14.1 勾股定理(公开课2)--

合集下载

《勾股定理》公开课-完整版课件

《勾股定理》公开课-完整版课件
课件说明
• 本课从观察网格中的正方形面积关系出发,发现了 等腰直角三角形三边之间的数量关系,再通过观察 网格中以一般直角三角形的三边为边长的正方形面 积关系,发现网格中的一般直角三角形也具有这种 三边长的数量关系,从而提出猜想,直角三角形两 直角边的平方和等于斜边平方,介绍了赵爽的证明 方法.
课件说明
追问 正方形A、B、C 所围成的直角三角形三条边 之间有怎样的特殊关系?
B
A CΒιβλιοθήκη 探究勾股定理问题4 通过前面的探究活动,猜一猜,直角三角 形三边之间应该有什么关系?
猜想: 如果直角三角形两直角边长分别为a,b,斜边长为 c,那么a2+b2=c2.
感受数学文化
这个图案是公元3世纪我国汉代的赵爽在注解《周
问题1 你见过这个图案吗? 它由哪些基本图形组成?
创设情境 引入课题
问题2 三个正方形A,B,C 的面积有什么关系?
追问 由这三个正方形 A,B,C的边长构成的等腰 直角三角形三条边长度之间 有怎样的特殊关系?
B
A
C
探究勾股定理
问题3 在网格中的一般的直角三角形,以它的三 边为边长的三个正方形A、B、C 是否也有类似的面积 关系?
初步应用定理
练习3 求下列直角三角形中未知边的长度.
C
A
4
x
5
A
10
C
6
B
x
B
课堂小结
(1)勾股定理的内容是什么?它有什么作用? (2)在探究勾股定理的过程中,我们经历了怎样
的探究过程?
课后作业
作业: 1.整理课堂中所提到的勾股定理的证明方法; 2.通过上网等查找有关勾股定理的有关史料、趣事
及其他证明方法.

14.1勾股定理教学设计

14.1勾股定理教学设计

B 通过实验操作、归纳 验证,在学生的自主探 究与合作交流中解决 问题,既遵循了学生的 认知规律,又充分体现 了“学生是学习的主 人”。
4.当直角三角形三边长不是整数时,是否也有 “两直角边长的平方和,等于斜边长平方”呢?
由浅入深,让学生一 步一步经历由“特殊到 一般”这一基本的知识 产生过程。
5.归纳猜想: 命题:如果直角三角形两直角边分别 a 、 b ,斜 边为 c,那么 a2 b2 c2 . 等式变形: ① c a2 b2 ;② b c2 a2 ; ② a c2 a2
验数学的应用及价值
屋内吗?”你有什么办法帮他判断一下是否能正常通 过?
取向,从而树立“学数 学、用数学”的信心。 同时,为下节课埋下伏
笔。
引出课题:勾股定理
[知识链接]
毕达哥拉斯发现定理的趣闻故事
1.探索活动一: 小
观察地砖图,畅谈其发现。引导得出等腰直角三 组
角形的三边关系。


A
B


C


2.探索活动二:
培养运用数学语言 进行抽象、概括的能 力。
[知识链接] (1)“勾股定理”、“毕达哥拉斯定理”名称的来
由及人们对此进行证明现状。 (2)赵爽弦图。
6.赵爽证法:
c b
a
c b
a
a
通过“知识链接”让 学生更好地体会勾股 定理的丰富内涵与文 化背景,渗透爱国主义 教育,提升民族自豪 感。
通过定理 证明使 学生养成严谨的科学 态度,培养良好的思维 品质;渗透数形结合的 思想方法。
进一步让学生体验 观察、猜想、归纳这一 数学结论发现的过程, 引导他们由“特殊”走 向“一般”。一方面让 学生的分析问题和解 决问题的能力从中得 锻炼与提高;一方面通 过学生的合作交流,培 养C学生积极参与、合作 交流的意识与及竞争 意识,享受成功的喜悦

