固体物理第三章

合集下载

固体物理-第三章 金属自由电子论讲解

固体物理-第三章 金属自由电子论讲解
N=I0G(EF)+ I1G’(EF)+ I2G’’(EF)+….. 其中, I0=- (-f/E) dE, I1=-(E-EF)(-f/E)dE,
3.1.量子自由电子理论
I2=(1/2!)-(E-EF)2(-f/E) dE 不难算出, I0=1(d-函数积分), I1=0 (根据d-函数的性质) 为了计算I2, 而令h=(E-EF)/kBT,于是, I2=[(kBT)2/2]-{h2/[(eh+1)(e-h+1)] }dh=(pkBT)2/6
波长),可见k为电子的波矢, 是3 维空间矢量. r:电 子的位置矢量。
由波函数的归一化性质:vy*(r) y(r)d(r)=1, v:金属体积, 假设为立方体,边长为L,把3.1.1.3式 代入归一化式子, 得: A=L-3/2=V-1/2, 所以
y(r)= V-1/2eik•r 3.1.1.4, 此即自由电子的本征态。 由周期性边界条件, y(x,y,z)= y(x+L,y,z) = y(x,y+L,z) = y(x,y,z+L)
一状态的电子具有确定的动量ħk和能量ħ2k2/(2m),因而 具有确定的速度,v=ħk/m,故一个k全面反映了自由电子 的一个状态,简称态。
2. k-空间
以kx, ky , kz 为坐标轴建立的 波矢空间叫k-空间。电子的 本征态可以用该空间的一点
来代表。点的坐标由3.1.1.5 式确定。
3.1.量子自由电子理论
T>0K的费米能EF 把3.1.2.2和3.1.3.1代入3.1.3.2, 分步积分, 得:
N= (-2C/3) 0 E3/2(f/E) dE 3.1.3.3 令G(E)= 2C E3/2/3, 3.1.3.3.式化简为 N= 0G(E) (-f/E) dE 3.1.3.4 (-f/E)函数具有类似d函数的特性,仅仅在EF附近kBT范 围内才有显著的值,且为E-EF偶函数. 由于(-f/E)函数 具有这些性质,把G(E)在EF附近展开为泰勒级数, 且积分 下限写成 -,不会影响积分值. 3.1.3.4化为:

《固体物理·黄昆》第三章

《固体物理·黄昆》第三章

氢键结合的情况可写成通式:
X-H…Y。 式中 X 、 Y 代表 F 、 O 、 N 等电负 性大而原子半径较小的非金属原 子, X 和 Y 可以是两种相同的元 素,也可以是两种不同的元素。 d F l H F H F
归纳起来,氢键形成的条件是:
A)有与电负性大(X)的原子相结合的氢原子;
B) 有一个电负性也很大,含有孤对电子并带有部分负 电荷的原子(Y); C)X与Y的原子半径都要较小。
氯化钠型 —— NaCl、KCl、AgBr、PbS、MgO (配位数6) 氯化铯型 —— CsCl、 TlBr、 TlI(配位数8)
离子结合成分较大的半导体材料ZnS等(配位数4)
2. 离子晶体结合的性质
1) 系统内能的计算 晶体内能 : 1)所有离子库仑相互作用能(吸引作用)
2) 和重叠排斥能之和(排斥作用)
具体晶体的内聚能(晶格能)参见周期表,有一定的规律性: 惰性气体晶体<碱金属<过渡族金属(共价晶体)
两粒子间的相互作用 相互作用能.
f(r) 和u(r)分别表示相互 作用力和相互作用势 则:
u (r ) f (r ) r
U 排斥 r
f (r )
B rn
u (r )
pij A12= j'
12
12.13188
pij A6= j'
6
14.45392
物理意义:
晶体总的势能:
—— 非极性分子晶体的晶格常数、结合能和体变模量 晶格常数
平衡状态体变模量
晶体的结合能
分子晶体: 常温下是气态的物质如:Cl2,SO2,HCl, H2, O2, He, Ne, Ar, Xe等在低温下依靠范德瓦耳斯力结合成的晶体.

固体物理第三章总结

固体物理第三章总结

时以比T3更快的速度趋于零。 温度越低,与实验吻合的越好。
kBE
局限性
E


kB
D

D
kB
晶体的非简谐效应
1.非简谐效应:
U(
R0

)

U(
R0
)
1 2!

2U R2
R0

2

1 3!

