔是程序员的招式,那么数据结构和算法就相当于程序员的内功。
想写出精炼、优秀的代码,不通过不断的锤炼,是很难做到的。
⼆⼋⼤排序算法排序算法作为数据结构的重要部分,系统地学习⼀下是很有必要的。
1、排序的概念排序是计算机内经常进⾏的⼀种操作,其⽬的是将⼀组“⽆序”的记录序列调整为“有序”的记录序列。
排序分为内部排序和外部排序。
若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序。
反之,若参加排序的记录数量很⼤,整个序列的排序过程不可能在内存中完成,则称此类排序问题为外部排序。
2、排序分类⼋⼤排序算法均属于内部排序。
如果按照策略来分类,⼤致可分为:交换排序、插⼊排序、选择排序、归并排序和基数排序。
如下图所⽰:3、算法分析1.插⼊排序*直接插⼊排序*希尔排序2.选择排序*简单选择排序*堆排序3.交换排序*冒泡排序*快速排序4.归并排序5.基数排序不稳定排序:简单选择排序,快速排序,希尔排序,堆排序稳定排序:冒泡排序,直接插⼊排序,归并排序,奇数排序1、插⼊排序将第⼀个和第⼆个元素排好序,然后将第3个元素插⼊到已经排好序的元素中,依次类推(插⼊排序最好的情况就是数组已经有序了)因为插⼊排序每次只能操作⼀个元素,效率低。
元素个数N,取奇数k=N/2,将下标差值为k的数分为⼀组(⼀组元素个数看总元素个数决定),在组内构成有序序列,再取k=k/2,将下标差值为k的数分为⼀组,构成有序序列,直到k=1,然后再进⾏直接插⼊排序。
3、简单选择排序选出最⼩的数和第⼀个数交换,再在剩余的数中⼜选择最⼩的和第⼆个数交换,依次类推4、堆排序以升序排序为例,利⽤⼩根堆的性质(堆顶元素最⼩)不断输出最⼩元素,直到堆中没有元素1.构建⼩根堆2.输出堆顶元素3.将堆低元素放⼀个到堆顶,再重新构造成⼩根堆,再输出堆顶元素,以此类推5、冒泡排序改进1:如果某次冒泡不存在数据交换,则说明已经排序好了,可以直接退出排序改进2:头尾进⾏冒泡,每次把最⼤的沉底,最⼩的浮上去,两边往中间靠16、快速排序选择⼀个基准元素,⽐基准元素⼩的放基准元素的前⾯,⽐基准元素⼤的放基准元素的后⾯,这种动作叫分区,每次分区都把⼀个数列分成了两部分,每次分区都使得⼀个数字有序,然后将基准元素前⾯部分和后⾯部分继续分区,⼀直分区直到分区的区间中只有⼀个元素的时候,⼀个元素的序列肯定是有序的嘛,所以最后⼀个升序的序列就完成啦。
c语言排序算法

C语言常用排序算法/************************************************************************************** ******平方阶(O(n2))排序一般称为简单排序,例如直接插入、直接选择和冒泡排序*************************************************************************************** *****//*插入排序*/extern int InsertSort(int source[], int array_size){int index = 1; //插入排序int i, j;for (i = 1; i < array_size; i++){index = source[i];j = i;while ((j > 0) && (source[j - 1] > index)){source[j] = source[j - 1];j--;}source[j] = index;}return 1;}/*冒泡排序*/extern int BubbleSort(int source[], int array_size){int i, j;int temp;for (i = 0; i < array_size; i++){for (j = 0; j < array_size - i - 1; j++)if (source[j] > source[j + 1]){temp = source[j];source[j] = source[j + 1];source[j + 1] = temp;}}return 1;}/*选择排序*/extern int SelectSort(int source[], int array_size){int temp, min;int i, j;for (i = 0; i < array_size; i++){min = i;//先假设最小下标为ifor (j = i + 1; j < array_size; j++)if (source[j] < source[min])min = j;//把i之后的最小值附给minif (min != i){temp = source[i];source[i] = source[min];source[min] = temp;}//判断min与i是否相等,若相等则说明原假设正确,反之:交换数值}return 1;}/************************************************************************************** *******线性对数阶(O(nlgn))排序如快速、堆和归并排序*************************************************************************************** *****//*快速排序接口*/static