2022秋八年级数学上册第14章勾股定理14.1勾股定理1直角三角形三边的关系__认识勾股定理授课课

2022秋八年级数学上册第14章勾股定理14.1勾股定理1直角三角形三边的关系__认识勾股定理授课课

解: 根据勾股定理, 可得
长度,可以求出第三 边的长度.
AB2 + BC2 = AC2. 所以 AC = A B 2 + B C 26 2 + 8 2 1 0 .
知1-讲
例2 在Rt△ABC中,∠A,∠B,∠C的对边分别是a, b,c, ∠C=90°. (1)已知a=3,b=,4,求c; (2)已知c=13,a=12,求b; (3)已知a∶b=2∶1,c=5,求b(结果保留根号).
知1-导
要点精析: (1)勾股定理揭示的是直角三 角形的三边的平方关系, 只有在直角三角形中才可 以使用勾股定理; (2)勾股定理的内容描述的是直角三角形三边之间的 数量关系,已知其中任意两边可以求出第三边; (3)勾股定理的变形公式:a2=c2-b2,b2=c2-a2; (4) 运用勾股定理,若分不清 哪条边是斜边时,则要 分 类讨论,写出所有可能的 情况,以免漏解或解 .
知1-讲
利用勾股定理求直角三角形边长的方法:一般 都要经过“一分二代三化简”这三步:即一分:分 清哪条边是斜边、哪些是直角边;二代:代入a2+b2 =c2及两边之间的关系式;三化简.
知1-讲
例1 在Rt△ABC中,已知∠B=90°, AB=6,BC=8.
求AC.
应用勾股定理,由直
角三角形任意两边的
知1-讲
例3 已知直角三角形的两边长分别为3,4,求第 三边的长.
错解:第三边的长为 32+ 42 255. 错解分析:由于习惯了“勾三股四弦五”的说法,因此
将题意理解为两直角边长分别为3和4,于是 斜边长为5.但这一理解的前提是3,4为直角 边长,而题中并没有任何说明,因而所求的 第三边长可能为斜边长,也可能为直角边 长.所以需要分情况求解.
正方形R的面积=

2022秋八年级数学上册 第14章 勾股定理14.1 勾股定理 3直角三角形的判定授课课件华东师大版

2022秋八年级数学上册 第14章 勾股定理14.1 勾股定理 3直角三角形的判定授课课件华东师大版

知1-讲
例5 如图,E、F分别是正方形ABCD中BC和CD边
上的点,且AB=4,CE=
1 4
BC,F为CD的中
点,连结AF,AE,EF,问:△AEF是什么三
角形?请说明理由.
知1-讲
导引:直接判断EF2+AF2与AE2的关系不太容易, 1
但由于“AB=4,CE= 4 BC,F为CD的中 点”,因此可以很容易求出AF,EF,AE的 长,然后判断EF2+AF2与AE2的关系,从而 得到三角形的形状.
知1-讲
解: (1)在△ABC中,∵∠A+∠B+∠C=180°, ∴∠B=180°-25°-65°=90°, ∴△ABC是直角三角形.
(2)在△ABC中,∵AC2+BC2=122+162=202 =AB2, ∴△ABC是直角三角形,且∠C为直角.
(3)∵三角形的三边长满足b2-a2=c2, 即b2=a2+c2, ∴此三角形是直角三角形,且b是斜边长.
知2-讲
解: ∵AB2 + BC2 = (n2 -1)2 + (2n)2 =n4 - 2n2 + 1 + 4n2 =n4 + 2n2 + 1 =(n2 + 1) 2

想一想,为什么 选择AB2 + BC2 ? AB、BC、CA的 大小关系是怎样 的?
=AC 2
∴△ABC是直角三角形,边AC所对的角是直角.
导引:先将等式两边同时分解因式,然后通过对分 解后的式子的讨论,得出△ABC的形状.
解:
∵a2c2-b2c2=a4-b4,
知1-讲
∴c2(a2-b2)=(a2-b2)(a2+b2).
即(a2-b2)(a2+b2-c2)=0.
(1)当a2-b2≠0时,则有c2=a2+b2.

