固体物理第三章作业答案

合集下载

(完整版)固体物理胡安第三章课后答案

(完整版)固体物理胡安第三章课后答案

3.1 在单原子组成的一维点阵中,若假设每个原子所受的作用力左右不同,其力常数如图所示相间变化,且21。

试证明在这样的系统中,格波仍存在着声频支和光频支,其格波频率为21221221212)2(sin 411M)(qa 证明:第2n 个原子所受的力121122221212121222)()()(n nn n nn nnuu u u u u u F 第2n+1个原子所受的力nn n n nn nnu u u u u u u F 22121122112221222112)()()(这两个原子的运动方程:212222112121122112222()()n n n n nn n nmu u u u mu u u u &&&&方程的解qan t inqan t in Beu Aeu 2)12(122)2(2代入到运动方程,可以得到BA e eBmAB eeAmqaiqa iq a i q a i )()(21222122122212经整理,有)()(22122212221221B mA eeB eeAmqa iqa iqa iq ai 若A ,B 有非零解,系数行列式满足22212122221212,,aai q i q a a i q i q me eee m根据上式,有21221221212)2(sin 411M)(qa 3.3(a) 设单原子链长度L=Na波矢取值2qhNa每个波矢的宽度2qNa,状态密度2Na dq 间隔内的状态数2Nadq ,对应±q ,ω取相同值因此22Na dqdq一维单原子链色散关系,4sin 2aqm 令4,sin2aq m两边微分得到cos22aaq ddq将220cos12aq 代入到0cos22aaq ddq22222,2a dq ddq da频率分布函数2222122122Na NaN dadq3.4三维晶格振动的态密度为3(2)V 根据态密度定义3()(2)|()|qV dS q r =对2qAq两边微分得到2d q Aqdq在球面上2qd Aq dq,半径01qA代入到态密度函数得到21/23323/2144,2422qV qV AV AAAq最小截止频率m001/223/234mmV dd NA可得2/32min 06N AV所以1/2min 023/2,4VA在0min或时,是不存在频率ω的分布的,也就不会有频率分布的密度。

固体物理第三章习题答案

固体物理第三章习题答案


1

4 u n
( ij u )
i j
右边
1
1

4 u n
i(n)
( in u
i(n)
2
2 in

j(n)

nj
u )
2
2 nj
4 u n
( in ( u n u i )
j(n)

nj
nj
(u j u n ) )

T 成正比,说明德拜模型 温的情况下。
3- 5 设想在一维单原子晶格
中,只激发出一个动量

q ( q 0 )的声子,试证明晶体并
不因此而获得物理动量

证明:先证下面的式子 1 N
'
: l l l l
' '
e
n
ina ( q l q ' )
l
ll '
1, 0,
略去 项,(因为低温,
1)
d

C
T

m
l

M M
0
a



e
k BT
1

l
M

a
T

0


d
似为无穷大 )
e
k BT
1
(因为低温,频率低的占
主要,所以上限可以近

l
M k T
2 B

a


(e
0
x e
x
2
x 2
1)

2

《固体物理学》房晓勇主编教材-习题解答参考03第三章 晶体振动和晶体的热学性质

《固体物理学》房晓勇主编教材-习题解答参考03第三章 晶体振动和晶体的热学性质

由上式知,存在两种独立的格波,声学格波的色散关系为
2 ωA =
⎧ β1 + β 2 ⎪ m
光学格波的色散关系为
2 ωA =
β1 + β 2 ⎧ ⎪
m
3.3 设有一纵波 xn (t ) = A cos (ωt − naq ) ,沿一维单原子链传播,原子间距为 a,最近邻互作用的恢 复力系数为β,试证明:每个原子对时间平均的总能量
A 2β cos qa / m = =0 B 2β / m − 2β / M
由此可知,声学支格波中所有轻原子 m 静止。 而在光学支中,重原子 M 与轻原子 m 的振幅之比为
B 2β cos qa / M = =0 A 2β / M − 2β / m
由此可知,光学支格波中所有重原子 M 静止。 此时原子振动的图像如下图 3.6 所示:
1
第三章
晶体振动和晶体的热学性质
(a)
轻原子 重原子
(b)
图 3.6 (a)声学支格波原子振动图; (b)光学支格波原子振动图
3.2 一维复式格子,原子质量都为 m,原子统一编号,任一原子与两最近邻的间距不同,恢复力常数 不同,分别为 β 1 和 β 2 ,晶格常数为 a,求原子的运动方程和色散关系。 解: (王矜奉 3.2.2)
将(2)式代入(1)式可得出
…………………(2)
2β ⎧ 2β 2 ⎪ ( m − ω ) A − ( m cos qa) B = 0 ⎨ 2β 2β ⎪− ( cos qa) A + ( − ω 2 )B = 0 M ⎩ M
…………………(3)
从 A 、 B 有非零解,方程组(3)的系数行列式等于零的条件出发,可得
利用
1 1 T 2 1 T 1 − cos ( 2ωt − 2ϕ ) sin (ωt − ϕ ) dt = ∫ dt = ∫ T 0 T 0 2 2