int Partition(int source[], int left, int right)int x = source[left];while (left < right){while (left < right && x <= source[right])right--;source[left] = source[right];while (left < right && x >= source[left])left++;source[right] = source[left];}source[left] = x;return left;}extern int QuickSort(int source[], int left, int right){int iPos;if (left >= right)return 1;iPos = Partition(source, left, right);QuickSort(source, left, iPos - 1); // 左边划分QuickSort(source, iPos + 1, right); // 右边划分return 1;}/*堆排序*/static void HeapAdjust(int source[], int root, int node)/*root根节点, node节点总数*/ {//已知source[root..node]中除source[root]之外均满足堆的定义,本函数调整source[root] //使source[root..node]成为一个大顶堆int j, rc;rc = source[root];for (j = 2 * root; j <= node; j *= 2) //沿关键字叫大的结点向下筛选{if (j < node && source[j] < source[j + 1])++j; //j为关键字较大的记录的下标if (rc >= source[j])break; //rc应插入在位置root上source[root] = source[j];root = j;}source[root] = rc; //插入extern int HeapSort(int source[], int array_size){int i, t;for (i = array_size / 2; i > 0; --i)//把a[1..L.length]建成大顶堆HeapAdjust(source, i, array_size);for (i = array_size; i > 1; --i){t = source[1]; //将堆顶记录和当前未经排序子序列a[1..i]source[1] = source[i]; //中的最后一个记录相互交换source[i] = t;HeapAdjust(source, 1, i - 1); //将r[1..i-1]重新调整为大顶堆}return 1;}/************************************************************************************** ********O(n1+£)阶排序£是介于0和1之间的常数,即0<£<1,如希尔排序*************************************************************************************** *****//*希儿排序*/extern int ShellSort(int source[], int array_size){int increament;int e, i, j;/*初始步长设为n/2*/for (increament = array_size / 2; increament > 0; increament = increament / 2) for (j = increament; j < array_size; j++){if (source[j] < source[j - increament]){e = source[j];for (i = j - increament; i >= 0 && source[i] > e; i = i - increament) source[i + increament] = source[i];source[i + increament] = e;}}return 1;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1.1 冒泡排序
算法实例
21
25 49
25* 16
0
1
2
3
4
21 25 25* 16 08
08 5
49 chang=1
21 25 16 08 25* 49 chang=1
21 16 08 25 25* 49 chang=1
6.1.1 冒泡排序
算法实例
i=4
16 08
for(i=1;i<=10-j;i++) if(a[i]>a[i+1]) {t=a[i]; a[i]=a[i+1]; a[i+1]=t;}
printf("The sorted numbers:\n"); for(i=1;i<11;i++)
printf("%d ",a[i]); }
6.1.2 快速排序
6.1.3 直接插入排序
实用例子:
已知待序的一组记录的初始排列为:21, 25, 49, 25*, 16, 08
21 25 49 25* 16 08 012345