14.1 勾股定理 2课题 直角三角形的判定

14.1 勾股定理 2课题 直角三角形的判定

课题直角三角形的判定【学习目标】1.让学生理解直角三角形的判定条件;2.让学生理解勾股数的概念,并牢记勾股数,学会使用技巧;3.能够灵活运用勾股定理判定直角三角形.【学习重点】勾股定理逆定理的探索过程.【学习难点】利用勾股定理逆定理解决实际问题.自学互研生成能力知识模块一勾股定理的逆定理阅读教材P112~P114,完成下面的内容:范例:判断由线段a,b,c组成的三角形是不是直角三角形?(1)a=15,b=17,c=8;(2)a=13,b=15,c=14.解:(1)最大边是17.∵152+82=225+64=289,172=289,∴152+82=172.∴以15,8,17为边长的三角形是直角三角形.(2)最大边是15.∵132+142=169+196=365,152=225,∴132+142≠152.∴以13,14,15为边长的三角形不是直角三角形.归纳:勾股定理的逆定理:如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形,且边c所对的角是直角.仿例:下列哪几组数据能作为直角三角形的三边长?请说明理由.①9,12,15;②15,36,39;③12,35,36;④12,18,22.解:①②(①92+122=225=152;②152+362=1521=392;③122+352=1369≠362;④122+182=468≠222)变例:将直角三角形的三边都扩大n倍后,得到的三角形是(A)A.直角三角形B.锐角三角形C.钝角三角形D.不能确定学法指导:1.连结BD,观察图形,可以发现,Rt△ABD和Rt△BDC;2.由以上基本图形可以得到:BD2=AD2+AB2,DC2=BC2+BD2;3.根据勾股定理判定直角三角形.行为提示:找出自己不明白的问题,先对学,再群学.充分在小组内展示自己,对照答案,提出疑惑,小组内讨论解决.小组解决不了的问题,写在各小组展示的黑板上,在展示的时候解决.积极发表自己的不同看法和解法,大胆质疑,认真倾听.做每一步运算时都要自觉地注意有理有据.知识模块二勾股数阅读教材P114,完成下面的内容:归纳:能够成为直角三角形三条边长的三个正整数,称为勾股数.例如:3,4,5;6,8,10;n-1,2n,n+1(n为大于1的整数)都是勾股数.范例:判断下列各组数是不是勾股数:(1)3,4,5;(2)5,12,13;(3)3,-4,5;(4)0.3,0.4,0.5解:(1)(2)是勾股数,(3)(4)不是勾股数.归纳:生活中我们常见的勾股数的特征一般分为两类来记忆:(1)奇数开头:3,4,5;5,12,13;7,24,25;9,40,41;……(特点:第一个数为奇数开头,中间为偶数,最后一个数只比前一个数多1.)(2)偶数开头:6,8,10;8,15,17;10,24,26;……(特点:第一个数为偶数开头,最后一个数只比前一个数多2.)(3)若a、b、c为勾股数,则ka、kb、kc(k>0)也一定是勾股数.变例:下列几组数中,为勾股数的一组是(D)A.1.2、1.6、2.4B.70、240、260。

14.1勾股定理——直角三角形三边的关系

14.1勾股定理——直角三角形三边的关系
2
Z=625-576=49 Z=7

已知S1=1,S2=3,S3=2,S4=4,求S5、S6、S7的值
S2 S1 S5
S3
S4
S6
S7
结论:
S1+S2+S3+S4 =S5+S6 =S7
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
B
D
练习
1. 在Rt△ABC中, AB=c, BC=a, AC=b, ∠B= 90°.
(1) 已知a=6, b=10, 求c;
(2) 已知a=24, c=25, 求b.
2. 如果一个直角三角形的两条边长分别是3厘米和4厘米, 那么这个三角形的周长是多少厘米?
3.小波家买了一部新彩电,小波量了电视机的屏幕后,发现 屏幕长58厘米和宽46厘米,就问妈妈彩电是多少英寸,妈妈 告诉他: “我们平常所说的电视机多少英寸指的是屏幕对角 线的长度,1英寸等于2.54厘米,利用你所学的知识算一下电 视机是多少英寸的?”
正方形R的面积= 25 平方厘米.
正方形P、 Q、 R的面积之间的关系

SP+ SQ= SR

(每一小方格表示1平方厘米) 直角三角形ABC的三边的长度之间
分“割”成若存干在个关系直A角C边2+RBC212=AB32 4 4.1 为在整一般数的直的角三三角角形中形,两。直角边的平方和等于斜边的平2方5也成立!