固体物理第三章答案

固体物理第三章答案

对 NaCl:T=5K 时
8. 在一维无限长单原子链中,若设原子的质量均为 M,若在简谐近似下考虑原子间的长程 作用力, 第 n 个原子与第 n+m 和第 n-m 个原子间的恢复力系数为m, 试求格波的色散关系。 解:设原子的质量为 M,第 n 个原子对平衡位置的位移为 un , 第 n+m 和第 n-m 个原子对 平衡位置的位移为 un+m 和 un-m (m=1,2,3……), 则第 n+m 和第 n-m 个原子对第 n 个原子的 作用力为 fn,m = m(un+m-un)+m(un-m-un)=m(un+m+un-m-2un) 第 n 个原子受的总力为 Fn =
色散关系为

4 qa sin m 2
(1)
2
2 2 (1 cos qa) = m (1-cosqa) m 2
(2)
其中
m= (
4 12 ) m
由于对应于q, 取相同的值, (色散关系的对称性〕 ,则 d区间的格波数为
g( )d=2
Na Nad dq 2 d dq
V g ( i )d i = (2 ) 3
i d i i

d q
在长波极限下等频率面为球面

g( i )d i =
V 4q 2 dq (2 ) 3
当 i 0 时 因为
q2=
0- i (q)
A
q
0 i (q)
A
dq=-
2 A 2 0 i (q) 2

m 1

f n ,m =

m 1

m(un+m+un-m-2un)
因此,第 n 个原子的运动方程为 M

固体物理第三章

固体物理第三章

固体物理第三章班级成绩学号Chapter 3 晶格振动与晶体的热学性质姓名(lattice vibration and its heat characteristics)⼀、简要回答下列问题(answer the following questions):1、在晶格常数为a 的⼀维单原⼦晶格中,波长λ=8a 和波长λ=8a/5的格波所对应的原⼦振动状态有⽆不同? 试画图加以说明。

[答]对于⼀维单原⼦链,由q=2π/λ知,λ=8a 时,q =π/4a ,λ=8a /5时,q =5π/4a ,⼆者的aq 相差π,不是2π的整数倍,因此,两个格波所对应的原⼦振动状态不同。

如上图,当两个格波的位相差为2π的整数倍时,则它们所对应的原⼦的振动状态相同。

2、什么叫简正振动模式?简正振动数⽬、格波数⽬或格波振动模式数⽬是否是⼀回事?[答]在简谐振动下,由N 个原⼦构成的晶体的晶格振动,可等效成3N 个独⽴的谐振⼦的振动,每⼀个谐振⼦的振动模式称为简正振动模式。

格波振动通常是这3N 个简正振动模式的线性叠加。

简正振动数⽬、格波数⽬或格波振动模式数⽬是是⼀回事,其数⽬等于晶体中所有原⼦的⾃由度之和,即等于3N 。

3、晶体中声⼦数⽬是否守恒?在极低温下,晶体中的声⼦数与温度T 之间有什么样的关系?[答]频率为ωi 的格波的平均声⼦数为: 11)(/-=Tk i B en ωω即每⼀个格波的声⼦数都与温度有关,因此晶体中的声⼦数⽬不守恒,它随温度的改变⽽改变。

以德拜模型为例。

晶体中的声⼦数⽬为ωωωωd g n N D)()('0=其中令 T k x B ω= 则 123'2/033233-=x TB e dxx C T k V N D θπ在极低温度下,θD /T →∞,于是 331332332033233)2(23123'T nC T Vk e dx x C T k V N n B x B ∑∞=∞=-=ππ即在温度极低时,晶体中的声⼦数⽬与T 3成正⽐。

王淑华固体物理答案第三章

王淑华固体物理答案第三章

3.4 由原子质量分别为 m, M 两种原子相间排列组成的一维复 式格子,晶格常数为 a ,任一个原子与最近邻原子的间距 为 b ,恢复力常数为 β1 ,与次近邻原子间的恢复力常数 β2 , 试求 (1)格波的色散关系; (2)求出光学波和声学波的频率最大值和最小值。 解:(1)只考虑最近邻原子的相互作用
由上式可知,存在两种独立的格波。
声学格波的色散关系为
12 β β 4 β β qa 2 2 1 2 1 2 ωA sin 1 1 2 m 2 β1 β2
光学格波的色散关系为
12 β β 4 β β qa 2 2 1 2 1 2 ωO sin 1 1 2 m 2 β1 β2
为角频率; 式中,A为轻原子的振幅;B为重原子的振幅;
q 2 为波矢。
将试探解代入运动方程有
m 2 A e iaq e iaq B 2 A
M 2 B e iaq e iaq A 2B






