中山大学固体物理第五章参考答案
固体物理学:第五章 习 题

第五章 习 题 P3051. 解:一维部洛赫电子的能带具有如下性质,)()(αsk E k E +=,⋅⋅⋅±±=210、、s于是有:αs k kE kk E+∂∂∂∂= ……①和kkE kk E -∂∂∂∂-= ……②而布里渊区在边界上,α2s k±=,取α2sk -=代入①、②两式,可得:αα22s kE s k E-∂∂∂∂=, αα22s kEs k E -∂∂∂∂-= 由上两式相容的条件立即得到:02=±∂∂αsk E ,即能量取极值。
(可参看附加题1、2,课本P288例1、P290例3) 2. 解:对面心立方格子,原胞的三个基矢为:)(21a +=α,)(22a +=α,)(23a +=α,倒格子基矢为:)(11b ++-=α)(12b +-=α ,)(13b -+=α倒格矢:332211n b n b n K n ++=])()()[(3213213211n n n n n n n n n -+++-+++-=α面心立方格子是一个边长为α2的体心立方格子,离原点最近的八个倒格点的坐标是:)111(1,,α ,)111(1,,α,)111(1,,α,)111(1,,α)111(1,,α,)111(1,,α,)111(1,,α,)111(1,,αα3=六个次近邻倒格点的坐标是:)002(1,,±α,)02,0(1,±α,)2,00(1±,α,α2= 由最近邻和次近邻倒格矢的中垂面围成的多面体——截角八面体(它是一个十四面体)便是面心立方格子的第一布里渊区。
如课本P261图5-3。
3. 解:(参考徐习P259~260,教材P191,4-19式)(1)按照定义,空间中E=E F的等能面称为费米面,由mk h E F 222=知道,这是半径为F k 的球面。
在绝对零度下,电子全部位于费米球内,T=0K 时,费米能级的能量32223220)3(2)83(2ππn mn m h E F ==式中n 为电子浓度,令3222)83(22πn m h k m h F =得,31)83(πn k F = 设晶体的电子总数为N ,体积为V,对于具有简单立方结构的单价金属,V=N α3,因此,所求费米球半径:m V N k F /10147.010345.3492.0492.0)183()83(101031331⨯=⨯====-ααππ(2)因简单立方边界为α,其第一布里渊区是空间中边长为1/α的立方体,体积为1/α3,故费米球刚好被包含在其内部。
固体物理第五章习题及答案

.
从上式可以看出,当电子从外场力获得的能量又都输送给了晶格时, 电子的有效质量 m* 变 为 . 此时电子的加速度
a= 1 F =0
m*
,
即电子的平均速度是一常量. 或者说, 此时外场力与晶格作用力大小相等, 方向相反. 11. 万尼尔函数可用孤立原子波函数来近似的根据是什么?
[解答] 由本教科书的(5.53)式可知, 万尼尔函数可表示为
m* = 1 m 1 + 2Tn
Vn <1.
10. 电子的有效质量 m* 变为 的物理意义是什么?
[解答] 仍然从能量的角度讨论之. 电子能量的变化
(dE)外场力对电子作的功 = (dE)外场力对电子作的功 + (dE)晶格对电子作的功
m*
m
m
=
1 m
(dE ) 外场力对电子作的功
− (dE)电子对晶格作的功
i 2 nx
V (x) = Vne a
n
中, 指数函数的形式是由什么条件决定的?
[解答] 周期势函数 V(x) 付里叶级数的通式为
上式必须满足势场的周期性, 即
V (x) = Vneinx
n
显然
V (x + a) = Vnein (x+a) = Vneinx (eina ) = V (x) = Vneinx
Es (k)
=
E
at s
− Cs
−
Js
e ik Rn
n
即是例证. 其中孤立原子中电子的能量 Esat 是主项, 是一负值, − Cs和 − J s 是小量, 也是负 值. 13. 紧束缚模型下, 内层电子的能带与外层电子的能带相比较, 哪一个宽? 为什么?