2.16
解 在Rt△ABC中, BC=2.16米,AC=5.41米, 根据勾股定理可得 AB= AC2 -BC 2 = 54. 1 2 -21. 6 2 ≈4.96(米). 答: 梯子上端A到墙的底边的垂直距离 AB 约为4.96米.

华师大版第14章勾股定理电子教材(课本)

华师大版第14章勾股定理电子教材(课本)

第14章勾股定理§14.1勾股定理1. 直角三角形三边的关系2. 直角三角形的判定阅读材料勾股定理史话美丽的勾股树§14.2勾股定理的应用小结复习题课题学习勾股定理的“无字证明”第14章勾股定理还记得2002年在北京召开的国际数学家大会(ICM2002)吗?在那个大会上,到处可以看到一个简洁优美的图案在流动,那个远看像旋转的纸风车的图案就是大会的会标.那是采用了1700多年前中国古代数学家赵爽用来证明勾股定理的弦图.§14.1 勾股定理1. 直角三角形三边的关系本章导图中的弦图隐含着直角三角形三边之间的一种奇妙的关系,让我们首先观察经常使用的两块直角三角尺.试一试测量你的两块直角三角尺的三边的长度,并将各边的长度填入下表:三角尺直角边a直角边b斜边c 关系12根据已经得到的数据,请猜想三边的长度a、b、c之间的关系.图14.1.1是正方形瓷砖拼成的地面,观察图中用阴影画出的三个正方形,很显然,两个小正方形P、Q的面积之和等于大正方形R的面积.即AC2+BC2=AB2,图14.1.1这说明,在等腰直角三角形ABC中,两直角边的平方和等于斜边的平方.那么在一般的直角三角形中,两直角边的平方和是否等于斜边的平方呢?试一试观察图14.1.2,如果每一小方格表示1平方厘米,那么可以得到:正方形P的面积=平方厘米;正方形Q的面积=平方厘米;(每一小方格表示1平方厘米)图14.1.2正方形R的面积=平方厘米.我们发现,正方形P、Q、R的面积之间的关系是.由此,我们得出直角三角形ABC的三边的长度之间存在关系.做一做在图14.1.3的方格图中,用三角尺画出两条直角边分别为5cm、12cm的直角三角形,然后用刻度尺量出斜边的长,并验证上述关系对这个直角三角形是否成立.(每一小格代表1平方厘米)图14.1.3概括数学上可以说明:对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有a2+b2=c2,这种关系我们称为勾股定理.勾股定理直角三角形两直角边的平方和等于斜边的平方.勾股定理揭示了直角三角形三边之间的关系.例1如图14.1.4,将长为5.41米的梯子AC斜靠在墙上,BC长为2.16米,求梯子上端A到墙的底边的垂直距离AB.(精确到0.01米)图14.1.4解如图14.1.4,在Rt△ABC中,BC=2.16米,AC=5.41米,根据勾股定理可得AB=-BCAC22=2216.5≈4.96(米).41.-2答:梯子上端A到墙的底边的垂直距离AB约为4.96米.练习1. 在Rt△ABC中,AB=c,BC=a,AC=b,∠B=90°.(1)已知a=6,b=10,求c;(2)已知a=24,c=25,求b.2. 如果一个直角三角形的两条边长分别是3厘米和4厘米,那么这个三角形的周长是多少厘米?试一试剪四个与图14.1.5完全相同的直角三角形,然后将它们拼成如图14.1.6所示的图形.大正方形的面积可以表示为,又可以表示为.对比两种表示方法,看看能不能得到勾股定理的结论.图14.1.5 图14.1.6用上面得到的完全相同的四个直角三角形,还可以拼成如图14.1.7所示的图形,与上面的方法类似,也能说明勾股定理是正确的. 读一读我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦.图14.1.7称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作注时给出的.图14.1.8是在北京召开的2002年国际数学家大会(ICM2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就.图14.1.7 图14.1.8 例2如图14.1.9,为了求出位于湖两岸的两点A 、 B 之间的距离,一个观测者在点C 设桩,使三角形ABC恰好为直角三角形.通过测量,得到AC 长160米,BC长128米.问从点A 穿过湖到点B 有多远?图14.1.9解 如图14.1.9,在直角三角形ABC中,AC =160米, BC=128米,根据勾股定理可得 AB=22BC AC -=22128160-=96(米).答: 从点A 穿过湖到点B 有96米.练习1. 如图,小方格都是边长为1的正方形,求四边形ABCD的面积与周长.2. 假期中,王强和同学到某海岛上去探宝旅游,按照探宝图(如图),他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走3千米,再折向北走到6千米处往东一拐,仅走1千米就找到宝藏,问登陆点A到宝藏埋藏点B的直线距离是多少千米?(第1题)(第2题)2. 直角三角形的判定古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后如图14.1.10那样用桩钉钉成一个三角形,他们认为其中一个角便是直角.你知道这是什么道理吗?图14.1.10试一试试画出三边长度分别为如下数据的三角形,看看它们是一些什么样的三角形:(1)a=3,b=4,c=5;(2)a=4,b=6,c=8;(3)a=6,b=8,c=10.