(1)
经整理变成
2 A 2 cos aqB 0 2 2 cosaqA M 2 B 0
2
m



要A、B有不全为零的解,方程(1)的系数行列式必须等于零, 从中解得
12 2 2 m M m M 2mM cos 2aq mM 2


(2)
式中的“+”“-”分别给出两种频率,对应光学支格波和声学支 格波。上式表明, 是q的周期函数, 2a q 2a 。当q取 边界值,即 q 2a 时,从(2)式得

《固体物理学》房晓勇主编教材-思考题解答参考03第三章_晶体振动和晶体的热学性质

《固体物理学》房晓勇主编教材-思考题解答参考03第三章_晶体振动和晶体的热学性质

第三章晶体振动和晶体的热学性质3.1相距为某一常数(不是晶格常数)倍数的两个原子,其最大振幅是否相同?解答:(王矜奉3.1.1,中南大学3.1.1)以同种原子构成的一维双原子分子链为例, 相距为不是晶格常数倍数的两个同种原子, 设一个原子的振幅A, 另一个原子振幅B, 由《固体物理学》第79页公式,可得两原子振幅之比(1)其中m原子的质量. 由《固体物理学》式(3-16)和式(3-17)两式可得声学波和光学波的频率分别为, (2). (3)将(2)(3)两式分别代入(1)式, 得声学波和光学波的振幅之比分别为, (4). (5)由于=,则由(4)(5)两式可得,1B A=. 即对于同种原子构成的一维双原子分子链, 相距为不是晶格常数倍数的两个原子, 不论是声学波还是光学波, 其最大振幅是相同的.3.2 试说明格波和弹性波有何不同?解答:晶格中各个原子间的振动相互关系3.3 为什么要引入玻恩-卡门条件?解答:(王矜奉3.1.2,中南大学3.1.2)(1)方便于求解原子运动方程.由《固体物理学》式(3-4)可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.(2)与实验结果吻合得较好.对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N 个原子构成的的原子链, 硬性假定的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(《固体物理学》§3.1与§3.6). 玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.3.4 试说明在布里渊区的边界上()/q π=a ,一维单原子晶格的振动解n x 不代表行波而代表驻波。

固体物理参考答案(前七章)

固体物理参考答案(前七章)

固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dt

• 其中pt为电子的动量,τ为相邻两次碰撞之间的电
子自由运动时间(弛豫时间),f t为电子所受的
外力。请在线性响应的范围内,推导金属在频率
为ω的电磁波作用下的电导率。在此基础上,可
尝试导出金属的介电函数。
• 解:设频率为ω的电磁波中 E E0eit
B B0eit
• 金属在电磁波作用下的运动方程
• 电子热容系数 2.08mJ mol1 K 2
• 电子热质量
mt*h
m 观测值 自由电子气
m
2.08
2.08பைடு நூலகம்
2RkB 2 3 2n 2
3
m

2

3
2
2 a3
2

3
2RkB

2.08
1.05 1034
2


ai bj 2ij
则相应的倒格子基矢为:
基本无问题,少数同学没写 出基矢的表达式,没注意单 位化为cm-1
b1

2 a
i
108 i
cm1
b2

2 b
i
2
108 i
cm1
倒格子和第一布里渊区如图示:红色区域为第一布里渊区
b2
b1 108 cm1
dp t p t eE ev B
dt

• 忽略磁场项作用( eE ev B ),运动方程写为:
dp t p t
eE
dt


dv dt

v



e m
E0eit
• 解方程得
t
v Ce
e E0eit
1
m 1 i
• 第一项随时间的增加迅速衰减,稳定时为零。 v e E0eit 1 m 1 i
电导率

j E

env E

ne2
m
1
1 i


0

1 i
1 2
无问题
• 极化电流 j P iP
t
极化率 P i 0E 0
5. 试定性解释, 霍耳系数RH 为什么与电子浓度成反 比。
解:霍尔效应是定向载流子在磁场中受洛伦兹力作用形成电
场的效应,霍尔系数表征的是在一定载流子形成的电流下,
在一定的外加磁场下产生的电场大小。载流子形成的电流可 以表示为
大部分同学没有强调电流 和浓度的正比关系,只是 从这个公式说了一下
������������
注意:大部分同学只是强调电子比热, 没有说明声子比热的影响。
3. (a)求出二维情况下电子浓度n与kF的关系式。 (b)证明在二维情况下,费米面的态密度
• g(ε)=常量(ε>0)
• g(ε)=0(ε<0)
(a)解:设二维晶格面积为S,则k空间的态密度为
S (2 )2
应用费米分布, 对各向同性的波矢分布,被电子占据的状态
1. 对一含有一价原子的两维金属,具有长方形结构, a=2Å; b=4Å.(a)画出第一布里渊区,给出标尺 (量纲:cm-1);(b)计算出费米球的半径 (量纲:cm-1);
解:(a)设正格子基矢为 a1 ai , a2 bj,倒格子基矢 为 b1 x1i y1 j ,b2 x2i y2 j
➢ 金属中晶格和电子均对热导有贡献,绝缘体中仅有晶格对
热导有贡献。
➢ 热导率
1 Cvl 3
➢ 金属中