固体物理课后习题与答案

第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。
在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。
在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。
也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。
2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。
晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。
3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。
除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。
4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。
价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。
在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。
由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。
这一点从3/2220)3(2πn m E F=和3/222)3(10353πn mE E oF ==式看得更清楚。
电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。
固体物理第5,6次作业参考答案

1、学习了电磁耦合场后,对光吸收谱中剩余辐射带有无更深入的理解?答:1)是电磁耦合,格波中TO 波也具有电磁性2)光波、格波的频率和波矢都应相近当光波与TO 格波的波矢 q ,频率q ω相近时,发生共振,形成耦合场。
2、 试述表面(界面)电耦合场色散关系的特点。
答:光入射到离子晶体中,光波与格波中的长光学横波耦合,光的电磁场发生了变化,格波也发生了变化,形成了新的激发场,即电磁耦合场。
这个耦合场既不是纯光波,也不是纯格波,有着特殊的色散关系。
存在两种横波,它们的偏振方向不同,但频率相同 。
3.一维复式格m =5×1.67×10-24g, M /m =4, β=1.5×10 N (即1.5×104dyn/cm ),求:(1) 光学波0max ω,0min ω;声学波max A ω; (2) 相应声子能量是多少电子伏。
(3) 与0max ω相对应的电磁波波长在什么波段。
解:由电磁耦合场的色散关系可知,两种横波的支解为:221/22221/224{1[1sin ]}()4{1[1sin ]}()m M mM aq mM m M m M mM aq mM m M ωβωβ+-+=+-++=--+ (1)当2sin 0aq =时,ω+取最大值,ω-取最小值014max 1.510Hz ω==⨯当2sin 1aq =时,ω+取最小值,ω-取最大值013min 6.010Hz ω==⨯13max 3.010AHz ω==⨯(2).相应声子能量为0034142max max 1.05410 1.5109.8810E Js Hz evω--==⨯⨯⨯⋅=⨯ 0034132min min 1.05410 6.010 3.9510E Js Hz evω--==⨯⨯⨯⋅=⨯ 34132max max 1.05410 3.010 1.9810A AE Js Hz evω--==⨯⨯⨯⋅=⨯(3) 与0max ω相对应的电磁波波长在红外波段4.试证明LST 关系式: 22LO sTO ωεωε∞=。
固体物理学_答案05

《固体物理学》习题解答黄昆 原著 韩汝琦改编第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
《固体物理》第5章课后题目答案

1、什么是Peierl不稳定性和Peierls相变?【解答】:假设的晶格内原子状态:假定一维系统是由晶格常数为 a 的N个原子组成,每个晶格原胞只带一个传导电子,电子波函数满足周期条件;第一布里渊区边缘在±π/a,第一布里渊区可以填充2N个电子,因为N个价电子正好填充了最低能带的一半,费米能量恰好位于能带1/2处(Kf=±π/2a),空能级和占据能级各一半。
然而,Peierls指出这种等距离排列的一维晶格是不稳定的,在低温下,原子发生移动,晶格常数由a变为2a,即第一布里渊区边缘移至费米面且打开了一个能隙,系统总能量降低(。