可以发现,其中按(1)、(3)所画的三角形都是直角三角形,而按(2)所画的不是直角三角形.在这三组数据中,(1)、(3)两组都满足a2+b2=c2,而组(2)不满足.以后我们会证明一般的结论:如果三角形的三边长a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.古埃及人所画的三角形的三边长恰好满足这样的关系,所以其中一个角是直角.例 3 设三角形三边长分别为下列各组数,试判断各三角形是否是直角三角形:(1)7,24,25;(2)12,35,37;(3)13,11,9.解因为252=242+72,372=352+122,132≠112+92,所以根据前面的判定方法可知,以(1)、(2)两组数为边长的三角形是直角三角形,而以组(3)的数为边长的三角形不是直角三角形.练习1. 设三角形的三边长分别等于下列各组数,试判断各三角形是否是直角三角形.若是,指出哪一条边所对的角是直角.(1)12,16,20;(2)8,12,15;(3)5,6,8.2. 有哪些方法可以判断一个三角形是直角三角形?习题14.11. 将图14.1.6沿中间的小正方形的对角线剪开,得到如图所示的梯形.利用此图的面积表示式验证勾股定理.(第1题)2. 已知△ABC中,∠B=90°,AC=13cm,BC=5cm,求AB的长.3. 已知等腰直角三角形斜边的长为2cm,求这个三角形的周长.4. 如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心、正方形边长的一半为半径作圆.试探索这三个圆的面积之间的关系.(第4题)(第5题)5. 如图,已知直角三角形ABC的三边分别为6、8、10,分别以它的三边为直径向上作三个半圆,求图中阴影部分的面积.6. 试判断以如下的a、b、c为边长的三角形是不是直角三角形?如果是,那么哪一条边所对的角是直角?(1)a=25,b=20,c=15;(2)a=1,b=2,c=3;(3)a=40,b=9,c=40;(4)a∶b∶c=5∶12∶13.阅读材料勾股定理史话勾股定理从被发现到现在已有五千年的历史.远在公元前三千年的巴比伦人就已经知道和应用它了.我国古代也发现了这个定理.据《周髀算经》记载,商高(公元前1120年)关于勾股定理已有明确的认识,《周髀算经》中有商高答周公的话:“勾广三,股修四,径隅五.”同书中还有另一位学者陈子(公元前六七世纪)与荣方(公元前六世纪)的一段对话:“求邪(斜)至日者,以日下为勾,日高为股,勾、股各自乘,并而开方除之,得邪至日”(如图所示),即邪至日=勾2+股2.这里陈子已不限于“三、四、五”的特殊情形,而是推广到一般情形了.人们对勾股定理的认识,经历过一个从特殊到一般的过程,其特殊情况,在世界很多地区的现存文献中都有记载,很难区分这个定理是谁最先发明的.国外一般认为这个定理是毕达哥拉斯(Pythagoras)学派首先发现的,因而称为毕达哥拉斯定理.勾股定理曾引起很多人的兴趣,世界上对这个定理的证明方法很多.1940年卢米斯(E.S. Loomis)专门编辑了一本证明勾股定理的小册子——《毕氏命题》,作者收集了这个著名定理的370种证明,其中包括大画家达·芬奇和美国第20任总统詹姆士·阿·加菲尔德(James Abram Garfield,1831~1881)的证法.美丽的勾股树你可能去过森林公园,看到过许许多多千姿百态的植物.可是你是否见过如下的勾股树呢?你知道这是如何画出来的吗?仔细看看,你就会发现那一个个细小的部分正是我们学过的勾股图,一个一个连接在一起,构成了多么奇妙美丽的勾股树!动手画画看,相信你也能画出其他形态的勾股树.§14.2 勾股定理的应用勾股定理能解决直角三角形的许多问题,因此在现实生活和数学中有着广泛的应用.例1如图14.2.1,一圆柱体的底面周长为20cm ,高AB为4cm ,BC是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,试求出爬行的最短路程.图14.2.1分析 蚂蚁实际上是在圆柱的半个侧面内爬行,如果将这半个侧面展开(如图14.2.2),得到矩形 ABCD ,根据“两点之间,线段最短”,所求的最短路程就是侧面展开图矩形对角线AC 之长.(精确到0.01cm )图14.2.2解 如图14.2.2,在Rt △ABC中,BC=底面周长的一半=10cm ,∴ AC =22BC AB +=22104+=229≈10.77(cm )(勾股定理).答: 最短路程约为10.77cm .例2一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图14.2.3的某工厂,问这辆卡车能否通过该工厂的厂门?图14.2.3分析由于厂门宽度足够,所以卡车能否通过,只要看当卡车位于厂门正中间时其高度是否小于CH .如图14.2.3所示,点D 在离厂门中线0.8米处,且CD ⊥AB, 与地面交于H .解 在Rt △OCD 中,由勾股定理得 CD=22OD OC -=228.01-=0.6米,C H=0.6+2.3=2.9(米)>2.5(米).因此高度上有0.4米的余量,所以卡车能通过厂门.做一做图14.2.4如图14.2.4,以直角三角形ABC的三边为边分别向外作正方形,其中一个正方形划分成四个形状与大小都一样的四边形.试将图中5个带色的图形拼入到大正方形中,填满整个大正方形. 练习1. 如图,从电杆离地面5米处向地面拉一条7米长的钢缆,求地面钢缆固定点A到电杆底部B的距离.2. 