3U R3
R0
3
c 2 g 3
im jm

b1
b2
1010 i 1010 j
m 1 m 1
3.14 1010 i m 1 3.14 1010 j m1
a3 21010 km b3 1010 k m1 3.141010 k m1
S
TO 0,
3.极化声子和电磁声子
0
因为长光学波是极化波,且只有长光学纵波才伴随着宏观
的极化电场,所以长光学纵波声子称为极化声子。 长光学横波与电磁场相耦合,它具有电磁性质,称长光学
横波声子为电磁声子。
1.已知模式密度 ( ) 求:
(1)~+d间隔内的振动模式数;
(2) ~+d间隔内的声子数及晶体中总的声子数;
2
2
2
中的 振~ 动模d式数目:2Lc
2 d ,
v
Sc
2

v2
d ,
Vc
2 2
2
v3
d
一维有一支纵波,二维有一支纵波一支横波,三维有
一支纵波两支横波,纵波与横波速度相等
:
Lc 2 d , 2 v

固体物理学第三章

固体物理学第三章
非简谐项:
3 1 !(d d 3 U 3)r a 3 ..... .n 1 !.(d d .n U .n)r .a.n
简谐近似—— 振动很微弱,势能展式中只保留到二阶项。
U (r) U (a ) (d)U 1(d 2 U ) 2 da r 2 !d2ra U(r)U(a)1 2(dd2U 2r)a2
此处N=5,代入上式即得:
ei(5a)q 1 5aqn2(n为整数)
由于格波波矢取值范围:
q
a
a
则:5n5
22
故n可取-2,-1,0,1,2这五个值
相应波矢:4,2,0,2,4
5a 5a 5a 5a
由于,2 sinqa
m2
代入,β,m及q值 则得到五个频率依次为(以rad/sec为单位) 8.06×1013,4.99×1013,0,4.99×1013,8.06×1013
f du(d2u) d 2u 为恢复力常数
dr d2r
dr 2
周期边界条件
N 2 a l q l 为 整 N /2 h N 数 /2 且
3.1 一维单原子链的振动
3.1.1 一维单原子链的振动
设原子链为一维,则:原子间距为a; 第n个原子的平衡位置为rn=na 第n个原子离开平衡位置的位移为xn
格波的应用:
晶体的弹性力常数β约为15N/m,若一个原 子的质量为6×10-27Kg,则晶格振动的最大圆频 率为ωm=1014弧度/秒,最大频率γm约为1013Hz即 10THz。THz波段在微波与红外光之间。
不同材料的晶格振动频谱具有各自的特征, 可以作为这个材料的 “指纹”,THz谱技术作为 一种有效的无损探测方法,通过晶格振动频谱可 以鉴别和探测材料。
3.1.2 格波频率与波矢关系——色散关系

固体物理 第三章_ 晶体中的缺陷

固体物理 第三章_ 晶体中的缺陷

4
由以上讨论可知: 刃位错: 外加切应力的方向、原子的滑移方向和位错 线的运动方向是相互平行的。 螺位错: 外加切应力的方向与原子的滑移方向平行, 原子的滑移方向与螺位错的运动方向垂直。 在左右两部分受到向上和向下的切应力的作 用时,位错线向前移动,直到位错线移动到 尽头表面,这时左右两部分整个相对滑移b 的距离,晶体产生形变。
固体物理第三章
1. 热缺陷:由热起伏的原因所产生的空位和填隙原 子,又叫热缺陷,它们的产生与温度直接有关
(a) 肖脱基缺陷
(b)弗伦克耳缺陷
(c) 间隙原子
固体物理第三章
( a )肖特基缺陷 (vacancy) :原子脱离正常格点 移动到晶体表面的正常位置,在原子格点位置 留下空位,称为肖特基缺陷。 (b)弗伦克尔缺陷(Frenkel defect),原子脱离格 点后,形成一个间隙原子和一个空位。称为弗 伦克尔缺陷。 (c)间隙原子(interstitial):如果一个原子从正常 表面位置挤进完整晶格中的间隙位置则称为间 隙原子,由于原子已经排列在各个格点上,为 了容纳间隙原子,其周围的原子必定受到相当 大的挤压。
固体物理第三章 固体物理第三章
产生位错的外力: 机械应力:挤压、拉伸、切割、研磨 热应力:温度梯度、热胀冷缩 晶格失配: 晶体内部已经存在位错,只用较小的外力就 可推动这些位错移动,原来的位错成为了位错 源,位错源引起位错的增殖,有位错源的晶体 屈服强度降低。 晶体的屈服强度强烈地依赖于温度的变化。 T升高,原子热运动加剧,晶体的屈服强度下 降,容易产生范性形变。
固体物理第三章
在实际晶体中,由于存在某种缺陷,所以晶 面的滑移过程,可能是晶面的一部分原子 先发生滑移,然后推动同晶面的另一部分 原子滑移。按照这样的循序渐移,最后使 上方的晶面相对于下方的晶面有了滑移。 1934 年, Taylor( 泰勒 ), orowan( 奥罗万 ) 和 Polanyi( 波拉尼)彼此独立提出滑移是借助 于位错在晶体中运动实现的,成功解释了 理论切应力比实验值低得多的矛盾。