这就说明,原来等距离排列的具有较高能量的一维晶格经原子移动后变成具有较低能量的畸变晶格,所以原来的晶格是不稳定的。
经过晶格畸变,从半满能带的导体变成为稳定的只有满带和空带的半导体,这就是Peierls不稳定性。
只有在0K时,体系才完全处于上述半导体基态中,当T升高,晶格原子的振动逐步加强以至畸变模糊。
存在相变温度Tp,T<Tp,体系呈现半导体;T≥Tp,体系相变为导体,这种半导体变为导体的相变称为Peierls相变。
2、简述金刚石、石墨的结构和物性,比较它们性质的异同?【解答】:金刚石和石墨的化学成分都是碳,科学家们称之为“同质多像变体”,也有人称“同素异形体”。
从这种称呼可以知道它们具有相同的“质”,但“形”或“性”却不同,且有天壤之别,金刚石是目前最硬的物质,而石墨却是最软的物质之一。
大家都知道铅笔芯就是用石墨粉和粘土配比而制成的,石墨粉多则软,用“B“表示,粘土掺多了则硬,用“H”表示。
矿物学家用摩氏硬度来表示相对硬度,金刚石为10,而石墨的摩氏硬度只有1。
它们的硬度差别那么大,关键在于它们的内部结构有很大的差异。
石墨内部的碳原子呈层状排列,一个碳原子周围只有3个碳原子与其相连,碳与碳组成了六边形的环状,无限多的六边形组成了一层。
层与层之间联系力非常弱,而层内三个碳原子联系很牢,因此受力后层间就很容易滑动,这就是石墨很软能写字的原因。
固体物理1-7讲习题参考答案

y
ε xx 代入 0 0
0
ε yy
0
0 Dx 0 ,有 Dy = D ε zz z
绕电场方向为轴转 180 度,电场不变
0 0 Dx′ 3 1 3 1 Dy′ = − 2 Dy + 2 Dz = − 4 ε yy + 4 ε zz E D z′ 1 3 3 3 ε yy + ε zz Dy + Dz 2 4 2 4
证:布里渊区边界垂直且平分倒格矢 K h ,故该边界面上任一矢量满足
(k −
1 Kh ) ⋅ Kh = 0 2 2k ⋅ K h − 1 Kh 2
2
即边界方程为
=0
取 K h 方向最短的倒格矢为 K 0 , K h = nK 0 将面间距公式 d =
2π K0
代入边界方程,有
2⋅
2π
λ
cos ϕ −
可见,体心立方的倒格子是晶格常数为 b =
4π 的面心立方。 a 4π 同理可证,面心立方的倒格子是晶格常数为 的体心立方。 a
3.2.证明:倒格子原胞的体积为(2π)3/ Ω ,其中Ω为正格子原胞的体积 证:正格子原胞体积 Ω = a1 ⋅ (a 2 × a 3 ) 倒格子原胞体积 Ω = b1 ⋅ (b2 × b3 ) = b1 ⋅ [b2 ×
B ' A ' = AB(1 − 2 cos θ ) 1 − 2 cos θ = n cos θ : −1 ∼ +1 n = −1, 0,1, 2,3 θ = 0o , 60o ,90o ,120o ,180o
《固体物理学》房晓勇主编教材-习题解答参考pdf05第五章_金属电子论基础

0 F
=
(3nπ 2 ) 3 2m
=
(1.055 ×10−34 )2 2 × 9.11×10−31
× (3 ×
4.66 ×1028
2
× 3.142 ) 3
= 7.57 ×10−19 J = 4.72 eV
5.7 在低温下,金属钾的摩尔热容的实验结果可以写成
( ) c = 2.08T + 257T 3 mJ ⋅ mol −1 ⋅ K −1
l
=
vFτ
=
vF m∗ ρ ne2
在 273K 时
τ = σ m∗ = m∗ ne2 ρne2
5.6 Li 是体心立方晶格,晶格常数为 a=0.428nm。试计算绝对零度时 LI 电子气的费米能量(以电子伏 特表示)
解:(参考林鸿生 1.1.107,中南大学 4.8) 传导电子浓度为
( ) n
=
2 a3
2
= 2m
6π 2
2/3 / a2 =
5.5 Cu 的费米能量为 7.0eV,试求电子的费米速度。在 273K 时,Gu 的电阻率为1.56 ×10−8 Ω • m ,求
电子的平均自由时间τ和平均自由程 l。 解:(参考林鸿生 1.1.108,)由《固体物理学》式 5-18、式 5-19 和式 5-21
∂y ∂x
∂x ∂EF
=
−
(1
1 +y
)2
y
⎛ ⎜ ⎝
−
Байду номын сангаас
k
1 BT
⎞
⎟ ⎠
=
−
(1
+
y
y)2 kBT
T
d dT
⎛ ⎜⎝
EF T
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Blakemore 书也介绍了这个模型, p213 给出了p=2 的结果。
引入周期性边界条件后,波数 q 不能任意取值,只能取分
立的值。在 q 轴上,相邻两个 q 的取值相距
2
Na