现准备将一块形为直角三角形的绿地扩大,使其仍为直角三角形,两直角边同时扩大到原来的两倍,问斜边扩大到原来的多少倍?(第1题)例3如图14.2.5,在5×5的正方形网格中,每个小正方形的边长都为1,请在给定网格中按下列要求画出图形:(1)从点A出发画一条线段AB,使它的另一个端点B在格点(即小正方形的顶点)上,且长度为22;(2)画出所有的以(1)中的AB为边的等腰三角形,使另一个顶点在格点上,且另两边的长度都是无理数.分析只需利用勾股定理看哪一个矩形的对角线满足要求.图14.2.5 图14.2.6解(1)图14.2.6中AB长度为22.(2)图14.2.6中△ABC、△ABD就是所要画的等腰三角形.例4如图14.2.7,已知CD=6m,AD=8m,∠ADC=90°,BC =24m,AB=26m.求图中阴影部分的面积.图14.2.7解在Rt△ADC中,AC2=AD2+CD2=62+82=100(勾股定理),∴AC=10m.∵AC2+BC2=102+242=676=AB2,∴△ACB为直角三角形(如果三角形的三边长a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形),∴S阴影部分=S△ACB-S△ACD=1/2×10×24-1/2×6×8=96(m2).练习1. 若直角三角形的三边长分别为2、4、x,试求出x的所有可能值.2. 利用勾股定理,分别画出长度为3和5厘米的线段.习题14.21. 若等腰直角三角形的斜边长为2cm,试求出它的直角边和斜边上的高的长度.2. 下图由4个等腰直角三角形组成,其中第1个直角三角形腰长为1cm,求第4个直角三角形斜边长度.(第2题) (第3题)3. 如图,为了加固一个高2米、宽3米的大门,需在相对角的顶点间加一块木条.求木条的长度.4. 在△ABC中,AB=2, BC=4, AC=23, ∠C =30°, 求∠B 的大小.5. 已知三角形的三边分别是n +1、 n +2、 n +3,当n 是多少时,三角形是一个直角三角形?6. 如图,AD ⊥CD , AB=13,BC=12,CD=4,AD=3, 若∠C AB=55°,求∠B 的大小.(第6题)小结一、 知识结构二、 概括 直角三角形 勾股定理应用判定直角三角形的一种方法本章研究了揭示直角三角形三条边之间关系的勾股定理和由此产生的一种判定直角三角形的方法.如果知道了直角三角形任意两边的长度,那么应用勾股定理可以计算出第三边的长度;如果知道了一个三角形的三边的长,也可以判断这个三角形是否是直角三角形.勾股定理可以解决直角三角形中的许多问题,在现实生活中有许多重要的应用.复习题A组1. 求下列阴影部分的面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.(第1题)2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.(第2题)3. 试判断下列三角形是否是直角三角形:(1)三边长为m2+n2、mn、m2-n2(m>n>0);(2)三边长之比为1∶1∶2;(3)△ABC的三边长为a、b、c,满足a2-b2=c2.4. 一架2.5米长的梯子靠在一座建筑物上,梯子的底部离建筑物0.7米,如果梯子的顶部滑下0.4米,梯子的底部向外滑出多远?5. 如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,求正方形A、B、C、D的面积和.(第5题)B组6. 在△ABC中,AB=AC=10,BD是AC边的高,DC=2,求BD的长.(第7题)7. 有一块四边形地ABCD(如图),∠B=90°,AB=4m,BC=3m,CD=12m,DA=13m,求该四边形地ABCD 的面积.8. 能够成为直角三角形三条边长的正整数,称为勾股数.请你写出5组勾股数.9. 已知△ABC中,三条边长分别为a=n2-1,b=2n,c=n2+1(n>1).试判断该三角形是否是直角三角形,若是,请指出哪一条边所对的角是直角.C组10. 如图,四边形ABCD中,AB=BC=2,CD=3,DA=1,且∠B=90°,求∠DAB的度数.(第10题)(第11题)11. 如图,在矩形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE折叠,使点D恰好落在边BC上一点F 处,且△ABF的面积是30cm2.求此时AD的长.(第12题)12. 折竹抵地(源自《九章算术》):今有竹高一丈,末折抵地,去本三尺.问折者高几何?意即:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原长竹子处3尺远.问原处还有多高的竹子?课题学习勾股定理的“无字证明”在勾股定理的学习过程中,我们已经学会运用以下图形,验证著名的勾股定理:整个大正方形的面积可以表示为里面小正方形的面积与四边上的4个直角三角形的面积之和,即为(a+b) 2=c2+4·(1/2ab),由此可以推出勾股定理a2+b2=c2.这种根据图形可以极其简单地直观推论或验证数学规律和公式的方法,简称为“无字证明”.对于勾股定理,我们还可以找到一些用于“无字证明”的图形.现在请你和大家一起,查阅课本和其他有关书籍,上网查询各种相应的资料,相信你一定能够发现更多的有趣图形,验证勾股定理.实际上你还可以发现“无字证明”也可以用于验证数与代数、空间与图形等领域中的许多数学公式和规律!。