固体物理第三章

固体物理第三章
19
格波 —— 短波极限情况 ( q →
πa)源自aq ω = 2 β / m sin( ) 2
ωmax = 2 β / m
长波极限下 ( q → 0) ,相邻两个原子之间的位相差
q(n + 1)a − qna = qa ⇒ 0
—— 一个波长内包含许多原子,晶格看作是连续介质 短波极限下 q ⇒
π
a
2π λ= = 2a q
2
17
格波 —— 长波极限情况
4β 2 aq ω = sin ( ) m 2
2
aq ω=2 sin( ) m 2
当 q→0
β
qa qa sin( ) ≈ 2 2
ω = a β /m q
ω =VElasticq
—— 一维单原子格波的色散关系与连续 介质中弹性波的色散关系一致
18
相邻原子之间的作用力 f = βδ 长波极限情况
o xij = x o − xio j
(3.1.2)
u ij = u j − u i
xn −1
•0
un −1
•0
u
n
xn xn
•0
un +1
xn +1
x
4
a
5
设两原子间的相互作用势能为 ϕ ( xij ) ,且只考虑二 体相互作用,则总的相互作用能为
1 N U = ∑ ϕ ( xij ) 2 i≠ j
4β 2 aq ω = sin ( ) m 2
2
相邻原子位相差 aq ⇒ 2π + aq
π
4a 2a 相邻原子位相差 aq1 = π / 2 2π 5π 两种波矢的格波中,原子 两种波矢的格波中, = 格波2(Green)波矢 q2 = 的振动完全相同, 4a / 5 2a 的振动完全相同,相邻原 相邻原子的位相差 aq2 = 2π + π / 2 子的位相差 − π < aq ≤ π

固体物理-第三章

固体物理-第三章

l 1
原 子
上式说明每个坐标gk的振动,都可以分解成3N个简正振动的线 性迭加,Ql新坐标称为简正坐标,所以,我们可以得出结论:N个

原子组成晶体的任何一种微振动,可看成3N个简正振动的迭加。


★简正坐标与原子位移坐标之间的正交变换,
实际上是按付氏展开式把坐标系由位置坐标转
换到状态空间(正格子——倒格子)。

体原子集体运动状态的激发单元,它不能脱离固体而单

独存在,它并不是一种真实的粒子, 只是一种准粒子;

➢声子的作用过程遵从能量守恒和准动量守恒。

➢一种格波即一种振动模式称为一种声子,对于由N个原子

组成的一维单原子链,有N个格波,即有N种声子,
3.1 晶体中原子的微振动及其量子化
声子
采用“声子”概念不仅表达简洁、处理问题方便(例晶格与微观粒
3N

2 Ak bik Ai 0 k 1, 2,L 3N (9) i 1
方程组(9)又可改写成:
3N
bik 2ik Ai 0 k 1, 2,L 3N (10)
i 1
3.1 晶体中原子的微振动及其量子化
原子的运动方程
3N
bik 2ik Ai 0 k 1, 2,L 3N (10)
3.1 晶体中原子的微振动及其量子化
原子的运动方程
••
gk bik gi 0 k 1, 2,L 3N
(7)

gk Ak sin t k 1, 2,L 3N
(8)

的 运
(8)式所给出的特解应能够满足方程(7),则将(8)式 代入(7)式,得确定ω与bik之间关系的方程组:

固体物理吴代鸣 第三章

固体物理吴代鸣 第三章

Ⅱ. 德拜模型
模型要点:
(1)用连续介质中的弹性波替代格波,即以弹性波 的色散关系ω(q)=Cq替代晶格格波的色散关系ω (q); (2)认为晶体中只存在三支弹性波,二支横波和一 支纵波,其色散关系分别为: ωt(q)=Ctq和ωl(q)=Clq。
体系规定:
N个原子组成,共有3N个晶格振动模。
重要结论
(2)T处于低温段时,实验规律与理论不符; 实验结论:CV(低温)~T3
爱因斯坦模型的评价
虽然Einstein模型简单,但与实验符合程度却相 当好,说明晶体比热的量子理论的成功;但极低温下 Einstein模型给出的比热容随温度T下降过快,而实 际上低温热容随温度的变化具有T3关系。只考虑了光 学模的贡献,完全忽略了声学波的贡献。说明 Einstein模型过于简单,需要进一步修正。晶格振动 采取格波形式,它们的频率值是不完全相同的,而是 有一定的分布情况。
0 其中 E (称爱因斯坦温度) kB
讨论
(1)高温情况(T>>θE): (2)低温情况(T<<θE):
CV 3 NkB
CV 3 NkB (
E
T
)2 e
T

E
T
T 0时, e

E
T
0, 有CV 3 NkB (
E
T
)2 e
E
0
结论:(1)T趋近于0时的理论结果与实际符合较好;
即Debye的T3定律
关于非谐效应
(1)格临爱森状态方程:
dU E d ln P , 其中 是格临爱森常数。 dV V d ln V CV (2)格临爱森定律: K 0V
表示当温度变化时,热膨胀系数近似与晶格热容量成比例。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N n n
e
iNaq
1
2 q h Na
q的分布密度:
h =整数, N:晶体链的原胞数
Na L q const. 2 2
{
简约区中q的取值总数 = q
2 N =晶体的原胞数 a 晶格振动的格波总数=2N=晶体的自由度数
推广:若每个原胞中有s个原子,一维晶格振动有s个色散关系 式(s支格波),其中:1支声学波,(s-1)支光学波。 晶格振动格波的总数=sN=晶体的自由度数。
2 1
两个色散关系即有两支格波:(+:光学波; -:声学波)
+
简约区:
-

a
q

a
-/a
0
/a
q
对于不在简约区中的波数q’ ,一定可在简约区中
找到唯一一个q,使之满足:
2 q q G a
G 为倒格矢
二、光学波和声学波的物理图象 第n个原胞中P、Q两种原子的位移之比
, 0,1,2, , N 1
(l)和(l’)分别是第l和第l’个原子沿和方向的位移。
2U C , C , 0
力常数
第l个原子的运动方程:
U m C , ,
2 cos e n A i1 2 aq e 2 B 2 M n
1 aq 2
i1 2 aq

2m cos
1 2 aq
e
i1 aq 2
M m M 2 m2 2 Mm cos aq
R ei
R:大于零的实数,反映原胞中P、Q两种原子的振幅比,
i t naq

m 2 eiaq eiaq 2 2 cos aq 1
解得
1 2 sin aq m 2

—— 色散关系
二、格波的简约性质、简约区
1 2 sin aq m 2
(q)

—— 色散关系


a
q

a
—— 简约区
- 2a - a
: 两原子的振动位相差。
1. 光学波(optical branch)
2m cos e n 2 2 M m M m 2 Mm cos aq n
1 aq 2
i1 2 aq
1 ei
R ei

2m cos
1 aq 2
的频率,就会发生共振。
0
q
光波: =c0q, c0为光速
对于实际晶体, +(0)在1013 ~ 1014Hz,对应于远
红外光范围。离子晶体中光学波的共振可引起对远红外
光在 +(0)附近的强烈吸收。
2. 声学波(acoustic branch)
1 aq e n 2 m cos 2 M m M 2 m 2 2 Mm cosaq n
q0时