, 2
即在 q 轴上,每一个 q 的取值所占的空间为: Na
所以,q 值的分布密度(单位长度上的模式数目):
q Na L
2 2
L=Na 为晶体链的长度。
第一布里渊区中波数 q 的取值总数等于晶体链的原胞个数,
五. 扩展到bloch电子
上面对自由电子的讨论可以推广到Bloch电子,只需要用有效 质量 m* 代替 m 即可,因为前者已经涵盖了周期场的影
响,上式推广到 Bloch 电子,有:
1 B
2 e
1 AF
AF是垂直于磁场的费米面极值截面积,如果我们测出磁场沿 不同方向给出的截面积,就可以绘出费米面的形状。
进行一些推导和必要简化,最后可以得出下式
maU
2
0b
sin
a
a
Байду номын сангаас
cos(
a)
cos(ka)
式中
2mE
而 k 2 是电子波的波矢。
上式就是电子的能量 E 应满足的方程,也是电子能量 E与波矢 k 之间的关系 式。
f(E)
E
图 5 f(E)函数图
由图看出,在允许取的 E值之间,有一些不允许取 的 E值,称为能隙。
(3)空穴:k(状态)空间的一种状态空缺,是存在这一空缺的整
个能带的描述,同其它电子一样,在真实空间的位置不确定,
在k空间的运动方向与其它电子相同,总带正电荷。
k 如果轨道中一个波矢为
能带是对称的,有
Ee
(ke
)
Ee
(ek的e ) 电Eh子(k逸e ) 失Eh,(k则h ),空显穴然的有波矢E为h (k-h
3.由同种原子组成的二维密排结构晶体,原子间距为a,作图画出其前三个布
里渊区图形,并求:(1)每个原子有一个价电子时的费米半径kF;(2)第一布 里渊区的内切圆半径k1;(3)内切圆为费米圆时的电子浓度1 (即平均每个原 子的价电子数);(4)每个原子有两个价电子时的费米半径,画出简约区中近
自由电子近似的费米面图形。
n
AeitN naq Aeitnaq
即:eiNaq 1
q 2 n
Na
n =任意整数,但考虑到 q 值的取值范围,n 取值 数目是有限的:只有布里渊区内的 N 个整数值。
2 n
a Na a
N n N
2
2
周期性边界条件并没有改变方程解的形式,只是对解提出一定 的条件,q 只可取N个不同的值,每个q对应着一个格波。
即:晶格振动格波的总数 =N·1= 晶体链的总自由度数。
2 (q) 2 Na N
a
a 2
至此,我们可以有把握的说找到了原子链的全部振动模。
b=0, U0=∞,P=β2ba/2
见 Kittel 8版 p121
对于本题,每个能带里有8条小分能带
A
B
8a a
3. (1)试说明有效质量的物理意义.
(2) 试说明负有效质量的物理意义。
(3) 什么是空穴? 为什么能带中空穴的速度等于逸失电子的速 度, 这与通常我们所说的外加电场下, 电子与空穴有相反的漂 移速度是否有矛盾? 为什么?
上面求解假定原子链无限长,这是不现实的,确定何种边界 条件才既能使运动方程可解,又能使结果符合实际晶体的测量结 果呢? Born-Karman 最早利用周期性边界条件解决了此问题, 成为固体理论的一个典范。
所谓周期性边界条件就是将一有限长度的晶体链看成无限长
晶体链的一个重复单元,即:
N n
4、用紧束缚近似处理面心立方晶格s态电子, 试导出其能带关系,并求出能带底的有效质 量。
5、 氢原子外层只有一个电子,为何固态氢不像钾、钠等碱 金属那样呈金属性?科学家们又为何相信,只要通过高压 手段把氢原子间距压缩得足够小,就可以使固态氢转变为 金属?请通过能带模型加以解释。
解:固态氢的原子局域在氢原子周围,无法形成公有化运 动。当施加高压时,氢原子的间距减小,氢原子周围的电 子的周期性势场势垒减小,电子形成公有化运动,从而固 态氢可以导电,变为金属。
Aexp i t naq un
1
该解表明:晶体中所有原子共同
参与的振动,以波的形式在整个
晶体中传播,称为格波。
从形式上看,格波与连续介质弹性波完全类似,但连续介质
弹性波中的 x 是可以连续取值的;而在格波中只能取 na 格点位
置这样的孤立值。
连续介质弹性波:Aei t xq
(0 x c) (c x a)
定态薛定谔方程为: d 2 2m E U( x) 0
d2x 2 U(x)
U0
1区 2区 3区
b x
0 ca 1( x) Aeix Beix , 2( x) Aei 'x Bei 'x , 3( x) eika ( Aeix Beix ), 这里 2mE / , ' 2m(E U0 ) /
4.分别求出二维正方晶格简约区中沿M和XZM轴自由电子能量函数En(k) 能量
最低的前四条曲线的表达式,画出其示意图并给出各曲线的简并度。
二度简并
• 思考题
(1)对有限尺寸晶体(如量子点,量子线或量子井),你认为其晶体能带相 对于理想晶体会有什么变化?