勾股定理141勾股定理4反证法课件2

勾股定理141勾股定理4反证法课件2
少”“至多”等肯定或否定的表述时,若直接证明 较困难,可考虑用反证法,而对于文字的表述题, 可先转化为数学语言表述,再用反证法证明;(2)分 析例题结论反面时,要做到不重复、不遗漏,如本 例中的“一定是锐角”的反面就是“不是锐角”, 而“不是锐角”有两层意思:是直角、是钝角,因 此可分为两类:直角、钝角.
例3 用反证法证明:一个三角形中不能有两个角是直角. 导引: 正确写出与原命题结论相反的结论是用反证法进行证明的关
键. 解: 已知:∠A、∠B、∠C是△ABC的三个内角.
求证:∠A、∠B、∠C中不能有两个角是直角. 证明:假设∠A、∠B、∠C中有两个角是直角. 不妨设∠B=∠C=90°. ∴∠A+∠B+∠C=∠A+90°+90°=∠A+180°>180°. 这与“三角形的内角和是180°”相矛盾. ∴假设不成立,即一个三角形中不能有两个角是直角.
知1-讲
当一个命题出现下列几种情况:①结论以否定 形式出现的命题;②唯一性命题;③存在性命题; ④命题的结论以“至多”、“至少”等形式叙述的 命题都适用反证法进行证明.
知1-讲
例4 已知m为正整数,m2为偶数,用反证法证明m为偶数. 导引:先假设m为奇数,然后进行推理论证,推出与已知条件
“m2为偶数”相矛盾的结论,从而说明原结论成立. 证明:假设m为奇数,不妨设m=2n+1(n为自然数),
知2-练
2 用反证法证明命题:在一个三角形中,至少有一个 内角不大于60°,证明的第一步是( ) A.假设三个内角都不大于60° B.假设三个内角都大于60° C.假设三个内角至多有一个大于60° D.假设三个内角至多有两个大于60°
知1-练
1 求证:在一个三角形中,如果两条边不相等,那 么它们所对的角也不相等.
2 假设命题结论的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