6.1.3 直接插入排序
实用例子:
i=1
21 25 49 25* 16 08 25 012345 temp
i=2 i=3
21 25 49 25* 16 08 49 012345 temp
6.1.2 快速排序
算法实例:
始关键字
pivotkey 21 25 low
49 25* 16 08 high
一次交换
21
二次交换
三次交换
high-1 完成一趟排序
08 25 low
49 25* 16
high
08
49 25* 16 25
low
high
08 16 49 25*
25
low
08 16
low
21 25 49 25* 16 08 25* 012345
6.1.3 直接插入排序
实用例子:
i=4
21 25 25* 49 16 08 16 0 1 2 3 4 5 temp
i=
16 21 25 25* 49 08 08
5
0 1 2 3 4 5 temp
完成
08 16 21 25 25* 49 01234 5
6.1.3 直接插入排序
算法实现:
void InsertSort (int r[ ], int n ) {
// 假设关键字为整型,放在向量r[]中 int i, j, temp; for (i = 1;i< n;i++ ) {
temp = r[i]; for(j = i;j>0;j- -) {//从后向前顺序比较,并依次后移
for i=1 to n-j
真
a[i]>a[i+1]
a[i]a[i+1]
输出a[1] 到 a[n]
#include <stdio.h> main() { int a[11],i,j,t;
printf("Input 10 numbers:\n"); for(i=1;i<11;i++)
scanf("%d",&a[i]); printf("\n"); 假 for(j=1;j<=9;j++)
if ( temp < r[j-1] ) r[j] = r[j-1];
else break;
} r[j] = temp; } }
6.1.3 直接插入排序
算法分析:
关键字比较次数和记录移动次数与记录关键字的初始排列有关。
最好情况下, 排序前记录已按关键字从小到大有序, 每趟只需与前面有序 记录序列的最后一个记录比较1次, 移动2次记录, 总的关键字比较次数 为 n-1, 记录移动次数为 2(n-1)在平均情况下的关键字比较次数和记录 移动次数约为 n2/4。
算法特点:
快速排序是通过比较关键码、交换记录, 以某个记录为界(该记录称为支点),将待排序列分成两部分 一部分所有记录的关键码大于等于支点记录的关键码 另一部分所有记录的关键码小于支点记录的关键码
6.1.2 快速排序
算法描述:
任取待排序记录序列中的某个记录(例如取第一个记录)作为基准(枢),按照该记录的 关键字大小,将整个记录序列划分为左右两个子序列 左侧子序列中所有记录的关键字都小于或等于基准记录的关键字 右侧子序列中所有记录的关键字都大于基准记录的关键字 基准记录则排在这两个子序列中间(这也是该记录最终应安放的位置)。 然后分别对这两个子序列重复施行上述方法,直到所有的记录都排在相应位置上为 止。 基准记录也称为枢轴(或支点)记录。 取序列第一个记录为枢轴记录,其关键字为Pivotkey 指针low指向序列第一个记录位置 指针high指向序列最后一个记录位置
21
25
25*
49 chang=1
0
1
23
4
5
i=5
08
16
21
25
25*
49 chang=0
6.1.1 冒泡排序
算法实例
21
21
21
21
16
08
25
25
25
16
08
16
49
25
16
08
21
21
25
16
08
25
25
25
16
08
25
25
25
25
08
49
49
49
49
49
6.1.1 冒泡排序
算法实现
输入n 个数给a[1] 到 a[n] for j=1 to n-1
6.1.3 直接插入排序
操作细节:
当插入第i(i≥1)个对象时, 前面的r[0], r[1], …, r[i-1]已经排 好序。
用r[i]的关键字与r[i-1], r[i-2], …的关键字顺序进行比较(和顺 序查找类似),如果小于,则将r[x]向后移动(插入位置后的记录向 后顺移)
找到插入位置即将r[i]插入
08 16
21
high 25* 49 25
high 25* 49 25
low high
ቤተ መጻሕፍቲ ባይዱ.1.2 快速排序
算法实例:
完成一趟排序
08 16
21 25* 49 25
分别进行快速排序 有序序列
08 16
21 25* 25 49
08 16
21 25* 25 49
9
6.1.2 快速排序
算法分析:
快速排序是一个递归过程; 利用序列第一个记录作为基准,将整个序列划分为左右两个子序列。只要 是关键字小于基准记录关键字的记录都移到序列左侧; 快速排序的趟数取决于递归树的高度。 如果每次划分对一个记录定位后, 该记录的左侧子序列与右侧子序列的长 度相同, 则下一步将是对两个长度减半的子序列进行排序, 这是最理想的情 况
10
6.1.3 直接插入排序
算法描述:
记录存放在数组R[0….n-1]中,排序过程的某一中间时刻,R被划分 成两个子区间R[0…i-1]和R[i….n-1],其中:前一个子区间是已排好 序的有序区;后一个子区间则是当前未排序的部分。
基本操作
将当前无序区的第1个记录R[i]插入到有序区R[0….i-1]中适当的位置 ,使R[0…i]变为新的有序区