2
3
nkB2T mv2
vl

2nkB2T
3m

维德曼—弗兰兹定律



2kB2Tn 3m ne2 m

2 3

k
2 B
e
2
T
• 通过结构物性所学的知识,以及热容量微观来源, 试预测什么样的分子所组成的材料比热高?什么 结构的材料的比热高?
2 108 cm1
(b)二维金属的价电子浓度
n 1 1.251015 ab
设二维晶格面积为S,则k空间的态密度为
cm 2 S
(2
)
2
应用费米分布,对各向同性的波矢分布,被电子占据的状态
数为:
Z 2 S k 2 Sk 2 (考虑电子自旋)
(2 )2
2

定义费米波矢:N SkF 2
电荷上升,使得产生的霍尔电场增大。因此,霍尔系数与电
子浓度成反比。为霍尔系数,表示产生霍尔效应的本领大小,
与电子浓度成反比
思考题:
• 除了用热电子发射方法以外, 请设计另一种测量功函数的 方法。
光电效应、场致电子发射……
• 请就你所知论述材料热导率k与电导率 之间的关系,并分 别以金属和绝缘体为例加以说明。
kB2 EF0

2 RkB 2 3 2n
2
3
m
• 由实验测量的金属钾热容,测量图中实验曲线的斜率,可 得晶格热容系数
A 2.57mJ mol1 K 4 注意:大部分同学的单位错了
D

12 4
( 5A
R)1/ 3

12 4
( 5A
NkB )1/3

12 4
.6 5
2.15072311.308310少23 数9同1.0学 K计 算错误
=
������������ ������������������
I nev
因此当电流恒定时,载流子的漂移速度与其浓度成反比。于
是当载流子浓度上升时,其漂移速度下降,从而使得电子受
到的洛伦兹力变小,在电极两端积累的电荷变小,使得产生
的霍尔电场下降。反之,如果载流子浓度减小,则其漂移速
度上升,使得电子受到的洛伦兹力变大,在电极两端积累的
• [提示,金属钾为体心立方结构,其晶格常数为532.8 pm; ħ=1.0510-34(Js); kB=1.3810-23(J/K); R=8.31(J/mol*K)]
• 解:低温金属热容 C Cph Ce AT 3 T
• 其中 A

12 5
4
R
1 3D
,

2
N 2
E
0 F
在 0 ,费米面的态密度 g( ) dZ mS (常数)
dE 2
������������
少数同学算错得 ������2ℎ2
在 0 ,无电子占据态,即 g( ) 0
4. 根据Drude模型,金属中自由电子的运动方程为
(可自行推导): dpt pt f t
• 介电函数 1 1 i
0
较大问题,各种答案
4������������������ OR ������(������) = 1 + ������ OR
������(������)
=
1

������������2 ������2 + ������������������
2
,N为电子总数。
• 则费米半径
kF
2N
S
2n 8.86 107 cm1
注意:费米半径为kF , 不是kF的平方
2. 图2给出了金属钾的低温热容测量结果(注意单位),求: • 其晶格热容系数及德拜(Debye)温度; • 其电子热容系数及电子热质量; • 论述为何低温比热比常温比热低。
3
2

(532.8
2 1012
)3
2 8.311.381023
2 3
1.11030 kg
• 金属比热来源于晶格比热和电子比热 C Cph Ce 。前者跟 声子数目有关,后者跟费米能附近的电子数目有关。低温 下,被激发的声子数以及费米能kBT 的电子数目要比常温 下的要少,所以低温比热比常温比热低。
1. 相对分子质量大的分子组成的材料热容高; 2. 晶格常数小的材料,极性分子材料的比热大; 3. 非晶材料内部长程无序,比热大; 4. 结构稳定,键强强的材料比热高; 。。。。。。
数为
Z 2 S k 2 Sk 2
(2 )2
2
(考虑电子自旋)
N为电子总数,定义费米波矢:

kF
2N S
2n
无问题
N Sk F 2 2
(b)证明:费米能
E
0 F


2k
2 F
2m0
2
2m0
2N S
态密度即单位能量的状态数,低于费米能量的状态数为:
Z

m0 S 2
相关文档
最新文档