c2 = a2 + b2
试一试:
你能求出图 中三角形DEF的 面积和周长吗?
D
E
F
解:在Rt△DEF中, ∠DEF=900,DE=3, EF=3, ∴S△DEF=DE· DF÷2=3×3÷2=4.5 ∵直角三角形的直角边长为1时,斜边长为 2 ∴直角三角形的直角边长为3时,斜边长为3 2 ∴三角形DEF的面积为4.5, 周长为6+ 3 2
课堂练习(课本53页): 1.如图,小方格都是边长为1的正方形, 求四边形ABCD的面积与周长.
E
H
5
3 2
F
2 5
13
G
想一想: 假期中,王强和同学到某海岛上去玩探宝游 戏,按照探宝图,他们登陆后先往东走10千 米,又往北走5千米,遇到障碍后又往西走6 千米,再折向北走到7千米处往东一拐,仅走 1千米就找到宝藏,问登陆点A 到宝藏埋藏点 B B的距离是多少千米? 1
大正方形的面积可以表示为: 又可以表示为:
(a+b)2
c
a
2
1 4 ab 2
∴(a + b)2 =c2 + 4(½ab)
b
a c
即a2 + 2ab + b2 =c2 + 2ab a2 + b2 =c2
读一读(见课本52页):
弦图
赵爽(东汉末至 三国时代吴国人)
试一试:利用下图证明勾股定理
北京 2002国际 数学家大会会标
北京 2002国际数学家大会会标
c
a
b
(ICM-2002)
试一试:利用下图证明勾股定理 c2 大正方形的面积为: 1 2 ab 又可以表示为: ( a b) 4 c 2 c
b a
c2=(a b)2 + 4(½ab) =a2 2ab + b2 + 2ab
7 6 5 A 10 C
课堂练习(课本53页): 假期中,王强和同学到某海岛上去玩探宝游 戏,按照探宝图,他们登陆后先往东走8千米, 又往北走2千米,遇到障碍后又往西走3千米, 再折向北走到6千米处往东一拐,仅走1千米 就找到宝藏,问登陆点A 到宝藏埋藏点B的距 B 离是多少千米? 1
6 3 2 A 8
实地考察
学校组织野外考察活 动.目的是测量一个小湖 泊的最宽处有多少量方案。
2.找出需要测量计算所必须的数据。
参考方案:
1.构造一个直角三角形ABC。 2.测量出AC,BC的距离。
3.利用勾股定理计算出AB的距离。 C
小丁的妈妈买了一部34英寸 (86厘米)的电视机。小丁量了 电视机的屏幕后,发现屏幕只有 70厘米长和50厘米宽,他觉得一 定是售货员搞错了。你能解释这 是为什么吗?
勾股定理:你能说说勾股定理的内容吗? 直角三角形两直角边的平方和等于斜边的平方 若直角三角形的两条直角边分别为a,b, 斜边为c,则 a2+b2=c2 . A 公式变形: c2=a2+b2
b2=c2-a2
a2=c2-b2
b
C
c
B
a
b
c
b
a
c
b a
c
b a
c
a 还记得吗?
怎样利用四个一样大的直角三角形来拼一 个新的图形,从而得到勾股定理的证明?
我们通常所说的34英寸 ∵702+502=7400 或86厘米的电视机,是指 862=7396 其荧屏对角线的长度
荧屏对角线大约为86厘米 ∴售货员没搞错
相关文档
最新文档