周期性边界条件破坏,边界效应开始变得明显能带不再是准连续的。
B 系统的能量随1/B周期变化,因此系统的磁矩也随磁场 做周期性震荡变化。而从实验上测出M随1/B变化的周期, 定出费米面 SF ,这是十分有用的。
金属的电导率、比热等物理量在低温强磁场中也有类似
的振荡现象。
这种现象与金属费米面附近的电子在强磁场中的行为有关, 因而与金属的费米面结构有密切关系,这些现象是研究金属 费米面结构的有力工具
边界条件:波函数和它的一阶导数在x=c,和a处连续
U(x)
U0
1区 2区 3区
b x
0 ca Aeic Beic Cei 'c Dei 'c , ( Aeic Beic ) '(Cei 'c Dei 'c ) Cei 'a Dei 'a eika ( Aeia Beia ), '(Cei 'a Dei 'a ) eika ( Aeia Beia )
解的物理意义: 格波 nq Aeitnaq
原子振动以波的方式在晶体中传播。当两原子相距 数倍时,两原子具有相同的振幅和位相。
2的整
q
如: ma na 2 l,(m, n,l 都是整数)。
q
有: um Aexp i t maq Aexp i t naq exp(i2l)
• (2)试讨论分别同A、B两种材料组成的一维超晶格量子阱的能带变化。*( 如下图)
A
B
ECA
EVA
8a a
ECB
EVB
克朗尼格-朋奈模型 (基泰尔,固体物理导论,P119)
克朗尼格-朋奈模型
U(x)
周期性方势阱
U0
2区
1区
3区
b
x
0 ca
在 0 < x < a 一个周期的区域中,电子的势能为
0 U( x) U0
3、当加有电场后,满带中的电子能永远的 飘移下去吗?
一. 电子散射 • 电阻表明存在对电子的散射; • Bloch波稳态解-> 无散射; • 散射-> 偏离平移对称性的结果,稳态Bloch态的微扰:
散射:偏离平移对称性有几种可能: 1)时间和空间都确定的缺陷,如杂质、位错、晶界; 2)随时间变化的偏离平移对称性,如晶格振动; 3)电子-电子相互作用造成的散射,与上面讲到的散射 相比,通常并不显著。
q2
2 2
5
2a
参考黄昆书 p85 图
由图明显看出两个不同波长的格波只表示晶体原子的一
种振动状态,q 只需要在第一布里渊区内取值即可,这是与 连续介质弹性波的重大区别。
由白线所代表的波不能给出比黑虚线更多的信息, 为了表示这个运动,只需要大于2a的波长。
见Kittel P70 图
周期性边界条件(Born-Karman 边界条件)
有原子的振动实际上没有任何区别,因此有物理意义的 q 取值
范围可以限制在第一布里渊区内。
aq
q
a
a
这就避免了某一频率的格波有很多波长与之对应的问题
这种性质称作格波的简约性。 一维单原子链的倒格矢:
Gn
n 2
a
1 4a
2
4 5
a
q1
2 1
2a
解: (1)有效质量的引入,是把周期性势场作用归结到质量中 去,在受外场作用时可以不考虑周期性势场而直接把晶体中 的电子准经典运动的加速度与外力联系起来,这样的电子看 起来像自由电子。
(2)负有效质量:电子交给晶格的动量多于它从外场中所获得 的动量,此时电子的状态是处于布里渊区边界附近,电子受 到晶格的强烈的布拉格反射,电子的加速方向与外力作用方 向相反,有效质量为负。