2
M m
Mm
M m
Mm
4 Mm 2 1 1 1 M m 2 sin 2 aq
4 Mm
2

1 1 1 2 2 aq M m
2 Mm

2
M m
这里考虑了晶体中所有原子的相互作用。晶体中各 力常数之间并不全是独立的,而必须满足:
C , 0

由晶格的周期性,得
,=1,2,3
C
, C ,0 C

设格波解:
A e
频率为j的特解:
nj j
方程的一般解:
n Aje
j
i jt naqj



1 inaq Q q , t e Nm q
线性变换系数正交条件: 系统的总机械能化为:
1 N
e
n
ina q q
q , q
1 * q, t Q q, t 2 q Q * q , t Q q , t H Q 2 q

e
i 1 2 aq

M m M 2 m2 2 Mm cos aq


a
a 1 aq 2
q

cos 1 2 aq 0
3 2 2

+在Ⅱ、Ⅲ象限之间,属于反位相型。
物理图象:原胞中两种不同原子的振动位相基本上相反, 即原胞中的两种原子基本上作相对振动,而 原胞的质心基本保持不动。 当q0时,+,原胞中两种原子振动位相完全相反。
2 Na
q的分布密度:
Na L q 2 2
L=Na ——晶体链的长度
2 Na 2 简约区中波数q的取值总数 q a 2 a
=N=晶体链的原胞数
晶格振动格波的总数=N· 1 =晶体链的自由度数
四、格波的简谐性、声子概念
1 2 n 晶体链的动能: T m 2 n 2 1 晶体链的势能: U n n1 2 n 2 1 1 2 n n n1 系统的总机械能: H m 2 n 2 n i jt naqj Ae
Mm
2 2 2 1 1 aq aq 2 2 2 M m M m




1 2 a q q 2 M m
这与连续介质的弹性波 =vq 一致。 当q0时
n n

1 q 0
在长波极限下,原胞内两种原子的运动完全一致,振 幅和位相均相同,这时的格波非常类似于声波,所以我们 将这种晶格振动称为声学波或声学支。
1 E n j j 2 j=1
N
§3.2 一维双原子链的振动
考虑由P、Q两种原子等距相间排列的一维双原子链
一、运动方程及其解
a
只考虑近邻原子间的弹性相互作用 运动方程:
{ m
n
试 解:
{
{
M m
n-1 n n n+1
n n n 1 2n M
0
a
2 a
q
格波:Aei t naq
连续介质弹性波:Ae
i t xq
对于确定的n:第n个原子的位移随时间作简谐振动 对于确定时刻t:不同的原子有不同的振动位相 q的物理意义:沿波的传播方向(即沿q的方向)上,单 位距离两点间的振动位相差。 格波解:晶体中所有原子共同参与的一种频率相同的振 动,不同原子间有振动位相差,这种振动以波
1 E j n j j 2
nj 0,1,2,
• 当电子或光子与晶格振动相互作用时,总是以 j 为 单元交换能量。 • 声子只是反映晶体原子集体运动状态的激发单元,它不 能脱离固体而单独存在,它并不是一种真实的粒子, 只 是一种准粒子。 • 声子的作用过程遵从能量守恒和准动量守恒。 • 由N个原子组成的一维单原子链,晶格振动的总能量为:
i 1 aq 2

i 1 aq 2 2m cos 1 aq e 2 M 2 m2 2 Mm cos aq M m
即:
i R e
1 aq 2


2


2
-在Ⅰ、Ⅳ象限,属于同位相型
物理图象:原胞中的两种原子的振动位相基本相同,原胞 基本上是作为一个整体振动,而原胞中两种原 子基本上无相对振动。 当q0时, 0, 原胞内两种原子的振动位相完全相同。
2a a 3a 4a
三、周期性边界条件(Born-Karman边界条件)
N+1
1 2Biblioteka nN N+2
N+n

N n

1
n
Ae
i t N n nq
Ae
i t naq
e
iNaq
i 2 h e 1
2 q h Na
h =整数
在q轴上,每一个q的取值所占的空间为
i t q R
带入运动方程得:


其中
m 2 A 0
§3.3 三维晶格振动
一、三维简单晶格的振动 l
l’ 0 第ℓ个原子的位矢:
l-l’
R 1a1 2a2 3a3
在简谐近似下,系统的势能为(取平衡时U0=0):
1 U C , 2
, ,
, 1,2,3
第三章 晶格振动与晶体的热学性质
§3.1 一维单原子链的振动
一、运动方程及其解
n-2 n-1 n n+1 n+2
a
n-2 n-1
a
n
:力常数
n+1 n+2


只考虑最近邻原子间的相互作用:
fn n n 1 n n 1 n1 n 1 2n
n
n 1 2 n
(设 M > m)
n Aeit naq
n Be
1 i t n aq 2
代入方程:
{
2 2 cos 1 aq A 2 m B 0 2
1 aq B 0 2 M A 2 cos 2
(q)
1 1 2 M m

2 m
2 M



a
0
a
q
2 m a 2 a M
相关文档
最新文档